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Approximating shortest lattice vectors is not harder than
approximating closest lattice vectors
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Abstract

We show that given oracle access to a subroutine which returns approximate closest vectors
in a lattice, one may find in polynomial-time approximate shortest vectors in a lattice. The
level of approximation is maintained; that is, for any function f, the following holds: Suppose
that the subroutine, on input a lattice £ and a target vector w (not necessarily in the lattice),
outputs v € £ such that ||v — w|| < f(n) - ||u — w|| for any u € £. Then, our algorithm, on
input a lattice £, outputs a nonzero vector v € £ such that ||v|| < f(n) - ||u|| for any nonzero
vector u € L. The result holds for any norm, and preserves the dimension of the lattice, i.e., the
closest vector oracle is called on lattices of exactly the same dimension as the original shortest
vector problem.

This result establishes the widely believed conjecture by which the shortest vector problem
is not harder than the closest vector problem. The proof can be easily adapted to establish an
analogous result for the corresponding computational problems for linear codes.
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1 Introduction

Two basic computational problems regarding integer lattices are the Shortest Vector Problem
(SVP), and the Closest Vector Problem (CVP). Loosely speaking, the input to SVP is a lattice, and
one is required to find the shortest (non-zero) vector in the lattice. In CVP the input is a lattice
together with a target vector, and one is required to find the lattice vector closest to the target.
Lengths and distances may be measured in a variety of norms, but the case of the Euclidean (Ls)
Norm is considered the most interesting one.

It is widely believed that SVP is not harder than CVP, and many even believe that SVP is
strictly easier. Empirical evidence to these beliefs is provided by the gap between known hardness
results for both problems. Whereas it is easy to establish the NP-Hardness of CVP (cf., [vEB]),
the question of whether SVP is NP-Hard was open for almost two decades (until being recently
resolved in the affirmative, for randomized reductions, by Ajtai [A]). Furthermore, approximating
CVP in n-dimensional lattices to within a 2!°6""" " factor is NP-Hard (cf., [ABSS, DKS]), whereas
SVP is only known to be NP-Hard to approximate to within constant factors smaller than /2
(cf., [M]).

Note that for all Euclidean norms (Ly,p > 1), SVP can be easily reduced to CVP using the NP-
hardness of the latter. However, this general NP-completeness argument produces CVP instances
of dimension much bigger than the original SVP problem. An interesting question is whether
a direct reduction is possible that preserves the dimension. More importantly, the NP-hardness
results do not elucidate on the relation between approximate SVP and approximate CVP when the
approximation factor is polynomial (or super-polynomial) in the dimension, or the norm is different
from the Euclidean ones. We recall that the only when the approximation factor is exponential the
two problems are known to be solvable in polynomial time (cf. [LLL, B]).

The first non-empirical evidence that SVP is not harder than CVP (in the same dimension) was
recently given by Henk [H], who showed that solving SVP (in the exact sense) is reducible to solving
CVP (also in the exact sense). Moreover, the result in [H] holds for a wide variety of norms (not
only Euclidean ones). Here we provide an analogous (and thus stronger) result for approximation,
and unlike Henk’s proof we do not employ any non-elementary result about lattices.

We show how to reduce the task of finding an f-approximation for SVP to the task of finding an
f-approximation for CVP (in the same dimension and with the same approximation factor). This
resolves a decade old question of Liszl6 Babai [B], who actually suggested as a challenge to reduce
the task of approximating SVP to within any sub-exponential factor to the task of approximating
CVP (in the same dimension) quite well (e.g., upto a constant factor ¢ > 1). Our result holds for
any function f (and thus, in particular, for f = 1), for any norm, and for both the decision and
the search versions.

In section 2 we introduce some notation and formally define the problems. In sections 3 and 4
we establish the above claims. Section 5 adapts the proof techniques to establish an analogous
result for linear codes. Section 6 concludes with some remarks and open problems.

2 Preliminaries

In the following, we use lowercase letters for scalars, boldface lowercase letters for vectors, and
capital letters for sets, matrices, and sequences of vectors. The sets of reals, integers and natural
numbers are denoted by R, Z, and N, respectively.

R™ is the m-dimensional Euclidean real vector space, and || - || is an arbitrary norm R™ — R.
A lattice £ is a discrete additive subgroup of R™. Its rank, denoted by rank(L), is the dimension



of the R-subspace, denoted span(L), that it spans. Each lattice £ of rank n has a basis, i.e., a
sequence [by,...,b,] of n elements of £ that generate £ as an Abelian group. Thus, the lattice
is obtained by all integer linear combinations of the basis vectors, whereas the span of the lattice
corresponds to all real linear combinations of the basis vectors.

In the following definitions we state two fundamental computational problems regarding lattices.
Both problem are stated with respect to the same (arbitrary) norm || - ||. We always assume that
a lattice L is given by a basis [by,...,by] generating £. The approximation factor is measured in
terms of n (the rank of the lattice).

Definition 1 (Shortest Vector Problem): In the f-Shortest Vector Problem, denoted SVPy, one is
given a lattice L and the task is to find a non-zero vector v € L so that

[vll < f(n) - [[ul

Jor any other non-zero vector u € L. In the decision version, denoted GapSVP, one should distin-
guish pairs (L,d) for which the shortest (non-zero) lattice vector has length at most d from pairs
for which the shortest (non-zero) lattice vector has length greater than f(n)-d.

Definition 2 (Closest Vector Problem): In the f-Closest Vector Problem, denoted CVPy, one is
given a lattice £ and a vector w € span(L) and the task is to find a vector v € L so that

v —wll < f(n)-[lu—wl

for any other vector u € L. In the decision version, denoted GapSVP;, one should distinguish
between triples (L, w,d) for which there exists a lattice vector within distance d from w and triples
for which there exists no lattice vector within distance f(n)-d from w.

3 Reducing approximate SVP to approximate CVP

There are two differences between the Shortest Vector Problem (SVP) and the Closest Vector
Problem (CVP). On one hand, SVP asks for a lattice point close to the all-zero vector, while
CVP asks for a lattice point close to an arbitrary target vector; on the other hand, SVP disallows
the all-zero solution whereas CVP accepts the target vector as an admissible solution (provided it
belongs to the lattice). Thus, the two problems are not trivially related. In particular, the trivial
reduction from SVP to CVP (i.e., £ — (£,0™)) may not work since the CVP oracle may return
the all-zero vector. Our aim is to prevent this possibility. The intuitive idea is the following (see
Figure 1). First of all, instead of looking for a lattice point close to the all-zero vector, we look for
a lattice point close to some other lattice vector w € L. Moreover, to avoid w being returned as
a solution, we run the CVP oracle on a sub-lattice £ C £ not containing w. The problem is now
how to select a sub-lattice £’ C £ without removing the L-vectors closest to w. We start with the
following observation.

Proposition 3.1 Let v =37, ¢;b; be a shortest non-zero vector in L. Then, there exists an i so
that ¢; s odd.

Proof: Otherwise, all ¢;’s are even, and 3 -v = Y1 ;| $b; is a shorter vector in £. [l

We now show how to reduce the shortest vector problem to the solution of n instances of the
closest vector problem.
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Figure 1: Reducing SVP to CVP

input: A pair (B,d), where B = [by,...,b,] and d € R.
For j = 1 to n, invoke the oracle on input (BY), b;,d), where BY) is as in Eq. (1).

output: the OR of all oracle replies.

Figure 2: The reduction — decision version

The reduction: Given a basis B = [by, ..., by] to the lattice L(B) = {>°7, ¢;b; : c1, ..., ¢ € Z},
we construct n instances of CVP. The j* instance consists of the basis

B(]) déf [bl,...,bj71,2bj7bj+17"'7bn] (1)

and the target vector b;. In the search version we uses these n instances of CVP in n corresponding
queries to the CVP; oracle, and output the shortest difference returned in all these calls (i.e., if v;
is the vector returned by the j* call on input (B(j),bj), we return the shortest of the vectors
vi —by,..., v, — by). In the decision version, we augment these queries by the same parameter d
given in the GapSVP instance, and return YES if and only if one of the oracle calls was answered by
YES. The reduction for the decision version is depicted in Fig. 2.

The validity of the reduction follows from the correspondence between solutions to the input
SVP instance and solutions to the CVP instances used in the queries. Specifically:

Proposition 3.2 Let v = Y | ¢;b; be a lattice vector in L(B) so that ¢; is odd. Then u =
c];H(ij) + iz Cibi is a lattice vector in L(BY) and the distance of u from the target b; equals
the length of v.




Proof:  Firstly, note that u € £(BY) since 5%1 is an integer (as ¢; is odd). Secondly, observe
that

c;i+1
u—bj = ]2 2bj+;0ibi_bj
= Cjbj+ZCibi =V

i#]
and the proposition follows. W

Proposition 3.3 Let u = cj(2b;) + 32, ,; ¢;b; be a lattice vector in L(BY). Then v = (2¢; —
)b, + Z#j c¢ib; is a non-zero lattice vector in L(B) and the length of v equals the distance of u
from the target b;.

Proof: Firstly, note that v is non-zero since 203- — 1 is an odd integer. Secondly, observe that

v = (269 — 1)bj + Zcibi
(E]
= C;-(ij) + Zcibi —b; = u—-b;,
i#]
and the proposition follows. W

Combining Propositions 3.1 and 3.2, we conclude that one of the CVP-instances has an optimum
which is at most the optimum of the given SVP-instance. On the other hand, by Proposition 3.3, the
optimum of each of the CVP-instances is lower bounded by the optimum of the given SVP-instance.
Details follow.

Theorem 3 For every function f : N {r € R:r > 1}, SVP; (resp., GapSVP,) is Cook-reducible
to CVPj (resp., GapCVP f). Furthermore, the reduction is non-adaptive, and all queries maintain the
rank of the input instance.

Proof: We prove the theorem for the decisional version. The search version is analogous. Let
(B,d) be a GapSVP; instance, and define GapCVP, instances (B(j),bj,d) for j = 1,...,n, where
BU) is as in Eq. (1). We want to prove that if (B,d) is a YES instance, then (BY), b;,d) is a YES
instance for some j = 1,...,n, and if (B, d) is a NO instance, then (B{), b;,d) is a NO instance for
allj=1,...,n.

First assume (B,d) is a YES instance and let v = )" ; ¢;b; be the shortest non-zero lattice
vector in £L(B). We know ||v|| < d, and (by Proposition 3.1) ¢; is odd for some j. The vector u
as defined in Proposition 3.2 belongs to £(B\)) and satisfies |[u — b;| = ||v|| < d, proving that
(BY),b;,d) is a YES instance.

Now assume (B\),b;,d) is not a NO instance for some j. There exists a vector u in £(B))
such that ||u—b;|| < f(n)-d. The vector v defined in Proposition 3.3 is a non-zero lattice vector
in £(B) and satisfies ||v|| = ||u — b;|| < f(n) - d, proving that (B,d) is not a NO instance. Wi

4 A Randomized Reduction

In the previous section we showed that solving an instance of SVP; can be deterministically reduced
to solving n instances of CVPs, where n is the rank of the lattices. A natural question if whether it



is possible to reduce an SVP problem to a single instance of CVP. The proof of Theorem 3 suggests
that this is possible for randomized reductions. Namely, on input (B, d), choose j € {1,...,n} at
random and output (B, b;,d). We notice that YES instances are mapped to YES instances with
probability at least 1/n, and NO instances are always mapped to NO instances. We now show that
we can actually do better than that. We give a probabilistic reduction from SVP; to CVP; that
succeeds with probability at least 1/2.

Theorem 4 For every function f : N — {r € R : r > 1}, there is a probabilistic many-one
reduction from SVPy (resp., GapSVP;) to CVPs (resp., GapCVP,) that has one-sided error probability
bounded above by 1/2. Furthermore, the CVP instance produced has the same rank as the original
SVP problem.

Proof: Again, we prove the theorem for the decisional version, and the search version is analogous.
Let (B,d) be an SVP instance, where B = [by,...,b,]. Output CVP instance (B’,by,d) where
B' = [b),...,bl] is defined as follows. Let ¢; = 1 and choose ¢; € {0,1} ( = 2,...,n) uniformly
and independently at random. For all 4, let b} = b; + ¢;b1. We want to prove that if (B,d) is a
YES instance then (B’, b1, d) is a YES instance with probability at least 1/2, while if (B, d) is a NO
instance then (B’,by,d) is always a NO instance. Notice that £(B’) is a sub-lattice of £(B) and
that by is not in £(B').

Let’s start with the NO case first. Assume (B’,by,d) is not a NO instance. By definition, there
exists a vector u in £(B’) such that ||u — by|| < f(n) - d. Since L(B') is a sub-lattice of £(B) and
b is not in £(B'), v = u— by is a non-zero vector in L(B) of length at most f(n)-d, proving that
(B, d) is not a NO instance.

Now assume (B,d) is a YES instance and let v. = Y | z;b; be the shortest vector in L(B).
From Proposition 3.2, z; is odd for some j. Let o = x1 +1 — ), ¢;x;. Notice that if z; is even
for all 4 > 1, then z; must be odd and « is even. On the other hand, if z; is odd for some 7 > 1
then « is even with probability 1/2. In both cases, with probability at least 1/2, « is even and
u= b} + >, z:b; is a lattice vector in £(B'). Finally notice that

u—b; = (abl-l-Z:Ei(bi-l-Cibl)) — by

i>1
= (.’L‘l — ZCZ.’EZ) b; + Z.szz + Z.’L‘icibl = vV
2>1 i>1 2>1

and therefore ||u — by|| < d, proving that (B’,by,d) is a YES instance. W

5 Adaptation to Linear Codes

Two well-known problems in coding theory, analogous to SVP and CVP for lattices, are the Mini-
mum Distance Problem (MDP) and the Nearest Codeword Problem (NCP), for linear codes. In the
Minimum Distance Problem, the input is a linear code over a finite field F (the alphabet) and one
must find a non-zero codeword of minimum Hamming weight. In the Nearest Codeword Problem,
the input is a linear code and a target string (over the same alphabet), and one must find the
codeword closest (in the Hamming metric) to this string.

A linear code of length n over a finite field T is a linear subspace C of *. The rate of a code C is
its dimension as a vector space over F. Codes can be represented by a generator matrix, analogous



to the basis representation of lattices. The most interesting case is when the alphabet F = Z/27Z
is the binary field. In this case, a code is given by a full rank m-by-n Boolean matrix C and the
codewords are all linear combinations of the columns of C' (where the sum is taken modulo 2). The
Hamming weight of a word w € ", denoted wt(w) is the number of non-zero elements in w. The
distance between words is usually measured by the Hamming metric d(v,w) = wt(v — w).

The Minimum Distance Problem and the Nearest Codeword Problem are obviously related to
the problems of finding good error correcting codes and decoding them respectively. Although,
historically, the prevailing approach in coding theory has been to study the complexity of code
construction, while completely ignoring the complexity of decoding the resulting code (cf. [FFMMYV,
V]), the relation between the two problems is clear: we would like to find good linear codes that can
also be efficiently decoded. As in the lattice case, empirical evidence shows that MDP is not harder
than NCP: whereas it is easy to establish the NP-hardness of NCP (cf. [BMT]), the question for
MDP was open until recently being resolved in the affirmative by Vardy (cf. [V]). Furthermore, the
NP-hardness of approximating NCP to within any constant factor was proved in [ABSS], whereas
MDP was proved NP-hard to approximate within any constant only recently (cf. [DMS]).

However, to the best of out knowledge, the exact relationship between the complexity of these
two fundamental coding problems, has never been investigated. We prove a result for coding
problems analogous to the result on lattices: approximating the Minimum Distance of a code is not
harder than approximating the Nearest Codeword to a target string. In light of the result (cf. [TV],
p. 77) that almost all linear codes are good (in the sense that they attain the Gilbert-Varshamov
bound R = 1—H(d), where R is the rate, d the relative distance and H the binary entropy function),
we have the following interesting implication: if an efficient algorithm to (approximately) solve the
decoding problem (for linear codes) exists, then we can also efficiently find good codes. Interestingly,
algebraic geometry codes performing better than the Gilbert-Varshamov bound have been used to
prove the NP-hardness of approximating the Minimum Distance Problem (cf. [DMS]).

The reduction from MDP to NCP is basically the same as the lattice one. Actually, it is
even easier to establish for binary codes, as the analogue of Proposition 3.1 is trivial (and in fact
holds for any non-zero codeword). Eq. (1) simplifies too, since here multiplying a column by 2
results in the all-zero column (which may in fact be omitted altogether). Finally, the analogues of
Propositions 3.2 and 3.3 follow easily as above (actually, even more easily). We conclude that

Theorem 5 For every function f : N+ {r € R:r > 1}, the problem of approzimating the distance
of a given Boolean linear code upto factor f is Cook-reducible to the problem of approximating the
distance of a given string from a given Boolean linear code upto factor f.

The above theorem actually holds for linear codes over an arbitrary finite field F = GF(q).

Theorem 6 For every function f : N+— {r € R:r > 1} and any field F = GF(q), the problem of
approrimating the minimum distance of a given linear code over F upto factor f is Cook-reducible
to the problem of approzimating the distance of a given string from a linear code over F within the
same approzimation factor. Moreover, the reduction preserves the length and decreases the rate of
the code.

Proof: Let C =[cy,...,c,] be a linear code over GF(q). For alli = 1,...,n, define the sub-code
C% =ei,...,Ci_1,Cit1,---,Cpn] and look for the codeword in C) (approximately) closest to c;.
Let d; be this codewords. Return the C-codeword d; — ¢; of minimum weight.

Since ¢; does not belong to the code C (), the result is always a non-zero C-codeword. We now
prove that for any codeword u = 7" | z;c; in C, there exists an ¢ € {1,...,n} such that ¢; is at

7



distance at most ||u|| from C®). Since u is non-zero, it must be z; # 0 for some i. Let y be the
multiplicative inverse of —z; in F (i.e., yz; = —1), and define the codeword v =}, (yz;)c; € o).
Then,

v—c = ymici+ Y (yzi)c
J#

n
= nyjcj = yu
j=1

Thus, we have wt(v — ¢;) = wt(yu) = wt(u) (since multiplication by a non-zero scalar does not
change the Hamming weight of a vector). [l

As in the previous section, we can use randomness to reduce the shortest codeword problem
to a single instance of the nearest codeword problem. This time the success probability (on YES
instances) can be made as high as 1 — 1/¢ (while the zero-error on NO instances is preserved).

Theorem 7 For every function f : N — {r € R : r > 1} and any finite field F = GF(q),
there exists a probabilistic polynomial time algorithm that reduces the problem of approzimating the
minimum distance of a given linear code over GF(q) upto factor f to solving a single instance
of approximating the distance of a given string from a given linear code over F within the same
approzimation factor. YES instances are mapped to YES instances with probability 1 — L, while No
instances are always mapped to NO instances. Moreover, the reduction preserves the length and
decreases the rate of the code.

Proof: We only describe the reduction. The rest of the proof is analogous to that of Theorem 4.
Let C = [cy,...,¢y,) be the input code. Output target string ¢; and code C' = [c}, ..., c],] defined
as follows. Choose o; € GF(q) (i = 2,...,n) uniformly and independently at random and let
C; = C; + o;C1- [ ]

6 Discussion

We proved that approximating the Shortest Vector Problem can be reduced in polynomial time
to approximating the Closest Vector Problem. Our reduction preserves the approximation factor
and the rank of the lattice, and can be adapted to other problems with similar structure, like the
Minimum Distance Problem and the Nearest Codeword Problem for linear codes. In both cases,
we reduced a homogeneous problem to the corresponding inhomogeneous one.

The results in [M] and [DMS] are in a certain sense a converse to our result. In [M] and
[DMS] the Shortest Vector Problem and the Minimum Distance Problem are proved NP-hard to
approximate by reduction from the Closest Vector Problem and the Nearest Codeword Problem
respectively. Therefore the inhomogeneous problem is reduced to the corresponding homogeneous
one. However, these reductions do not preserve the approximation factor, and produce instances
much bigger than the original problems. It is an interesting open problem whether an approximation
and size preserving reduction is possible from the Closest Vector Problem to the Shortest Vector
Problem.

Another open problem is whethere there exists a Karp-reduction (deterministic many-to-one
polynomial-time reduction) of the approximate SVP problem to the approximate CVP problem.
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