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Abstract Free Binary Decision Diagrams (FBDDs) are a data structure for the representation
and manipulation of Boolean functions. Efficient algorithms for most of the important opera-
tions are known if only FBDDs respecting a fixed graph ordering are considered. However, the
size of such an FBDD may strongly depend on the chosen graph ordering and efficient algo-
rithms for computing good or optimal graph orderings are not known. In this paper it is shown
that the existence of polynomial time approximation schemes for optimizing graph orderings or
for minimizing FBDDs implies NP � ZPP or NP � P, respectively, and so such algorithms are
quite unlikely to exist.

1. Introduction

Many variants of Binary Decision Diagrams (BDDs) have been considered as a data structure
for Boolean functions. Such data structures have several applications, in particular in computer
aided hardware design. They are used in programs for, e.g., circuit verification, test pattern
generation, model checking and logic synthesis. Data structures for Boolean functions should
allow the efficient representation and manipulation of important functions. The most popu-
lar data structure proposed for this purpose are Ordered Binary Decision Diagrams (OBDDs),
which were introduced by Bryant [5, 6]. The reason that many generalizations of OBDDs have
been considered is that there are many practically important functions for which OBDDs are
too large to be stored in a computer memory. In this paper we focus on a particular extension
of OBDDs, namely Free BDDs (FBDDs).

FBDDs have also been considered in complexity theory under the name read-once branching
programs. There are many papers presenting lower bound methods for FBDDs. The first ones
are due to Wegener [20] and Žák [21], and in the paper of Simon and Szegedy [18] most previous
approaches are handled in a unified way. Already in the early paper of Fortune, Hopcroft
and Schmidt [7] it was shown that FBDDs are exponentially more powerful than OBDDs by
presenting an example of a function with polynomial FBDD size but exponential OBDD size.
The algorithmic aspects of FBDDs are investigated by Sieling and Wegener [17] and Gergov
and Meinel [9]. It turned out that many but not all operations on Boolean functions which can
be performed efficiently on functions represented by OBDDs can also be performed efficiently
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on functions represented by FBDDs if only FBDDs according to a fixed graph ordering are
considered. This is similar to OBDDs where many operations can be performed efficiently only
if the considered OBDDs have the same variable ordering. Graph orderings are a generalization
of variable orderings. A graph ordering

�
defines for each input the ordering in which the

variables have to be tested in FBDDs respecting
�

. Unlike OBDDs FBDDs allow different
orderings for different inputs. FBDDs respecting a graph ordering

�
are called

�
-FBDDs or

�
driven FBDDs.

We postpone the formal definition of graph orderings to Section 2. Here we only remark that
(similar to OBDDs) the size of a

�
-FBDD for a particular function may strongly depend on

the chosen graph ordering
�

. So it is an important problem to choose a good graph ordering.
A heuristic for computing graph orderings of a tree-like shape has been proposed by Bern,
Meinel and Slobodová [2]. An algorithm with a double exponential worst-case run time for
minimizing FBDDs was presented by Günther and Drechsler [10]. This algorithm can also be
used to compute optimal graph orderings, since for each FBDD � a graph ordering

�
can easily

be computed so that � is a
�

-FBDD, see Sieling and Wegener [17]. However, the question
whether there are efficient algorithms for computing good or optimal graph orderings remains
open. In this paper we consider the following two closely related optimization problems.

MinGraphOrdering

Instance: A Boolean function � described by an FBDD
�

.
Problem: Compute a graph ordering

���
so that the size of a

���
-FBDD for � is minimal among

all FBDDs for � .

MinFBDD

Instance: A Boolean function � described by an FBDD
�

.
Problem: Compute an FBDD for � which has minimal size.

We shall prove the following hardness results for these problems.

Theorem 1: If there is a polynomial time approximation scheme for MinFBDD, then NP � P.

Theorem 2: If there is a polynomial time approximation scheme for MinGraphOrdering, then
NP � ZPP.

We remember that ZPP is the class of languages with error-free probabilistic polynomial time
algorithms (Las Vegas algorithms). For an introduction into the probabilistic complexity classes
see, e.g., the textbook of Papadimitriou [12]. Since it seems to be quite unlikely that all problems
in NP have deterministic polynomial time algorithms or polynomial time Las Vegas algorithms,
it is also quite unlikely that the two considered problems have polynomial time approximation
schemes.

We remark that for OBDDs there are similar optimization problems, namely the computation
of a minimal size OBDD for a function given by an OBDD and the computation of an optimal
variable ordering for a function given by an OBDD. However, for OBDDs these problems are
polynomially related and, therefore, usually not explicitly distinguished. The NP-hardness of
these problems for OBDDs for multi-output functions was shown be Tani, Hamaguchi and
Yajima [19] and for OBDDs for single-output functions by Bollig and Wegener [4]. In Sieling
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[15] it is shown that the existence of polynomial time approximation schemes for these problems
implies P � NP and in Sieling [16] the stronger result that it is NP-hard to approximate these
problems up to any constant factor.

The paper is organized as follows. In the following section we repeat the definitions and some
basic properties of FBDDs and approximation schemes. The theorems are proven in Sections 3
and 4, and a technical lemma used in these proofs is shown in Section 5.

2. Definitions and Some Properties of FBDDs

We start with the definitions of FBDDs and graph orderings. A Binary Decision Diagram (BDD)
for the representation of functions ������������� ��� over the variables 	
������������	� is a directed acyclic
graph. The graph consists of terminal nodes, which have no successor and which are labeled
by

�
or � , and internal nodes. Each internal node is labeled by a variable and has an outgoing�

-edge and an outgoing � -edge. In free BDDs (FBDDs) on each directed path each variable
occurs at most once as the label of a node.

Examples of FBDDs are shown on the right side of Figure 2. In the figures edges are always
directed downwards. We draw

�
-edges as dashed lines and � -edges as solid lines. Internal nodes

are drawn as circles and terminal nodes as squares.

Each node � of an FBDD represents a Boolean function ��� . In order to evaluate this function
for an input � ��� ������������������� we start at � . At each 	�� -node we follow the outgoing ��� -edge.
Finally, a terminal node is reached, and ��� � �� is equal to the label of this terminal node. In
an FBDD for the representation of ������������� ��� for each function � � there is a pointer to a node
representing �!� .
A graph ordering is a BDD-like graph that does not represent a Boolean function but that de-
scribes for each input a permutation of the variables. Formally, a graph ordering

�
is a directed

acyclic graph with one source node and one terminal node. Each internal node is labeled by a
Boolean variable and has an outgoing

�
-edge and an outgoing � -edge. Furthermore, on each

path from the source to the terminal node each variable is tested exactly once. Similar to FBDDs
each input � �"� � � ����������� � � defines a path from the source to the terminal node of the graph
ordering.

For a graph ordering
�

we call an FBDD
�$#

a
�

-FBDD or
�

driven FBDD if for each input the
variables on the computation path in

�%#
are found in the same ordering as on the computation

path in
�

, where on the computation path in
�%#

variables may be omitted.

We repeat some properties of FBDDs. The usual reduction rules for OBDDs can be applied
also on FBDDs without changing the represented function. The reduction rules are depicted
in Figure 1. By the deletion rule a node � whose successors coincide can be deleted after
redirecting the edges leading to � to its successor. By the merging rule nodes � and & with
the same label, the same

�
-successor and the same � -successor can be merged, i.e., the edges

leading to � are redirected to & , and � is deleted. An FBDD is called reduced if neither of
the reduction rules is applicable. Sieling and Wegener [17] prove that reduced

�
-FBDDs are

unique up to isomorphism. Hence, we may talk about the (reduced)
�

-FBDD for some function
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Figure 1: The deletion rule and the merging rule for OBDDs and FBDDs.

� . Furthermore, reduced FBDDs respecting the same graph ordering can easily be tested for
equivalence by a simple isomorphy test.

If two FBDDs
� � and

���
do not respect the same graph ordering, then no deterministic polyno-

mial time algorithm is known for the equivalence test, i.e., the test whether
� � and

���
represent

the same function. A probabilistic polynomial time equivalence test with one-sided error was
presented by Blum, Chandra and Wegman [3]. This algorithm always classifies equivalent
FBDDs as equivalent but with a probability of at most � �	� it may also classify nonequivalent
FBDDs as equivalent. Hence, the algorithm shows that the equivalence test for FBDDs is con-
tained in coRP.

We call a node � of an FBDD redundant, if at both successors of � the same function is rep-
resented. Then � can be deleted by redirecting all incoming edges to one of the successors of
� . However, different from OBDDs the deletion rule is not necessarily applicable to redun-
dant nodes during the reduction of FBDDs so that the most efficient known algorithm to detect
redundant nodes is to apply the probabilistic equivalence test to the successors of � .

For the definitions of notions concerning approximation algorithms we follow Garey and John-
son [8]. Let 
 be some minimization problem, let �� be the set of instances of 
 and let � be
some algorithm computing legal solutions of 
 . For ������ let � � ��� be the value of the output
of � on instance � and let ����� � ��� be the value of an optimal solution for � . The performance
ratio of � is defined as ���������! #"%$&� � ��� � ����� � ����' . A polynomial time approximation scheme �
is a polynomial time algorithm that gets besides ����� an extra input (�) �

. For each (*) �
it

has to achieve a performance ratio of at most �,+-( .

3. The Complexity of FBDD Minimization

We prove the nonapproximability results by a reduction from a variant of the satisfiability prob-
lem which we call ( robust 3-SAT- . ( ( Rob3SAT- . ). This problem is a promise problem. We
remember that an algorithm for a promise problem has to be successful only on instances ful-
filling the promise. In particular, it does not have to check whether the promise is fulfilled and
if the promise is not fulfilled, the algorithm may behave arbitrarily.
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( Rob3SAT- .
Instance: A set � of variables and a set � of clauses fulfilling the following properties:

1. Each clause consists of at least two and at most three literals and each variable
occurs in each clause at most once.
2. Each variable occurs at least once and at most . times.
3. Any two clauses share at most one literal.

Promise: If the set of clauses is not satisfiable, then for each assignment to the variables at
least (������ clauses are not satisfied.

Problem: Is there a satisfying assignment to the variables?

The restrictions on the input make the reduction of ( Rob3SAT- . to the problem MinFBDD
easier. The promise ensures a gap between satisfiable and nonsatisfiable inputs so that a hard-
ness result for ( Rob3SAT- . also implies a nonapproximability result for ( Rob3SAT- . where the
promise is omitted.

We do not know whether a hardness result for ( Rob3SAT- . was explicitly stated in the literature
but its hardness follows easily by reexamining the proofs of Arora, Lund, Motwani, Sudan and
Szegedy [1] and Papadimitriou and Yannakakis [13]. In the first paper a reduction from the PCP-
Theorem implies that there is some (�) �

so that the problem ( Rob3SAT, i.e. the above promise
problem without the restrictions on the input, is NP-hard. In the latter paper the restriction that a
variable may occur at most . times is introduced and a reduction from the problem of the former
paper is supplied. It is easy to see that the constructed instance also fulfills the other restrictions
on the input that are given in the above definition of ( Rob3SAT- . . Hence, the following theorem
holds.

Theorem 3: There are constants .���� and () �
so that ( Rob3SAT- . is NP-hard.

Proof of Theorem 1: We assume that there is a polynomial time approximation scheme � for
MinFBDD and want to construct a polynomial time algorithm for ( Rob3SAT- . where . and
( are the constants ensured by Theorem 3. Let � � � $	� � ���������
� � '���� � $�� � ����������� � '�� be
an instance for ( Rob3SAT- . fulfilling the promise. We are going to present a polynomial time
algorithm for the transformation of � � ��� � into an instance � for MinFBDD. On � we may
apply the polynomial time approximation scheme � , and from the size of the result we can
decide whether � � ��� � is satisfiable. Since on instances � � �� � not fulfilling the promise the
algorithm for ( Rob3SAT- . may behave arbitrarily, we do not have to consider this case.

We construct an FBDD for a function � which is defined over the set � of variables where

� � $ 	 � ����������	 � ��	 # � ����������	 #� '�� $	� '�� $	� �� ��� ��$�� � � ��� '���� � $�� ���������
� +�� ' '��
Hence, the number of variables is ��� + ��� + � . The function � is composed of the functions
� � ��������� � �"!�� which are defined by

� � � 	 �$# 	 #� for �&%'�(%'� ,
� �"!�� � )

*,+ �.- � 	 �/#
)
*,+ �.- � 	

#� for �&%'�(%'� .
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Figure 2: The shape of an FBDD for the function � and FBDDs for ��� � 	�� # 	 #� and for
��� ! � � 	�� # 	 # � # 	�� , i.e., the function corresponding to the clause � � � $	����� � � �
����' .
Intuitively, the variable 	 � corresponds to the variable � � of the instance � � �� � and 	 #� corre-
sponds to the negation of � � . For each variable ��� the function ��� is introduced, and for each
clause � � the function ���"!�� is introduced where � � !�� computes the conjunction of the variables
corresponding to the literals in � � .
In the following we use � � as an abbreviation of � � � # � �� # � �� . Then the function � is defined by

� �

�������������� �������������

� � if � � �
�
,

� � if � � � � and �
�

�
�
,

...
...

��� if � � ������� � � �! � � � and � � �
�
,

...
...

� � !�� if � � ������� � � � !��" � � � and � �"!�� �
�
,

� if � � ������� � � � !�� � � .
An FBDD for � is shown in the left side of Figure 2. We see that the FBDD consists of a switch
that chooses which of the functions � � has to be evaluated. It is easy to construct FBDDs for
� � ��������� � �"!�� in polynomial time, see the right side of Figure 2. The left side of Figure 2 shows
how to combine these FBDDs to an FBDD for � in polynomial time.

Let # denote the total number of literals in the clauses in � . Let $ � ( � � �&% . +('&. � � . We apply
the polynomial time approximation scheme � for MinFBDD on the constructed FBDD for �
for the performance ratio � +)$ . Then we count the number of internal nodes in the computed
FBDD

�
for � . We are going to prove the following claim.
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Claim: � � ��� � is satisfiable iff
�

consists of at most � � + $ � � �	�+ � � + # + ��� internal nodes.

We conclude that it suffices to compare the number of internal nodes of
�

with � � + $ � � �	� +� � + #�+ � � in order to decide to whether � � ��� � is satisfiable. Hence, Theorem 1 follows from
the claim and Theorem 3.

In order to prove the claim we first assume that � � ��� � is satisfiable. Let � be a satisfying
assignment. We show that the size of a minimal FBDD for � is bounded by ��� + � � + # + �
by presenting an FBDD of this size. Since we chose the performance ratio � + $ for � it follows
that the size of the result of � is bounded by � � + $ � � ��� + � � +)# + � � .
First we construct an FBDD representing � � ��������� � � with

� � internal nodes. Since � � � 	 �.# 	 #� ,
there are FBDDs for � � that consist of two internal nodes, one labeled by 	 � and the other one
labeled by 	 #� . If � � has the value

�
in � , we arrange the test of 	 � before the test of 	 #� , and if � �

has the value � in � , we arrange 	 #� before 	 � .
For each function � �"!�� we construct an FBDD consisting of ��� �,� internal nodes, where the
last variable is a variable corresponding to a literal of � � that is satisfied by � . If we join
the constructed FBDDs for � � ��������� � � !�� , the last internal node of � � !�� can be merged with a
node of one of the FBDDs for � � ��������� � � . Hence, the FBDD for all these functions consists of� � + � ������ � ��� � ��� � � �

� � + #���� internal nodes. Finally, we construct from this FBDD for
� � ��������� � �"!�� an FBDD for � as outlined in Figure 2. Then the number of nodes labeled by �
and the � -variables is ��� + ��� + � . Hence, the FBDD has at most ��� + � � + # + � internal
nodes. This implies the only-if part of the claim.

In order to prove the other implication of the claim we assume that � � �� � is not satisfiable. By
the promise for each assignment to the variables in � at least (	� clauses are not satisfied. We
show that a minimal FBDD for � consists of more than � � + $ � � ��� + � � + #�+ � � internal nodes.
Then also the output of � has to consist of more than this number of nodes, which implies the
claim.

We start with some minimal FBDD
�

for � . If this FBDD does not have the shape of the
FBDD in Figure 2, i.e., if the � -variables are not arranged in the top of the FBDD, we shall
rearrange this FBDD without changing the represented function and without increasing the size.
Afterwards, the number of nodes labeled by � or a � -variable is minimal, since � essentially
depends on each of these variables and the FBDD only contains one node testing each of these
variables. Then we compute the minimal size of an FBDD representing � � ��������� � �"!�� under the
assumption that the instance � � ��� � is not satisfiable. Altogether, we obtain a lower bound on
the size of an FBDD for � .

Before we consider the rearrangement of the FBDD in detail, we point out that we do not present
a polynomial time algorithm for the rearrangement. This is not necessary since it suffices to
prove a lower bound on the FBDD size. In fact, we always assume that the considered FBDD
does not contain redundant nodes. We already remarked in Section 2 that redundant nodes can
be deleted by redirecting the incoming edges to one of the successors, but that no deterministic
polynomial time algorithm for the detection of redundant nodes is known.

In Figure 2 three � � -nodes are surrounded by a dotted line. We call this arrangement of � � -
nodes a � � -block. In the same way we define � � -blocks. In the following we shall make sure
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that in the FBDD the tests of � � -variables are always arranged as � � -blocks. If this is not the
case, we perform the following steps. Let ��� , � � and � � the numbers of � �� -, � �� - and � �� -nodes,
respectively. Without loss of generality let � � be the minimum of these three numbers. Then
we replace in

�
the variables � �� and � �� by the constant � , i.e., we redirect each pointer leading

to such a node to the � -successor of this node. The resulting FBDD represents the function
��� � �� � � � � �� � � . Afterwards, we replace each � �� -node � by a � � -block, i.e., we create a � � -block and
redirect all edges leading to � to this � � -block. The

�
-edges leaving the nodes of the � � -block are

directed to the
�
-successor of � and the � -edge leaving the last node of the � � -block is directed

to the � -successor of � . It is easy to verify that we again obtain an FBDD for � . Altogether
� � + � � + � � nodes are removed and � � � nodes are inserted. Hence, the size does not increase.
In the same way we may ensure that the tests of the �

�
-variables are arranged as �

�
-blocks and

so on. We call the resulting FBDD again
�

.

The next step is to ensure that the � � -blocks are arranged in the top of the FBDD as shown in
Figure 2. In order to show that it is possible to rearrange the FBDD in such a way without
increasing the size we define the property � � �� of

�
. The FBDD

�
always has the property

� � � � . For � � $�� ���������
� + � ' the FBDD
�

has the property � � �� if the � � -block, ����� , � � -block
in
�

are arranged as shown in Figure 2, i.e., at the source there is a � � -block, the � -successor of
the last node of this block is a �

�
-block and so on up to the � � -block.

Lemma 4: Let � � $�� ���������
� + � ' . If
�

has the property � � � � � � and does not have the
property � � �� then it contains at least two � � -blocks.

The technical proof of this lemma is given in Section 5. We rearrange
�

in the following way.
We search for the smallest � so that

�
does not have the property � � ��� . Then

�
has the shape

outlined in the left of Figure 3. (In order to simplify Figure 3, we draw the � � -blocks as circles
with the label � � .) Since we may assume that

�
does not contain redundant nodes, the part of

�
that computes the functions � � ��������� � �� � does not contain tests of � -variables. Let � be the node
which is the � -successor of the last node of the � �� � -block of

�
(if � �

�
let � be the source

of
�

). Let
� �

be the FBDD starting at � . In
���

we replace the variables � � � , � �� and � �� by the
constant � , i.e., we redirect the pointers leading to a node labeled by one of these variables to
the � -successor of this node. This does not affect the part of the FBDD computing � � ��������� � �� �
as remarked above. By Lemma 4 at least 6 internal nodes are deleted by the replacement. Then
we create a � � -block and redirect the edge leading to � to this � � -block. The

�
-successor of the

� � -block is an FBDD computing � � , which consists of at most 3 internal nodes. The � -successor
is
� �

after the replacement of � � � , � �� and � �� by � . It is easy to see that the constructed BDD is an
FBDD and that it represents � . The number of internal nodes does not increase since at most �
internal nodes are inserted and at least � internal nodes are deleted by the replacement. This is
the reason why for the selection of each of the functions � � three instead of only one � -variable is
used. It is easy to see that the FBDD has the properties � � ��� ��������� � � ��� . Hence, we may iterate
this procedure until the FBDD has the shape shown in Figure 2. It consists of � � � + � � + �
nodes labeled by � and the � -variables, which is optimal, and an FBDD of � � ��������� � �"!�� . In the
following we estimate the size of this representation.

For the representation of � � ��������� � � we need at least
� � internal nodes since these functions

essentially depend on
� � different variables. Since the FBDD does not contain redundant nodes,
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Figure 3: The rearrangement of the FBDD
�

.

we may assume that this representation consists of exactly
� � internal nodes. Again we interpret

the relative ordering of 	 � and 	 #� as an assignment to the variable � � . If in the representation of
� � the variable 	 � is arranged before 	 #� then � � �

�
and otherwise � � � � .

For the representation of � �"!�� at least � � � � internal nodes are necessary if we ignore mergings.
Since the FBDD does not contain redundant nodes, we may assume that this representation
consists of exactly � � � � internal nodes. Since each two clauses share at most one literal, at
most one node of the representation of � � !�� , namely the node of the last level can be merged
with some other representation. This node may be merged with a node of the representation
for � � ��������� � � or with a node of the representation of � �"!�� . In the former case � � is satisfied
by the assignment defined above. If � � is not satisfied by this assignment, then a node of the
representation of � � !�� may be merged with a node of the representation of � � ! � but not with
a node of the representation of � � ��������� � � . Since two clauses share at most one literal, the
representation of � �"!�� contains at least ��� � ��� � nodes that are not merged with any other node.
Since each variable occurs in at most . clauses, at most . representations of functions � � !�� that
correspond to unsatisfied clauses can share a node. Hence, besides the

� ���� � � � � � � � ��� nodes
that cannot be merged with other nodes, for each . unsatisfied clauses there is at least one node.
By the promise at least (	� clauses are not satisfied. Hence, the representation of the functions
� � ��������� � �"!�� consists of at least

� � + � ���� � � ��� � � � ��� + (	� � . nodes. Together with the � - and
� -nodes, the FBDD contains at least ��� + � � + # + � + (	� � . nodes. By the choice of $ and
because of the inequalities # % .� , � � � � � , � % .�� and (without loss of generality) � ) � ,
we have �	� + � � + # + � + (	� � . ) � � +($�� � ��� + � � +)# + � � . This completes the proof of
the claim and of Theorem 1. �

4. The Complexity of Optimizing Graph Orderings

In order to prove Theorem 2 we assume that there is a polynomial time approximation scheme�
for MinGraphOrdering. We try to adapt the proof of Theorem 1. This means we construct for
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the instance � � ��� � of ( Rob3SAT- . an FBDD for the function � as described in the last section
and apply

�
on this FBDD. Now we get the problem that the result of

�
is a graph ordering

� rather than an FBDD, and in order to adapt the proof of Theorem 1 we need the size of the
� -FBDD for � . Hence, we would like to solve the following problem in polynomial time.

Reordering of FBDDs

Instance: An FBDD
�

representing some function � and a graph ordering � .
Problem: Compute the � -FBDD for � .

We remark that (similar to OBDDs) the output of the reordering problem of FBDDs may be
exponential in the input size. Hence, there may only be an algorithm with polynomial run time
with respect to the size of the input and the output. However, no such algorithm is known.
Meinel and Slobodová [11] present a polynomial time algorithm (with respect to input and
output size) for the construction of an OBDD for a given variable ordering and a function given
by an FBDD, and they remark that this algorithm can be used for the reordering of FBDDs
if there is a polynomial time algorithm for the equivalence test for FBDDs. An algorithm
for reordering FBDDs which uses as a subprogram an equivalence test for FBDDs was also
presented in Sieling [14]. For this subprogram we use the probabilistic equivalence test for
FBDDs of Blum, Chandra and Wegman [3]. Since this algorithm may err, the output of the
resulting reordering algorithm may be incorrect, i.e., we obtain a Monte Carlo algorithm. But
we would like to point out that this reordering algorithm never computes an FBDD which is
larger than the � -FBDD for � ; if it does not err, it computes the � -FBDD for � , and otherwise
it may only compute an � -FBDD for some function different from � whose size is not larger
than the size of the � -FBDD for � . This has the following reason. The reordering algorithm
for FBDDs uses the equivalence test in order to check subfunctions of � for equivalence where
FBDDs for these subfunctions are obtained from

�
by replacing variables by constants. This

is done in order to avoid the creation of nodes of the � -FBDD on which any reduction rule
is applicable. Because of the one-sided error the probabilistic equivalence test may classify
different subfunctions of � as equal. Then (depending on � ) it may happen that for only one
of these subfunctions a node � is created and pointers leading to the node representing the other
subfunction falsely lead to � . In this case the resulting � -FBDD is smaller than the � -FBDD
for � . On the other hand the algorithm cannot fail to detect that two subfunctions coincide.

By iterating the probabilistic equivalence test for FBDDs its error probability can be made
exponentially small. If the size of the output of the reordering operation is polynomial, the
probabilistic equivalence test is called only a polynomial number of times in the Monte Carlo
algorithm described above. Hence, the error probability of the reordering algorithm can be
made even exponentially small if the size of the output is bounded by some polynomial. We
shall apply the probabilistic reordering algorithm only in this situation.

Hence, we may prove Theorem 2 in the following way. We assume that there is a polynomial
time approximation scheme

�
for MinGraphOrdering. Let � � ��� � be an instance for ( Rob3SAT-

. . We compute an FBDD for the function � as described in the proof of Theorem 1. We apply�
for the performance ratio � + $ given in that proof and obtain a graph ordering

�
. Then

we apply the probabilistic reordering algorithm outlined in the last paragraphs. We decide that� � ��� � is satisfiable iff the resulting FBDD consists of at most � � + $�� � ���,+ � � + #�+ � � internal
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nodes.

In order to analyze this algorithm for ( Rob3SAT- . we distinguish two cases.

Case 1: ��������� is satisfiable. Then by the proof of Theorem 1 the size of a minimum FBDD
for � is bounded by �	�,+ � � + #�+ � . The algorithm

�
computes a graph ordering � so that the

size of the � -FBDD for � is bounded by � � +)$�� � �	� + � � + # + � � . Hence, the probabilistic
reordering algorithm computes an FBDD with at most � ��+�$ � � �	� + � � + # + � � internal
nodes (possibly for a function different from � ), and the output of the constructed algorithm for
( Rob3SAT- . is correct.

Case 2: �	�
����� is not satisfiable. Then by the proof of Theorem 1 the size of a minimum
FBDD for � is larger than � � +($ � � �	� + � � + # + ��� and

�
can only obtain a graph ordering

� so that the size of the � -FBDD for � is larger than � � +($�� � ��� + � � + # + ��� . (Of course,
the size of the � -FBDD for � is polynomial since

�
is an approximation scheme and the size

of an optimal FBDD for � is polynomial.) However, with an exponential small probability
the reordering algorithm may compute an FBDD for a function different from � , and size of
this FBDD may be smaller than � � +)$ � � ��� + � � + #�+ � � . Hence, with exponentially small
probability the constructed algorithm may make the wrong decision that � � �� � is satisfiable.

Altogether, we obtain a probabilistic polynomial time algorithm for ( Rob3SAT- . with an expo-
nentially small one-sided error. This implies ( Rob3SAT- . � coRP. Since ( Rob3SAT- . is an
NP-hard problem, it follows NP � coRP. Together with RP � NP and ZPP � RP � coRP we
conclude NP � ZPP.

5. Proof of Lemma 4

In the following it is convenient to consider the � � -blocks as ordinary internal nodes of the
FBDD, i.e., we think of � � as a variable that takes the value � �� # � �� # � �� . Then we have to prove
that the FBDD contains at least two internal nodes labeled by � � . In

�
we replace the variables

� � ���������
� �� � by the constant � and prove the claim for the resulting FBDD
� #

, which computes
the function � #� � � � � � ��� � � � ��� � +�� � � � . We may obtain

� #
from

�
by considering the � -successor

of the � �� � -block of
�

as the new source and removing all nodes not reachable from the new
source. Our first goal is to show that

� #
contains a � � -node � . Afterwards, we show that there

is a second � � -node.

Let � be the set of variables tested in
�%#

. In order to obtain � we choose an assignment � to all
variables in ����$	� � ' and show that the resulting subfunction � #� � of � # essentially depends on
� � . Hence, if we run through

� #
on the computation path that is chosen for � we find a � � -node,

which we call � . Since
�

has the property � � �� , the node � is not the first node found on the
computation path for � in

� #
.

The assignment � is defined in the following way: All 	 -variables and all � -variables take the
value � , and � takes the value

�
. Then it follows from the definition of � that � #� � � � + � � � � � � � � �

and � #� � � � + � � � � �
�
, i.e., � # essentially depends on � � .

Hence, there is a � � -node � . Let � be the computation path for � from the source of
� #

to �
(excluding � ). In order to find a second � � -node in

� #
we perform the following two steps.
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� We construct an assignment � to the variables in � ��$	� � ' and show that � #� � essentially
depends on � � . This implies that on the computation path for � a � � -block & has to be
reached.

� In order to prove that � �
� & we construct from � and � the following assignment � . In �

the variable � � remains undefined, all variables tested on � get the same value as in � and
all other variables get the same value as in � . Hence, � and � coincide on the variables
tested after � . Furthermore, the computation path for � leads to & and the computation
path for � leads to � . If � and & represent the same function, then � #� � � � + ��� � � #� � � � + ��� for
each � � $ � ���	' . On the other hand, if we show that this equality does not hold for some
� , we know that � and & represent different functions, i.e., � and & cannot coincide. This
proves the claim that there are two � � -nodes in

� #
.

The choice of an appropriate assignment � depends on the set of variables that are tested on � .
Hence, we obtain the following case distinction. Let ��� denote the set of variables on which � �
essentially depends.

Case 1: On � a variable 	 � � � � is tested.
Then we define � as the following assignment: The variable 	 � gets the value

�
and all other

	 -variables, � and all � -variables except � � get the value � . Then � � � � �
�

and � #� � � � + � � � � .
Therefore, � #� � � � � . Hence, � #� � essentially depends on � � and on the computation path for �

we reach a � � -node & . Now we choose from � and � the assignment � as described above. In
� the variable 	 � and, therefore, all 	 -variables take the value � . Then � � � � � � and, therefore,
� #� � � � + � � � � while � #� � � � + � � �

�
. Hence, � �

� & and the claim follows for Case 1.

Case 2: On � no variable of � � , but a variable �
	 is tested.
Note that on � all � -variables are tested for � . We obtain � in the following way. We choose
some variable 	 � � � � � � 	 . (We remark that � � � � 	

�
��� , since by the requirements on the input

of ( Rob3SAT- . each of the sets ��� and � 	 contains at least two variables and both sets share at
most one variable.) In � the variable 	 � gets the value

�
and all other 	 -variables get the value

� , the variables � and � 	 get the value
�
, and all other � -variables except � � get the value � . Then

� � � � �
�

and we get � #� � � � + � � by evaluating � 	 � � , which takes the value � . Then � #� � � � � . We
choose � as described above. By � all � -variables except � � get the value � and � gets the value�
. Hence, � #� � � � + � � �

�
while � #� � � � + ��� � � . This implies the claim for Case 2.

Case 3: On � neither a variable of � � nor a � -variable are tested, but � is tested on � .
In � the variable � and all � -variables except � � get the value � , some variable of � � gets the
value

�
and all other 	 -variables the value � . Then � #� � � � � . If we choose � as described above,

we have � #� � � � + � � �
�

since in � all � -variable have the value � and � has the value
�
. On the

other hand � #� � � � + ��� � � , which implies the claim for Case 3.

Case 4: On � neither a variable of � � , nor a � -variable nor � are tested.
Since on � at least one variable is tested, the only possibility is that on � some 	 -variable
	 � ��'� � is tested. Let  be a number so that 	 � �'� 	 . We choose � in the following way. The
variables 	 � and � get the value

�
and all other 	 -variables the value � . The � -variables except

� � are chosen in such a way that � 	 is selected ( � � � � for � ��$� + � ���������� � � �� + � ���������
� + � '
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and � 	 �
�
). Then � #� � � � � . We choose � as described above. Since in � and � the � -variables

have the same values, we have � #� � � � + � � � � 	 � �
� � while � #� � � � + � � �

�
.

This completes the proof of Lemma 4.

Acknowledgment

I thank Ingo Wegener for fruitful discussions on the proofs in this paper.

References

[1] Arora, S., Lund, C., Motwani, R., Sudan, M. and Szegedy, M. (1992). Proof verification
and hardness of approximation problems. In Proc. of 33rd Symposium on Foundations of
Computer Science, 14–23.
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