
The Complexity of Minimizing and Learning FBDDs∗

Detlef Sieling
FB Informatik, LS 2, Univ. Dortmund,

44221 Dortmund, Fed. Rep. of Germany
sieling@Ls2.cs.uni-dortmund.de

Abstract

Free Binary Decision Diagrams (FBDDs) or read-once branching programs are a
data structure for Boolean functions. They can efficiently be manipulated if only
FBDDs respecting a fixed graph ordering are considered. However, the size of
such FBDDs may strongly depend on the chosen graph ordering. In this paper it is
shown that the existence of polynomial time approximation schemes for optimizing
graph orderings or for minimizing FBDDs implies NP = P, and so such algorithms
are quite unlikely to exist. The same holds for the related problem of computing
minimal size FBDDs that are consistent with a given set of examples. The latter
result implies that size bounded FBDDs are not PAC-learnable unless NP = RP.

Keywords: Free binary decision diagram, read-once branching program, approximation
scheme, nonapproximability, PAC-learning

1. Introduction

Many variants of Binary Decision Diagrams (BDDs) have been investigated as a data structure
for Boolean functions. Such data structures have several applications, in particular in computer
aided hardware design. They are used in programs for, e.g., circuit verification, test pattern
generation, model checking and logic synthesis. Data structures for Boolean functions should
allow the efficient representation and manipulation of important functions. The most popu-
lar data structure proposed for this purpose are Ordered Binary Decision Diagrams (OBDDs),
which were introduced by Bryant [5]. Many generalizations of OBDDs have been considered
since there are many important functions for which OBDDs are too large to be stored in a com-
puter memory. In this paper we focus on a particular extension of OBDDs, namely Free BDDs
(FBDDs).

∗This work was supported by DFG grant We 1066/8. A preliminary version has been accepted for MFCS’99.

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 1 (1999)

ISSN 1433-8092

FBDDs have also been considered in complexity theory under the name read-once branching
programs. There are many papers presenting lower bound methods for FBDDs. The first ones
are due to Wegener [20] and Žák [21], and in the paper of Simon and Szegedy [16] most previous
approaches are handled in a unified way. Already in the early paper of Fortune, Hopcroft
and Schmidt [6] it was shown that FBDDs are exponentially more powerful than OBDDs by
presenting an example of a function with polynomial FBDD size but exponential OBDD size.
The algorithmic aspects of FBDDs are investigated by Sieling and Wegener [15] and Gergov
and Meinel [9]. It turned out that many but not all operations on Boolean functions which can
efficiently be performed on functions represented by OBDDs can also efficiently be performed
on functions represented by FBDDs if only FBDDs according to a fixed graph ordering are
considered. This is similar to OBDDs where many operations can efficiently be performed only
if the considered OBDDs have the same variable ordering. Graph orderings are a generalization
of variable orderings. A graph ordering G defines for each input the ordering in which the
variables have to be tested in FBDDs respecting G. Unlike OBDDs, FBDDs allow different
orderings for different inputs. FBDDs respecting a graph ordering G are called G-FBDDs or G
driven FBDDs.

We remark that (similar to OBDDs) the size of a G-FBDD for a particular function may strongly
depend on the chosen graph ordering G. So it is an important problem to choose a good graph
ordering. A heuristic for computing graph orderings of a tree-like shape has been proposed
by Bern, Meinel and Slobodová [2]. An algorithm with a double exponential worst-case run
time for minimizing FBDDs was presented by Günther and Drechsler [10]. This algorithm can
also be used to compute optimal graph orderings, since for each FBDD H a graph ordering G
can easily be computed so that H is a G-FBDD, see Sieling and Wegener [15]. However, the
question whether there are efficient algorithms for computing good or optimal graph orderings
remains open. This motivates to explore the complexity of the following two optimization
problems.

Minimum FBDD (MinFBDD)

Instance: A Boolean function f described by an FBDD G.
Problem: Compute an FBDD for f which has minimal size.

Optimization of Graph Orderings (OptGraphOrdering)

Instance: A Boolean function f described by an FBDD G.
Problem: Compute a graph ordering G∗ so that the size of a G∗-FBDD for f is minimal among

all FBDDs for f .

A related problem is the computation of a minimum size FBDD where the function to be repre-
sented is specified by a set of examples.

Minimum Consistent FBDD (MCFBDD)

Instance: A set E of examples, i.e. pairs 〈x, β〉, where x ∈ {0, 1}N and β ∈ {0, 1}.
Problem: Compute an FBDD of minimal size that represents a function that is consistent with

all examples in E, i.e., for which ∀〈x, β〉 ∈ E : f(x) = β.

This problem occurs when searching for small size representations for incompletely specified
Boolean functions that are given by a set of inputs and the corresponding function values. It is

2

easy to compute an FBDD of size |E| · N that is consistent with the set E of examples. This
FBDD contains for each x, where 〈x, β〉 ∈ E, a computation path that is chosen only for the
input x and ends at the β-sink. However, such an FBDD realizes some kind of “table look-up”
and it is a natural goal to find a representation of the set of examples that is smaller than a table
containing all examples in order to save memory. Learning theory provides another motivation
to search for smaller representations of sets of examples. We focus on the PAC-learning model
(PAC=probably approximately correct), which was introduced by Valiant [19]. Roughly, the
task is to find for a set of randomly chosen examples of a hidden function (the so-called concept)
a hypothesis that approximates the concept as well as possible. An FBDD G that is consistent
with E and considerable smaller than |E| · N “generalizes” the given set of examples, i.e., the
function represented by G is likely to coincide on more inputs with the hidden concept than
the function realized by a table look-up. We remark that the possibility of efficiently learning
functions represented by size bounded FBDDs, i.e. of the efficient construction of size bounded
FBDDs well approximating a hidden concept, is determined by the complexity of MCFBDD.
This follows from the results of Pitt and Valiant [12] who showed that the NP-hardness of the
construction of a hypothesis consistent with a given set of examples implies the nonlearnability
of the corresponding class of hypotheses under the assumption NP 6= RP.

We shall prove the following hardness results for the three optimization problems.

Theorem 1: If there is a polynomial time approximation scheme for MinFBDD, then NP = P.

Theorem 2: If there is a polynomial time approximation scheme for OptGraphOrdering, then
NP = P.

Theorem 3: If there is a polynomial time approximation scheme for MCFBDD, then NP = P.

Hence, it is unlikely that the considered problems have polynomial time approximation schemes
and we get the justification to give up the search for polynomial time approximation schemes.
By the results of Pitt and Valiant [12] Theorem 3 also implies that for some function s :

�
→

�
,

FBDDs with s(n) nodes are not learnable in the PAC-learning model unless NP = RP.

For OBDDs there are similar optimization problems. In the following we give an overview over
the most important results concerning the corresponding optimization problems for OBDDs and
compare these results with our results for FBDDs.

The problem corresponding to MinFBDD is the problem MinOBDD, i.e. the problem to com-
pute a minimal size OBDD for a function given by an OBDD. Similarly one may define the ana-
log of the problem OptGraphOrdering: OptVarOrdering is the problem to compute an optimal
variable ordering for a function given by an OBDD. However, MinOBDD and OptVarOrdering
are polynomially related and, therefore, usually not explicitly distinguished. On the other hand
it is not clear whether MinFBDD and OptGraphOrdering are polynomially related, since it is not
known whether a polynomial time algorithm for OptGraphOrdering implies a polynomial time
algorithm for MinFBDD. The NP-hardness of MinOBDD and OptVarOrdering for OBDDs for
multi-output functions was shown by Tani, Hamaguchi and Yajima [18] and for OBDDs for
single-output functions by Bollig and Wegener [4]. In Sieling [13] it is shown that the existence
of polynomial time approximation schemes for these problems implies P = NP and in Sieling

3

[14] that it is NP-hard to approximate these problems up to any constant factor. For FBDDs it
remains an open problem whether MinFBDD and OptGraphOrdering can be approximated up
to some constant factor or whether a similar nonapproximability result can be proved.

The learnability of size bounded OBDDs under the PAC-learning model was considered by
Takenaga and Yajima [17]. They prove the NP-completeness of the problem Minimum OBDD
Identification, i.e., the problem to find for a set of examples and for a number B an OBDD
with the fixed variable ordering x1, . . . , xN and size at most B that is consistent with all ex-
amples. This result implies that size bounded OBDDs with a fixed variable ordering are not
PAC-learnable unless NP = RP. A difference to our result is that the variable ordering is fixed,
while for our result we do not assume anything about the graph ordering.

The paper is organized as follows. In the following section we repeat some definitions and
results concerning FBDDs and approximation algorithms. In Section 3 the main proof idea is
presented and Theorem 1 is proved. Then we discuss the adaptation of this proof to the problems
OptGraphOrdering and MCFBDD (Sections 4 and 5). Finally, we prove two technical lemmas
in Section 6 and conclude the paper with some open problems.

2. Preliminaries

A Binary Decision Diagram (BDD) for the representation of functions f1, . . . , fm over the
variables x1, . . . , xn is a directed acyclic graph. The graph consists of terminal nodes, which
have no successor and which are labeled by 0 or 1, and internal nodes. Each internal node
is labeled by a variable and has an outgoing 0-edge and an outgoing 1-edge. In free BDDs
(FBDDs) on each directed path each variable occurs at most once as the label of a node. In
OBDDs we have the extra condition that on all paths the variables are tested according to a
fixed ordering. Examples of FBDDs are shown on the right side of Figure 1. In the figure edges
are directed downwards. We draw 0-edges as dashed lines and 1-edges as solid lines. Internal
nodes are drawn as circles and terminal nodes as squares.

Each node v of an FBDD represents a Boolean function fv. In order to evaluate this function
for an input a = (a1, . . . , an) we start at v. At each xi-node we follow the outgoing ai-edge.
Finally, a terminal node is reached, and fv(a) is equal to the label of this terminal node. In
an FBDD for the representation of f1, . . . , fm for each function fj there is a pointer to a node
representing fj .

A graph ordering describes for each input a permutation of the variables. Formally, a graph
ordering G is a directed acyclic graph with one source node and one terminal node. Each
internal node is labeled by a Boolean variable and has an outgoing 0-edge and an outgoing 1-
edge. Furthermore, on each path from the source to the terminal node each variable is tested
exactly once. Similar to FBDDs each input a = (a1, . . . , an) defines a path from the source
to the terminal node of the graph ordering. For a graph ordering G we call an FBDD G′ a
G-FBDD or G driven FBDD if for each input the variables on the computation path in G′ are
found in the same ordering as on the computation path in G, where on the computation path in
G′ variables may be omitted.

4

We repeat some properties of FBDDs. The usual reduction rules for OBDDs can also be applied
to FBDDs: By the deletion rule a node v whose successors coincide can be deleted after redi-
recting the edges leading to v to its successor. By the merging rule nodes v and w with the same
label, the same 0-successor and the same 1-successor can be merged, i.e., the edges leading to
v are redirected to w, and v is deleted. An FBDD is called reduced if neither of the reduction
rules is applicable. Sieling and Wegener [15] prove that reduced G-FBDDs are unique up to
isomorphism. Hence, we may talk about the (reduced) G-FBDD for some function f .

If two FBDDs G1 and G2 do not respect the same graph ordering, no deterministic polynomial
time algorithm is known for the equivalence test, i.e., the test whether G1 and G2 represent
the same function. A probabilistic polynomial time equivalence test with one-sided error was
presented by Blum, Chandra and Wegman [3]. This algorithm always classifies equivalent
FBDDs as equivalent but with a probability of at most 1/2 it may also classify nonequivalent
FBDDs as equivalent. Hence, the equivalence test for FBDDs is contained in coRP.

We call a node v of an FBDD redundant, if at both successors of v the same function is repre-
sented. Then v can be deleted by redirecting all incoming edges to one of the successors of v.
However, different from OBDDs the most efficient known algorithm to detect redundant nodes
is to apply the probabilistic equivalence test to the successors of v.

For the definitions of notions concerning approximation algorithms we follow Garey and
Johnson [8]. Let Π be some minimization problem, let DΠ be the set of instances of Π and
let A be some algorithm computing legal solutions of Π. For I ∈ DΠ let A(I) be the value of
the output of A on instance I and let OPT(I) be the value of an optimal solution for I . The per-
formance ratio of A is defined as supI∈DΠ

{A(I)/OPT(I)}. A polynomial time approximation
scheme A is a polynomial time algorithm that gets besides I ∈ DΠ an extra input ε > 0. For
each ε > 0 it has to achieve a performance ratio of at most 1 + ε.

3. The Complexity of FBDD Minimization

We prove the nonapproximability results by a reduction from a variant of the satisfiability prob-
lem which we call ε robust 3-SAT-b (εRob3SAT-b). This problem is a promise problem. We
remember that an algorithm for a promise problem has to be successful only on instances ful-
filling the promise. It does not have to detect that the promise is not fulfilled and in this case it
may behave arbitrarily.

εRob3SAT-b

Instance: A set U of variables and a set C of clauses fulfilling the following properties:
1. Each clause consists of at least two and at most three literals and each variable
occurs in each clause at most once.
2. Each variable occurs at least once and at most b times.
3. Any two clauses share at most one literal.

Promise: If the set of clauses is not satisfiable, for each assignment to the variables at least
ε|C| clauses are not satisfied.

Problem: Is there a satisfying assignment to the variables?

5

The promise ensures a gap between satisfiable and nonsatisfiable inputs, so that a hardness result
for εRob3SAT-b also implies a nonapproximability result for εRob3SAT-b where the promise is
omitted and the goal is to maximize the number of satisfied clauses. The restrictions on the input
make the reduction of εRob3SAT-b to MinFBDD easier. We do not know whether a hardness
result for εRob3SAT-b was explicitly stated in the literature. The following hardness result
follows easily by reexamining the proofs of Arora, Lund, Motwani, Sudan and Szegedy [1]
and Papadimitriou and Yannakakis [11]. In the first paper a reduction from the PCP-Theorem
implies that there is some ε > 0 so that the problem εRob3SAT, i.e. the above promise problem
without the restrictions on the input, is NP-hard. In the latter paper the restriction that a variable
may occur at most b times is introduced and a reduction from the problem of the former paper
is supplied. It is easy to see that the constructed instance also fulfills the other restrictions on
the input that are given in the above definition of εRob3SAT-b. Hence, the following theorem
holds.

Theorem 4: There are constants b ∈
�

and ε > 0 so that εRob3SAT-b is NP-hard.

Proof of Theorem 1: We assume that there is a polynomial time approximation scheme A
for MinFBDD and construct a polynomial time algorithm for εRob3SAT-b where b and ε are
the constants ensured by Theorem 4. Let (U = {u1, . . . , un}, C = {C1, . . . , Cm}) be an
instance for εRob3SAT-b fulfilling the promise. We are going to present a polynomial time
algorithm for the transformation of (U, C) into an instance H for MinFBDD. To H we apply
the approximation scheme A, and from the size of the result we can decide whether (U, C) is
satisfiable. Since on instances not fulfilling the promise algorithms for εRob3SAT-b may behave
arbitrarily, we do not have to consider this case.

We construct an FBDD for a function F which is defined over the set

V = {x1, . . . , xn, x′
1, . . . , x′

n} ∪ {y} ∪ {zj
i | i ∈ {1, 2, 3}, j ∈ {1, . . . , n + m}}

of variables. The function F is composed of the functions f1, . . . , fn+m defined by

fi = xi ∧ x′
i for 1 ≤ i ≤ n,

fn+i =
∧

uj∈Ci

xj ∧
∧

uj∈Ci

x′
j for 1 ≤ i ≤ m.

Intuitively, the variable xi corresponds to the variable ui of the instance (U, C) and x′
i corre-

sponds to the negation of ui. For each variable ui the function fi is introduced, and for each
clause Ci the function fn+i is introduced where fn+i computes the conjunction of the variables
corresponding to the literals in Ci. In the following we use zj as an abbreviation of zj

1 ∧ zj
2 ∧ zj

3.

6

0 1 1 1

z1
1

z1
2

z1
3

y
fn+m

f1

zn+m
1

zn+m
2

zn+m
3

0

x′

i

xi

0

x1

x′

2

x3

fi fn+j

F

FBDD for f1, . . . , fn+m

Figure 1: The shape of an FBDD for the function F and FBDDs for fi = xi ∧ x′
i and for

fn+j = x1 ∧ x′
2 ∧ x3 (the function corresponding to the clause Cj = {u1, u2, u3})

Then we define

F =

f1 if z1 = 0,

f2 if z1 = 1 and z2 = 0,
...

...

fi if z1 = · · · = zi−1 = 1 and zi = 0,
...

...

fn+m if z1 = · · · = zn+m−1 = 1 and zn+m = 0,

y if z1 = · · · = zn+m = 1.

The shape of an FBDD for F is shown in the left side of Figure 1. We see that the FBDD
consists of a switch that chooses which of the functions fi has to be evaluated. Figure 1 shows
that it is easy to construct FBDDs for f1, . . . , fn+m in polynomial time and to combine these
FBDDs to an FBDD for F in polynomial time.

Let L denote the total number of literals in the clauses in C. Let δ = ε/(21b). We apply the
polynomial time approximation scheme A for MinFBDD to the constructed FBDD for F for the
performance ratio 1 + δ and obtain an FBDD G. By the following claim it suffices to compare
the number of internal nodes of G with (1 + δ)(5n + 2m + L + 1) in order to decide whether
(U, C) is satisfiable. Hence, Theorem 1 follows from the claim and Theorem 4.

Claim: (U, C) is satisfiable iff G consists of at most (1 + δ)(5n + 2m + L + 1) internal nodes.

7

In order to prove the claim we first assume that (U, C) is satisfiable. Let σ be a satisfying
assignment. We show that the size of a minimal FBDD for F is bounded by 5n+2m+L+1 by
presenting an FBDD of this size. Since we chose the performance ratio 1 + δ for A, it follows
that the size of the result of A is bounded by (1 + δ)(5n + 2m + L + 1).

It is easy to construct an FBDD for f1, . . . , fn with 2n internal nodes in such a way that in
the representation of fi the variable xi is arranged before x′

i if ui has the value 0 in σ, and x′
i

is arranged before xi otherwise. For each function fn+i we construct an FBDD consisting of
|Ci| internal nodes, where the last variable is a variable corresponding to a literal of Ci that is
satisfied by σ. If we join the constructed FBDDs for f1, . . . , fn+m, the last internal node of the
FBDD for fn+i can be merged with a node of one of the FBDDs for f1, . . . , fn. Hence, the
FBDD for all these functions consists of 2n +

∑m

i=1
(|Ci| − 1) = 2n + L − m internal nodes.

Finally, we construct from this FBDD for f1, . . . , fn+m an FBDD for F as outlined in Figure 1.
Then the number of nodes labeled by y and the z-variables is 3n+3m+1 and the total number
of internal nodes is 5n + 2m + L + 1. This implies the only-if part of the claim.

In order to prove the other implication of the claim we assume that (U, C) is not satisfiable. By
the promise for each assignment to the variables in U at least εm clauses are not satisfied. We
show that a minimal FBDD for F consists of more than (1+δ)(5n+2m+L+1) internal nodes.
Then also the output of A has to consist of more than this number of nodes, which implies the
claim.

We start with an arbitrary FBDD G for F . If this FBDD does not have the shape of the FBDD
in Figure 1, i.e., if the z-variables are not arranged in the top of the FBDD, we shall rearrange
this FBDD without changing the represented function and without increasing the size so that
afterwards the z-variables are arranged as shown in Figure 1. Then the number of nodes labeled
by y or a z-variable is minimal, since F essentially depends on each of these variables and the
FBDD only contains one node testing each of these variables. Finally, we compute the minimal
size of an FBDD representing f1, . . . , fn+m under the assumption that the instance (U, C) is
not satisfiable. Altogether, we obtain a lower bound on the size of an FBDD for F .

Since our goal is to prove a lower bound on the FBDD size, it is not necessary to present a
polynomial time algorithm for the rearrangement. In fact, we always assume that the considered
FBDD does not contain redundant nodes. We already remarked in Section 2 that redundant
nodes can be deleted by redirecting the incoming edges to one of the successors, but that no
deterministic polynomial time algorithm for the detection of redundant nodes is known.

In Figure 1 three z1-nodes are surrounded by a dotted line. We call this arrangement of z1-nodes
a z1-block. In the same way we define zj-blocks. The first step of the rearrangement is to make
sure that in the FBDD the tests of z1-variables are always arranged as z1-blocks. Let a1, a2

and a3 be the numbers of z1
1-, z1

2- and z1
3-nodes, respectively. W.l.o.g. let a1 be the minimum of

these three numbers. Then we replace in G the variables z1
2 and z1

3 by the constant 1, i.e., we
redirect each edge leading to a node labeled by z1

2 or z1
3 to the 1-successor of this node. The

resulting FBDD represents the function F|z1
2
=1,z1

3
=1. Afterwards, we replace each z1

1-node v by
a z1-block, i.e., we create a z1-block and redirect all edges leading to v to this z1-block. The
0-edges leaving the nodes of the z1-block are directed to the 0-successor of v and the 1-edge
leaving the last node of the z1-block is directed to the 1-successor of v. It is easy to verify

8

that we again obtain an FBDD for F and that the size does not increase. In the same way we
may ensure that the tests of the z2-variables are arranged as z2-blocks and so on. We call the
resulting FBDD again G.

The next step is to ensure that the zi-blocks are arranged in the top of the FBDD as shown in
Figure 1. In order to show that it is possible to rearrange the FBDD in such a way without
increasing the size we define the Property P (j) of G. For j ∈ {1, . . . , n+m} the FBDD G has
the Property P (j) if the z1-block, . . . , zj-block in G are arranged as shown in Figure 1, i.e., at
the source there is a z1-block, the 1-successor of the last node of this block is a z2-block and so
on up to the zj-block. In order to simplify the notation we say that G always has the (empty)
Property P (0).

Lemma 5: Let G be an FBDD for F without redundant nodes and let j ∈ {1, . . . , n + m}.
If G has the Property P (j − 1) and does not have the Property P (j), it contains at least two
zj-blocks.

We postpone the proof of this lemma to Section 6 where we prove a more general result. Now
we can rearrange G in the following way. We search for the smallest j so that G does not
have the Property P (j). Then the z1-, . . . , zj−1-blocks are arranged as shown on the left side
of Figure 2. In order to simplify the figure zj-blocks are drawn as ordinary internal nodes
of an FBDD. The SubFBDDs indicated by G1, . . . , Gj−1 are representations of f1, . . . , fj−1,
respectively, which may share internal nodes. Since we may assume that G does not contain
redundant nodes, G1, . . . , Gj−1 do not contain tests of z-variables. Let v be the node which is
the 1-successor of the last node of the zj−1-block of G (if j = 0 let v be the source of G). Let
G∗ be the FBDD starting at v. In G∗ we replace the variables zj

1, zj
2 and zj

3 by the constant 1, i.e.,
we redirect the edges leading to a node labeled by one of these variables to the 1-successor of
this node. By Lemma 5 at least 6 internal nodes are deleted by the replacement. Then we create
a zj-block and redirect the edge leading to v to this zj-block. As 0-successor of the zj-block
we create an FBDD computing fj, which consists of at most 3 internal nodes. The 1-successor
is G∗ after the replacement of zj

1, zj
2 and zj

3 by 1. The resulting BDD is shown in the right of
Figure 2. It is easy to see that the constructed BDD is an FBDD for F . The number of internal
nodes does not increase since at most 6 internal nodes are inserted and at least 6 internal nodes
are deleted by the replacement. This is the reason why for the selection of each of the functions
fi three instead of only one z-variable is used. It is easy to see that the FBDD has the Properties
P (1), . . . , P (j). Hence, we may iterate this procedure until the FBDD has the shape shown in
Figure 1. It consists of 3(n + m) + 1 nodes labeled by y and the z-variables, which is optimal,
and an FBDD for f1, . . . , fn+m. In the following we estimate the size of this FBDD.

Since the FBDD does not contain redundant nodes, the representation of f1, . . . , fn consists of
exactly 2n internal nodes. We interpret the relative ordering of xi and x′

i as an assignment to
the variable ui where ui = 0 iff in the representation of fi the variable xi is arranged before x′

i.
For the representation of fn+i there are |Ci| internal nodes if we ignore mergings, because the
FBDD does not contain redundant nodes. Since each two clauses share at most one literal, at
most one node of the representation of fn+i, namely the node of the last level, can be merged
with some other node, namely with a node of the representation for f1, . . . , fn or with a node
of the representation of fn+j. In the former case Ci is satisfied by the assignment defined

9

z2

z1

zj

zj−1

z2

z1

zj−1
G1

G2

Gj−1 v

G∗

G1

G2

Gj−1

fj

G∗

z
j
1

= 1

z
j
2

= 1

z
j
3

= 1

Figure 2: The construction of an FBDD with the Property P (j) from an FBDD with the Property
P (j − 1)

above. If Ci is not satisfied by this assignment, a node of the representation of fn+i may be
merged with a node of the representation of fn+j but not with a node of the representation of
f1, . . . , fn. Since two clauses share at most one literal, the representation of fn+i contains at
least |Ci| − 1 nodes that are not merged with any other node. Since each variable occurs in at
most b clauses, at most b representations of functions fn+i that correspond to unsatisfied clauses
can share a node. Hence, besides the

∑m

i=1
(|Ci| − 1) nodes that cannot be merged with other

nodes, for each b unsatisfied clauses there is at least one node. By the promise at least εm
clauses are not satisfied. Hence, the representation of the functions f1, . . . , fn+m consists of at
least 2n +

∑m

i=1
(|Ci| − 1) + εm/b nodes. Together with the 3(n + m) + 1 nodes labeled by

y and the z-variables, the FBDD contains at least 5n + 2m + L + 1 + εm/b nodes. By the
choice of δ and because of the inequalities L ≤ 3m, n ≤ 3m and (w.l.o.g.) m > 1, we have
5n + 2m + L + 1 + εm/b > (1 + δ)(5n + 2m + L + 1). This completes the proof of the claim
and of Theorem 1. 2

4. The Complexity of Optimizing Graph Orderings

In order to prove Theorem 2 we assume that there is a polynomial time approximation scheme
B for OptGraphOrdering. We try to adapt the proof of Theorem 1. This means we construct for
the instance (U, C) of εRob3SAT-b an FBDD for the function F as described in the last section
and apply B to this FBDD. Now we get the problem that the result of B is a graph ordering H
instead of an FBDD, while by the results of Section 3 we only know of a relation between the
size of an H-FBDD for F and the satisfiability of (U, C). Hence, we would like to compute an
H-FBDD for F in order to determine its size. However, for the computation of an H-FBDD
from a graph ordering H and a function given by an FBDD no polynomial time algorithm is
known. Hence, we use a different approach which only works in our special situation.

10

Assume for a moment that it is possible to construct an H-FBDD G′ for the function F . Then
we may apply transformation steps similar to those described in the proof of Theorem 1 in order
to obtain an equivalent FBDD G with the shape shown in Figure 1. By these steps the size of the
considered FBDD does not increase. Hence, we may count the number of nodes of G in order
to decide whether (U, C) is satisfiable. In the following we show that we can compute G from
H in polynomial time without computing G′. Hence, it is possible to determine in polynomial
time whether (U, C) is satisfiable. This implies Theorem 2.

Now let a graph ordering H be given. In order to construct G it suffices to determine for
each function fi the relative ordering of the variables that fi depends on. In the following we
show how to determine the relative ordering of x1 and x′

1 in the representation of f1. During
the rearrangement of the hypothetical H-FBDD G′ the following steps are performed without
increasing the size:

1. It is made sure that all tests of z1-variables are arranged as z1-blocks.

2. If afterwards at the source there is no z1-block, the FBDD contains at least two z1-blocks.
Hence, it is possible to rearrange the FBDD by creating a new z1-block as the source,
whose 0-successor is an arbitrary FBDD for f1 and whose 1-successor is the previous
FBDD after replacing the z1-variables by 1.

3. At the 0-successor of the z1-block the function f1 is computed. Since f1 only depends on
x1 and x′

1, all nodes labeled by other variables are redundant and can be removed. From
the resulting FBDD for f1 we can determine the relative ordering of x1 and x′

1.

It is crucial to observe that the relative ordering of x1 and x′
1 is not determined by H and can

be chosen arbitrarily, if at the source of H a variable that is not a z1-variable is tested, or if in
the third step there are computation paths with both relative orderings of x1 and x′

1. Hence, we
can determine the relative ordering of x1 and x′

1 directly from H: If at the source of H there
is not a z1-variable, then we may choose the ordering arbitrarily. Otherwise we consider the
graph ordering H∗ that is obtained from H by replacing the z1-variable z1

l at the source by 0
and the other z1-variables by 1. This is the same replacement as in the rearrangement of the
z1-nodes to z1-blocks, since there is at most one node labeled by z1

l , i.e. al = 1 and, hence, it
is the minimum of a1, a2 and a3. By a simple depth first search approach it can be determined
whether there is a computation path in H∗ on which x1 is arranged before x′

1, whether there
is computation path on which x′

1 is arranged before x1, or whether both types of computation
paths occur. In the latter case the relative ordering of x1 and x′

1 can be chosen arbitrarily, and in
the former cases the relative ordering is the same as in H∗.

Afterwards, we may replace the z1-variables by the constant 1 and may proceed by determining
the relative ordering of x2 and x′

2, and so on. In the same way we may determine the relative
orderings of the variables of the functions corresponding to the clauses. After computing all
these orderings we can construct an FBDD for F as shown in Figure 1, apply the reduction rules
to this FBDD and count the number of its internal nodes. In the same way as in the last section
we decide whether (U, C) is satisfiable. We remark that in the case that (U, C) is satisfiable this
algorithm does not necessarily compute a satisfying assignment since it is sufficient that the

11

algorithm obtains a graph ordering so that the size of the corresponding FBDD is bounded by
(1+δ)(5n+2m+L+1). Such a graph ordering does not necessarily correspond to a satisfying
assignment but merely to an assignment for which less than ε|C| clauses are not satisfied.

5. The Complexity of Minimum Consistent FBDD

In order to prove Theorem 3 we again provide a reduction from εRob3SAT-b. Assume that
there is a polynomial time approximation scheme A for MCFBDD. Let (U, C) be an instance
for εRob3SAT-b that fulfills the promise. The proof works in the following way. We first show
how to construct a set of examples from (U, C). To this set of examples we apply A and from the
size of the resulting FBDD G′ we can decide whether (U, C) is satisfiable. We shall use several
ideas of the proof of Theorem 1: The examples are defined over the set V of variables given in
the proof of Theorem 1. All examples are consistent with the function F . We shall show that
we can modify G′ without increasing its size so that it afterwards represents the function F .
Hence, we can use the analysis of the FBDD size for F given in Section 3.

The examples constructed for (U, C) are listed in Tables I and II. For each j ∈ {1, . . . , n + m}
there is a copy of Table I. Let Vj denote the set of variables that fj essentially depends on.
Hence |Vj| ∈ {2, 3}. In Table I the term zj = 1 means that the variables zj

1, zj
2 and zj

3 are set
to 1, while zj = 0 is an abbreviation for the seven assignments to zj

1, zj
2 and zj

3, where at least
one variable is equal to 0. Similarly, the entry in row 5a means all assignments to x-variables,
where at least one x ∈ Vj is set to 0 (and the remaining variables x ∈ Vj to 1) and at most two
variables x /∈ Vj are set to 1 (and the remaining variables x /∈ Vj to 0). Obviously there are
O(n2) such assignments. For each row the number of corresponding examples is given in the
last column. Since there are n + m copies of the first table, there are altogether O((n + m)3)
examples. It is easy to see that this set of examples can be constructed in polynomial time.
Obviously, all examples are consistent with the function F .

We choose δ as in the proof of Theorem 1 and apply the polynomial time approximation scheme
A for δ to the constructed set of examples. The result is an FBDD G′ that is consistent with
all examples. G′ represents some function F ′, which may be different from F . We shall prove
that we can compute an FBDD G from G′ so that G represents F and |G| ≤ |G′|. Hence, the
analysis of the FBDD size of F in the proof of Theorem 1 implies the following.

1. If (U, C) is satisfiable, there is an FBDD for F with at most 5n + 2m + L + 1 nodes.
Since all examples are consistent with F , there is a solution of the constructed instance
of MCFBDD of this size. Hence, A computes a solution G′ with at most (1 + δ)(5n +
2m + L + 1) nodes.

2. If (U, C) is not satisfiable, each FBDD for F has more than (1 + δ)(5n + 2m + L + 1)
nodes. Since, as shown in the following, from each solution G′ we can construct an
FBDD G for F with |G| ≤ |G′|, it follows |G′| > (1 + δ)(5n + 2m + L + 1).

Hence, (U, C) is satisfiable iff the result G′ of A has at most (1 + δ)(5n + 2m + L + 1) nodes,
and we obtain a polynomial time algorithm for εRob3SAT-b in contradiction to Theorem 4.

12

Table I:

function number of
x-variables y z-variables except zj zj

value examples

1a 1 0 1 0 1 7

1b 1 0 1 1 0 1

1c 1 1 1 0 1 7

For all x∗ ∈ Vj:

2a 1 except x∗ = 0 1 1 0 0 7 · 3

2b 1 except x∗ = 0 1 1 1 1 3

2c 1 except x∗ = 0 0 1 1 0 3

For all l > j and for some x∗ ∈ Vj \ Vl

3a 1 except x∗ = 0 0 1 except zl = 0 0 0 7 · 7 · (n + m)

3b 1 except x∗ = 0 0 1 except zl = 0 1 1 7 · (n + m)

For all x-variables x∗ ∈ (Vj+1 ∪ · · · ∪ Vn+m) \ Vj and the maximal l where x∗ ∈ Vl

4a 1 except x∗ = 0 0 1 except zl = 0 0 1 7 · 7 · 2 · n

4b 1 except x∗ = 0 0 1 except zl = 0 1 0 7 · 2 · n

4c 1 0 1 except zl = 0 1 1 7 · 2 · n

0 for some x ∈ Vj and5a
1 for at most two x /∈ Vj

0 1 0 0 O(n2)

1 for all x ∈ Vj and5b
1 for at most two x /∈ Vj

0 1 0 1 O(n2)

Table II:

function number of
x-variables y z-variables

value examples

6a 0 0 1 0 1

6b 0 1 1 1 1

13

In the following we show how to construct G. The FBDD G′ is transformed into G in the
following three steps. We note that all intermediate results are FBDDs that are not larger than
G′ and that represent functions that are consistent with all examples.

Step 1: Reordering of z1
1-, z1

2- and z1
3-nodes to z1-blocks.

As in the proof of Theorem 1 let a1, a2 and a3 be the numbers of z1
1 -, z1

2 - and z1
3-nodes. W.l.o.g.

let a1 be the minimum of those numbers. We replace z1
2 and z1

3 by the constant 1 and, afterwards,
we replace each z1

1-node by a z1-block. By the same arguments as in the proof of Theorem 1 the
size of the FBDD does not increase, but now the represented function may change, since a func-
tion F ′ different from F may be represented. For example, F ′

|z1
1
=0,z1

2
=1,z1

3
=1

and F ′
|z1

1
=0,z1

2
=1,z1

3
=0

may be different, while after the reordering of the z1-nodes to z1-blocks the corresponding sub-
functions coincide. However, this does not matter, since the resulting function is consistent
with all examples. This follows from the fact that for all assignments that differ only in the
z1-variables and where at least one of the z1-variables takes the value 0 the examples prescribe
the same value of the function.

In the same way we reorder the z2-nodes to z2-blocks and so on. We call the resulting FBDD
again G′. Since the z-variables are arranged as blocks, we consider the z-blocks as ordinary
variables in the following. E.g., we may talk about replacing zj by 0, which means that the
zj-variables are replaced by constants, where at least one of those variables gets the value 0.

Step 2: Reordering of the z-nodes to a “switch” as shown in the left of Figure 1.

As in the proof of Theorem 1 we say that G′ has the Property P (j) iff the z1-, . . . , zj-blocks
are arranged as shown in Figure 1. Let j be the number for which G′ has the Property P (j − 1)
but not the Property P (j). We show how to construct from G′ an FBDD that is consistent with
all examples and has the Property P (j). Hence, we may iteratively apply this construction in
order to obtain an FBDD with the Property P (n + m).

We perform in G′ the replacement z1 = 1, . . . , zj−1 = 1 and obtain the SubFBDD G∗ of G′

whose source is the 1-successor of the zj−1-block in the switch in G′. Hence, we may only use
examples, where z1 = · · · = zj−1 = 1. Since G′ does not have the Property P (j), at the source
of G∗ there is not a zj-block.

If at the source of G∗ an x-variable x∗ /∈ Vj ∪ · · · ∪ Vn+m is tested, we may replace x∗ by
an arbitrary constant. The represented function may change, but it remains consistent with
all examples since there are no two examples prescribing different function values for z1 =
· · · = zj−1 = 1, x∗ = 0 and z1 = · · · = zj−1 = 1, x∗ = 1 (and identical assignments to the
remaining variables). This is iterated until at the source of the SubFBDD there is an x-variable
x∗ ∈ Vj ∪ · · · ∪ Vn+m or y or a z-variable. We call the resulting SubFBDD again G∗. If now
at the source of G∗ there is a zj-block, nothing more is to show. Otherwise, we prove that there
are at least two zj-blocks in G∗.

Lemma 6: Let G′ be an FBDD that is consistent with all examples and has the Property P (j−
1), but not the Property P (j). Furthermore, let at the 1-successor v of the zj−1-block of the
switch some x-variable in Vj ∪ · · · ∪ Vn+m or y or a z-variable be tested. Then from v at least
two zj-blocks are reachable.

14

We prove Lemma 6 in Section 6. Now we modify G′ in a similar way as in Section 3 and
shown in Fig. 2: In G′ we replace zj by the constant 1. (Different from the proof in Section 3
there may be zj-blocks in the FBDD reached by the 0-edges leaving the z1-, . . . , zj−1-block of
the switch. Furthermore, this part of the FBDD may share such blocks with G∗. Hence, also
the z1-, . . . , zj−1-blocks in that part of the FBDD are replaced by 1.) Afterwards, we create a
zj-block, whose 0-successor is an FBDD for fj (consisting of at most three nodes) and whose
1-successor is G∗ after the replacement. In G′ we redirect the 1-edge leaving the zj−1-block of
the switch to the new zj-block. We call the resulting FBDD again G′. Obviously, the size does
not increase by these modifications since at least six nodes are deleted by the replacement and
most six nodes are inserted. It remains to show that the represented function is still consistent
with all examples.

For inputs with z1 = · · · = zj = 1 the function does not change. The replacement z1 = · · · =
zj−1 = 1 and zj = 0 now yields the subfunction fj, which is consistent with all examples. For
all other inputs, i.e. inputs where for some i < j the block zi takes the value 0, the represented
function may change since zj was replaced by 1. However, the function is still consistent
with all examples since there are no examples prescribing a value of the function essentially
depending on zj if for some i < j the block zi takes the value 0.

Step 3: Modification of the FBDD so that at the edges leaving the switch the functions
f1, . . . , fn+m and y are computed.

Let G′
i be SubFBDD at the 0-edge leaving the zi-block of the switch. The function represented

by G′
i may be different from fi, for example, it may depend on y, on zj for some j > i, or

on x /∈ Vi. W.l.o.g. let Vi = {x1, x2, x3}. We run through G′
i on the computation path for the

assignment where all variables in Vi and all zj-variables, where j 6= i, take the value 1 and
all other variables take the value 0. Because of example 5b the value 1 is computed. If we
change that assignment by replacing one of the Vi-variables by 0, because of example 5a the
value 0 is computed. Hence, on the considered computation path all variables in Vi are tested.
We construct an FBDD for fi = x1 ∧ x2 ∧ x3 that consists of three internal nodes and tests the
variables in the same ordering as on the considered computation path. We replace the edge to
G′

i by an edge to that FBDD. This is done for all i ∈ {1, . . . , n + m}. Similarly we replace
the 1-edge leaving the zn+m-block of the switch by an edge to an FBDD for the function y that
consists of only one y-node. Afterwards, the reduction rules are applied. We call the resulting
FBDD G. Obviously, G represents the function F . It remains to show that |G| ≤ |G′|.

From the consideration of the computation paths in the last paragraph it followed that G′
i con-

tains at least one x-node for each x ∈ Vi. Hence, G can only be larger than G′, if for some
x ∈ Vi ∩ Vj the SubFBDDs G′

i and G′
j share an x-node, while the corresponding SubFBDDs in

G have different x-nodes. W.l.o.g. let Vi = {x1, x2, x3} and Vj = {x1, x4, x5}. Let G′′
i be the

FBDD that we obtain from G′
i by replacing all x-variables except x1, . . . , x5 by 0, the variable

y and the zi-block by 0, and all zl, where l 6= i, by 1. Similarly, let G′′
j be the FBDD that

we obtain from G′
j by replacing all x-variables except x1, . . . , x5 by 0, the variable y and the

zj-block by 0, and all zl, where l 6= j, by 1. Because of the examples 5a and 5b the FBDDs G′′
i

and G′′
j compute the functions fi = x1 ∧ x2 ∧ x3 and fj = x1 ∧ x4 ∧ x5. The FBDDs G′′

i and
G′′

j can only share an x1-node if in G′′
i the variables x2 and x3 are tested before x1 and in G′′

j the

15

variables x4 and x5 are tested before x1. Hence, only in this situation G′
i and G′

j can share an
x1-node. But then also the x1-nodes in the constructed FBDDs for fi and fj are merged. Hence,
G does not contain more x-nodes than G′. Because of the examples 6a and 6b the FBDD G′

contains at least one y-node so that also the number of y-nodes in G is not larger than in G′.
Also the number z-nodes does not increase, since z-nodes may be removed but no new z-nodes
are inserted when constructing G from G′.

6. Proof of Lemmas 5 and 6

First we note that Lemma 6 implies Lemma 5. By the assumptions of Lemma 5 an FBDD G
for the function F which has the Property P (j − 1) but not the Property P (j) is given. Since
G does not contain redundant nodes, at the 1-successor of the zj−1-block of the switch an x-
variable contained in Vj ∪ · · · ∪ Vn+m or y or a z-variable is tested. Since G represents F , it is
consistent with all examples of the Tables I and II. Hence, by Lemma 6 the FBDD G contains
two zj-blocks. This implies the statement of Lemma 5.

Now we prove Lemma 6. We use the following notation. If ξ is an assignment to some set
of variables and x is a variable that does not get a value by ξ, let [ξ, x = 0] denote the as-
signment that we obtain by extending ξ by the assignment x = 0. Furthermore, we again
consider z1, . . . , zn+m as ordinary variables and the zi-blocks as ordinary nodes. We assume
that z1, . . . , zj−1 are replaced by the constant 1. The SubFBDD obtained from G′ by this re-
placement is called G∗. Obviously, G∗ is the SubFBDD of G′ whose source is the 1-successor
of the zj−1-block of the switch. Let X = {x1, . . . , xn, x′

1, . . . , x′
n, y, zj, . . . , zn+m}. Then the

set of variables tested in G∗ is some subset of X . In the following we only use examples where
z1, . . . , zj−1 take the value 1.

We outline the proof of Lemma 6: We first construct an assignment ξ to the variables in X\{zj}
and show that the represented function takes different values for the assignments [ξ, zj = 0] and
[ξ, zj = 1]. This implies that on the computation path for the partial input ξ in G∗ a zj-node
v is reached. In a second step we construct an assignment σ of the variables in X \ {zj} and
show in a similar way that on the computation path for σ some zj-node w is reached. In order
to prove v 6= w we apply a cut-and-paste argument. Let Q be the computation path for ξ before
the reached zj-node. We construct an assignment π that takes for the variables tested on Q the
same values as in ξ and for the other variables except zj the same values as in σ. The variable
zj is undefined for π. We show that for some c ∈ {0, 1} the represented function takes different
values for [σ, zj = c] and [π, zj = c]. This implies that for σ and π and, hence, also for σ and ξ
not the same zj-node can be reached, i.e., v 6= w. Therefore, there are two zj-nodes.

For the assignment ξ all x-variables and all z-variables except zj take the value 1 and y takes
the value 0. Because of the examples 1a and 1b the represented function takes the value 1 for
[ξ, zj = 0] and the value 0 for [ξ, zj = 1]. Hence, there is a zj-node v.

The choice of σ depends on the set of variables tested on Q. We distinguish the following cases.

Case 1: On Q some variable x∗ ∈ Vj is tested.

In σ the variable x∗ gets the value 0, and all other x-variables, y and all z-variables except zj

16

get the value 1. Because of the examples 2a and 2b the represented function takes the value 0
for [σ, zj = 0] and the value 1 for [σ, zj = 1]. Hence, there is a zj-node w.

Then by π all x-variables and all z-variables except zj get the value 1. If in π the variable y gets
the value 0, the represented function takes the value 1 for [π, zj = 0] because of example 1a. If
y gets the value 1, the represented function takes the value 1 for [π, zj = 0] because of example
1c. Hence, v 6= w.

Case 2: On Q no variable of Vj, but zl is tested.

Since G has the Property P (j − 1), we have l > j. Let x∗ ∈ Vj \ Vl be the variable, for which
there are the examples 3. In σ the variables x∗, y and zl get the value 0 and the remaining
x-variables and z-variables except zj get the value 1. Because of the examples 3a and 3b the
represented function takes the value 0 for [σ, zj = 0] and the value 1 for [σ, zj = 1]. Hence,
there is a zj-node w.

By π all x-variables except x∗ and all z-variables except zj get the value 1, and x∗ and y get
the value 0. Because of example 2c the represented function takes the value 0 for [π, zj = 1].
Hence, v 6= w.

Case 3: On Q the variable y is tested, but on Q neither a variable of Vj nor a z-variable are
tested.

We choose some x∗ ∈ Vj. For σ the variable x∗ gets the value 0 and all other variables except
zj get the value 1. Because of the examples 2a and 2b the represented function takes the value
0 for [σ, zj = 0] and the value 1 for [σ, zj = 1]. Hence, there is a zj-node w.

By π all x-variables except x∗ and all z-variables except zj get the value 1, and x∗ and y get
the value 0. Because of example 2c the represented function takes the value 0 for [π, zj = 1].
Hence, v 6= w.

Case 4: On Q neither y nor a z-variable nor a variable of Vj is tested.

Hence, at the source of G∗ some x-variable x∗ /∈ Vj is tested. Let l be the maximal number for
which x∗ ∈ Vl. Since by the assumptions of the lemma at the source of G∗ only x-variables
in Vj ∪ · · · ∪ Vn+m or y or some z-variable may be tested, and by the assumptions of this case
Vj-variables, y and z-variables are excluded, we have l > j. We choose σ in the following way.
The variables x∗, y and zl get the value 0 and all remaining x-variables and all remaining z-
variables except zj get the value 1. Because of the examples 4a and 4b the represented function
takes the value 1 for [σ, zj = 0] and the value 0 for [σ, zj = 1]. Hence, there is a zj-node w.

By π the variables y and zl get the value 0, and all x-variables and all remaining z-variables
except zj get the value 1. Because of example 4c the represented function takes the value 1 for
[π, zj = 1]. Hence, v 6= w.

This completes the proof of Lemma 6.

7. Conclusion and Open Problems

We proved that polynomial time approximation schemes of MinFBDD, OptGraphOrdering and
MCFBDD are unlikely to exist. It remains an open problem whether there are polynomial time

17

approximation algorithms with some constant performance ratio for these problems or whether
it can be shown that such approximation algorithms imply NP = P. Another open problem is
the complexity of computing a minimal size FBDD if the function to be represented is given by
its (complete) truth table. Note that the size of the input is now exponential in the number of
variables so that our proof of the hardness of MCFBDD does not work. In the case of OBDDs
this problem can be solved in polynomial time by the algorithm of Friedman and Supowit [7],
while in the case of FBDDs the run time of the algorithm of Günther and Drechsler [10] may
be still exponential.

The last open problem concern the complexity of the construction of a minimum size OBDD
consistent with some set of examples, where the variable ordering of the OBDD is not fixed in
advance. The proof of our hardness result for MCFBDD is based on the possibility to find a set
of representative examples of the function used in the proof of the hardness result for MinFBDD.
For OBDDs a similar proof seems to be more involved since the proofs of the hardness results
for MinOBDD (Tani, Hamaguchi and Yajima [18], Bollig and Wegener [4], Sieling [13, 14])
use more complicated functions. Hence, we also get the motivation to find easier proofs of the
hardness of MinOBDD.

Acknowledgment

I thank Petr Savický for drawing my attention to the learnability question for FBDDs and Ingo
Wegener for fruitful discussions on the proofs in this paper.

References

[1] Arora, S., Lund, C., Motwani, R., Sudan, M. and Szegedy, M. (1992). Proof verification
and hardness of approximation problems. In Proc. of 33rd Symposium on Foundations of
Computer Science, 14–23.

[2] Bern, J., Meinel, C. and Slobodová, A. (1996). Some heuristics for generating tree-like
FBDD types. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 15, 127–130.

[3] Blum, M., Chandra, A.K. and Wegman, M.N. (1980). Equivalence of free Boolean graphs
can be decided probabilistically in polynomial time. Information Processing Letters 10,
80–82.

[4] Bollig, B. and Wegener, I. (1996). Improving the variable ordering of OBDDs is NP-
complete. IEEE Transactions on Computers 45, 993–1002.

[5] Bryant, R.E. (1986). Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers 35, 677–691.

[6] Fortune, S., Hopcroft, J. and Schmidt, E.M. (1978). The complexity of equivalence and
containment for free single variable program schemes. In Proc. of 5th International Col-
loquium on Automata, Languages and Programming, LNCS 62, 227–240.

18

[7] Friedman, S.J. and Supowit, K.J. (1990). Finding the optimal variable ordering for binary
decision diagrams. IEEE Transactions on Computers 39, 710–713.

[8] Garey, M.R. and Johnson, D.S. (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman.

[9] Gergov, J. and Meinel, C. (1994). Efficient Boolean manipulation with OBDD’s can be
extended to FBDD’s. IEEE Transactions on Computers 43, 1197–1209.

[10] Günther, W. and Drechsler, R. (1999). Minimization of free BDDs. In Proc. of Asia and
South Pacific Design Automation Conference, 323–326.

[11] Papadimitriou, C.H. and Yannakakis, M. (1991). Optimization, approximation, and com-
plexity classes. Journal of Computer and System Sciences 43, 425–440.

[12] Pitt, L. and Valiant, L.G. (1988). Computational limitations on learning from examples.
Journal of the Association for Computing Machinery 35, 965–984.

[13] Sieling, D. (1998). On the existence of polynomial time approximation schemes for
OBDD-minimization (extended abstract). In Proc. of 15th Symposium on Theoretical As-
pects of Computer Science, LNCS 1373, 205–215.

[14] Sieling, D. (1998). The nonapproximability of OBDD minimization. ECCC Report TR98-
001, Revision 1 (available from www.eccc.uni-trier.de).

[15] Sieling, D. and Wegener, I. (1995). Graph driven BDDs—a new data structure for Boolean
functions. Theoretical Computer Science 141, 283–310.

[16] Simon, J. and Szegedy, M. (1993). A new lower bound theorem for read-only-once branch-
ing programs and its applications. In Advances in Computational Complexity Theory, Jin-
Yi Cai, ed., DIMACS Series in Discrete Mathematics and Theoretical Computer Science
13, American Mathematical Society, 183–193.

[17] Takenaga, Y. and Yajima, S. (1993). NP-completeness of minimum binary decision dia-
gram identification. Techn. Report of IEICE, COMP 92-99, 57–62.

[18] Tani, S., Hamaguchi, K. and Yajima, S. (1993). The complexity of the optimal variable
ordering problems of shared binary decision diagrams. In Proc. of 4th International Sym-
posium on Algorithms and Computation, LNCS 762, 389–398.

[19] Valiant, L.G. (1984). A theory of the learnable. Communications of the ACM 27, 1134–
1142.

[20] Wegener, I. (1988). On the complexity of branching programs and decision trees for clique
functions. Journal of the Association for Computing Machinery 35, 461–471.

[21] Žák, S. (1984). An exponential lower bound for one-time-only branching programs. In
Proc. of Mathematical Foundations of Computer Science, LNCS 176, 562–566.

19

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

