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Abstract

Andreev et al. [ABCR97] give constructions of Boolean functions (computable by polynomial-
size circuits) that require large read-once branching program (1-b.p.’s): a function in P that
requires 1-b.p. of size at least 27~ PoWIo&(") " function in quasipolynomial time that requires
1-b.p. of size at least 27~C0%€7) and a function in LINSPACE that requires 1-b.p. of size
97 =logn=0(1) " We point out, alternative, much simpler constructions of such Boolean functions
by applying the idea of almost k-wise independence more directly, without the use of discrepancy
set generators for large affine subspaces. Our constructions are obtained by derandomizing the
probabilistic proofs of existence of the corresponding combinatorial objects.

Keywords: almost k-wise independence, derandomization, exponential lower bounds for read-
once branching programs, r-mixed Boolean functions.

1 Introduction

Andreev et al. [ABCRO7] construct Boolean functions hard for read-once branching programs.
Recall that a branching program is a directed acyclic graph with one source and with each node
of out-degree at most 2. Each node of out-degree 2 (a branching node) is labeled by an index of
an input bit, with one outgoing edge labeled by 0, and the other by 1; each node of out-degree 0
(a sink) is labeled by 0 or 1. The branching program accepts an input if there is a path from the
source to a sink labeled by 1 such that, at each branching node of the path, the path contains the
edge labeled by the input bit for the input index associated with that node. A branching program
is read-once (1-b.p.) if, on every path from the source to a sink, no two branching nodes are labeled
by the same input index. Finally, the size of a branching program is defined as the number of its
nodes.

Read-once branching programs represent a model of computation for which we can prove strong
lower bounds. One way of getting a lower bound is to apply a combinatorial theorem of Simon and
Szegedy [SS93], a particular case of which states that any 1-b.p. computing an r-mixed Boolean
function has size at least 2”. Informally, an r-mixed function essentially depends on every set of r
variables (see the next section for a precise definition).

Andreev et al. [ABCR97] show how to construct a Boolean function f,(z1,...,2z,)in LINSPACEN
P/poly that is r-mixed for r = n — [logn]| — 2 for almost all n. By the theorem of Simon and
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Szegedy mentioned above, this yields the lower bound ©(2"/n) for 1-b.p.’s, which is tight. A
Boolean function in DTIME(QIOg2 ") N P/poly that requires a 1-b.p. of size at least 97=0(logn) ig
constructed by derandomizing the probabilistic construction of a certain Boolean function given
in [SZ96]. The derandomized algorithm needs only O(log?) advice bits to determine a polynomial-
time computable function with the 1-b.p. lower bound of at least 27~90°87): by making these bits
a part of the input, one gets a function in P that requires a 1-b.p. of size at least gn—0(log )

Both constructions in [ABCR97] use the idea of e-biased sample spaces introduced by Naor
and Naor [NN93], who also gave an algorithm for generating small sample spaces; three simpler
constructions of such spaces were later given by Alon et al. [AGHP92]. Andreev et al. define
certain e-discrepancy sets for systems of linear equations over GF(2), and relate these discrepancy
sets to the biased sample spaces of Naor and Naor through a reduction lemma. Using a particular
construction of a biased sample space (the powering construction from [AGHP92]), Andreev et
al. give an algorithm for generating e-discrepancy sets, which is then used to derandomize both a
probabilistic construction of an r-mixed Boolean function for r = n—[log n] -2 and the construction
in [SZ96] mentioned above.

We will show that the known algorithms for generating small e-biased sample spaces can be
applied directly to get the r-mixed Boolean function as above, and to derandomize the construction
in [SZ96]. The idea of our first construction is very simple: treat the elements (bit strings) of an
¢-biased sample space as the truth tables of Boolean functions. This will induce a probability
distribution on Boolean functions such that, on any subset A of k£ inputs, the restriction to A of
a Boolean function chosen according to this distribution will look almost as if it were a uniformly
chosen random function defined on the set A. By an easy probabilistic argument, we will show
that such a space of functions will contain the desired r-mixed function, for a suitable choice of
parameters ¢ and k. We mention several possible constructions of an r-mixed Boolean function
with r =n — [logn] — 2.

In our second construction, we derandomize a probabilistic existence proof in [SZ96]. We pro-
ceed along the usual path of derandomizing probabilistic algorithms whose analysis depends only
on almost k-wise independence rather than full independence of random bits [NN93]. Observing
that the construction in [SZ96] is one of such algorithms, we reduce its randomness complex-
ity to O(log?) bits (again treating strings of an appropriate sample space as truth tables). This
gives us a DTIME(QO(I"gS "))-computable Boolean function of quasilinear circuit-size with the lower
bound for 1-b.p.’s slightly better than that for the corresponding quasipolynomial-time computable
function in [ABCR97], and a Boolean function in quasilinear time, QL, with the lower bound for
1-b.p.’s at least gn—0(log’ "), which is only slightly worse than the lower bound for the corresponding
polynomial-time function in [ABCR97]. In the analysis of our construction, we employ a combina-
torial lemma due to Razborov [Raz88], which bounds from above the probability that none of n
events occur, given that these events are almost k-wise independent.

The remainder of the paper. In the following section, we state the necessary definitions and
some auxiliary lemmas. In Section 3, we show how to construct an r-mixed function that has the
same lower bound for 1-b.p. as that in [ABCR97]. In Section 4, we give a simple derandomiza-
tion procedure for a construction in [SZ96], obtaining two more Boolean functions (computable in
polynomial time and quasipolynomial time, respectively) that are hard with respect to 1-b.p.’s.



2 Preliminaries

Below we give the standard definitions of k-wise independence and (¢, k)-independence. We consider
probability distributions that are uniform over some set S C {0, 1}"; such a set is denoted by S,
and called a sample space.

Let S, be a sample space, and let X = zy...z, be a string chosen uniformly from S,. Then
Sy is k-wise independent if, for any k indices 1 < 13 < - -+ < 7}, and any k-bit string «,

Pr(z;,z;, ...2;, = a] = 27k,
Similarly, for S, and X as above, S, is (¢, k)-independent if
|Prlz;, @iy .. .2 = 0] —27F| < e

for any k indices i1 < iy < --+ < 17 and any k-bit string a.

Naor and Naor [NN93] present an efficient construction of small (¢, k)-independent sample
spaces; three simpler constructions are given in [AGHP92]. Here we recall just one construction
from [AGHP92], the powering construction, although any of their three constructions could be used
for our purposes.

Consider the Galois field GF'(2™) and the associated m-dimensional vector space over GF(2).
For every element u of GF(2™), let bin(u) denote the corresponding binary vector in the associated
vector space. The sample space Pow4/" is defined as a set of N-bit strings such that each string w
is determined as follows. Two elements z,y € GF(2™) are chosen uniformly at random. For each
1 < i < N, the ith bit w; is defined as (bin(z'), bin(y)), where (a, b) denotes the inner product over
GF(2) of binary vectors a and b.

Lemma 1 ([AGHP92]) For every k < N, the sample space Pow™ is (5=, k)-independent.

The proof of the above lemma follows from the results in [AGHP92] (Proposition 3 and Corollary 1).

As we have mentioned in the introduction, we shall view the strings of the sample space Pow3/"
as the truth tables of Boolean functions of log N variables. It will be convenient to assume that NV
is a power of 2, i.e., N = 2", Thus, the uniform distribution over the sample space Pow27" induces
a distribution F,, ,, on Boolean functions of n variables that satisfies the following lemma.

Lemma 2 Let A be any set of k tuples from {0,1}", for any k < 2™. Let ¢ be any Boolean function
defined on A. For a Boolean function f chosen according to the distribution ¥, ,, defined above,
we have

|Pr(f]a = ¢] - 27F <2707,
where f|4 denotes the restriction of f to the set A.

Proof: The k tuples in A determine k indices iy, ..., 7t in the truth table of f. The function ¢ is
determined by its truth table, a binary string a of length k. Now the claim follows immediately
from Lemma 1 and the definition of (e, k)-independence. [ |
We say that a Boolean function f,(z1,...,z,) is r-mized for some r < n if, for every subset X
of r input variables {z;,,...,#; }, no two distinct assignments to X yield the same subfunction of
f in the remaining n — r variables. We shall see in the following section that an r-mixed function
for r = n — [logn] — 2 has a nonzero probability in a distribution F,, ,,,, where m € O(n).
Following Savicky and 74k [S796], we call a function ¢ : {0,1}" — {1,2,...,n} (s,7,q)-
complete, for some integers s, n, and ¢, if for every set I C {1,...,n} of size n — s we have



1. for every 0-1 assignment to the variables z;, ¢ € I, the range of the resulting subfunction of
¢ is equal to {1,2,...,n}, and

2. there are at most ¢ different 0-1 assignments to z;, ¢ € I, that result in different subfunctions

of ¢.

It is proved in [S796] that a Boolean function f(Z) = x4 requires 1-b.p.’s of size at least
2"=%/q, provided that ¢ is an (s,n,q)-complete function. The following lemma can be used to
construct an (s, n, ¢)-complete function.

Lemma 3 ([SZ96]) Let A be a t X n matriz over GF(2) with every t X s submatriz of rank at
least r. Let ¢ : {0,1}" — {1,2,...,n} be a mapping such that its restriction to every affine subset
of {0,1} of dimension at least r has the range {1,2,...,n}. Then the function ¢(Z) = Y (AZ) is
(s, m,2")-complete.

A probabilistic argument shows that a ¢ x n matrix A and a function ¥ : {0,1} — {1,2,...,n}
exist that satisfy the assumptions of Lemma 3 for the choice of parameters s, t,r € O(logn), thereby
yielding a Boolean function that requires 1-b.p.’s of size at least 27=9(°87)  Below we will show that
the argument uses only limited independence of random bits, and hence it can be derandomized
using the known constructions of (¢, k)-independent spaces. Our proof will utilize the following
lemma of Razborov.

Lemma 4 ([Raz88]) Let | > 2k be any natural numbers, let 0 < 0,¢ < 1, and let &,...,& be
events such that, for every subset I C {1,...,1} of size at most k,

Pr[Aier&i] — 01| < e
Then we have

Prinl_ &) < e+ (k _l}_ 1) (ck + 6%)

For convenience of the reader, we give the proof of Lemma 4 in the appendix.

3 Constructing r-Mixed Boolean Functions

First, we give a simple probabilistic argument showing that r-mixed functions exist for r = n —
[logn] — 2. Let f be a Boolean function on n variables that is chosen uniformly at random from

the set of all Boolean n-variable functions. For any fixed set of indices {iy,...,i.} C {1,...,n}
and any two fixed binary strings @ = ay,...,a,. and § = (4,..., 3., the probability that fixing
T, ..., 2; toaand then to 8 will give the same subfunction of f in the remaining n — r variables

is 2% where k£ = 2"~". Thus, the probability that f is not r-mixed is at most

(n) 22r2—k’
r
which tends to 0 as n grows.

We observe that the above argument only used the fact that f is random on any set of 2k inputs:
those obtained after the r variables z; ,...,z; are fixed to a, the set of which will be denoted as
Ag, plus those obtained after the same variables are fixed to 3, the set of which will be denoted as
Ag. This leads us to the following theorem.



Theorem 5 There is an m € O(n) for which the probability that a Boolean n-variable function f
chosen according to the distribution ¥, ,,, is r-mized, for r = n— [logn| —2, tends to 1 as n grows.

Proof: By Lemma 2, the distribution F,, ,,, yields a function f which is equal to any fixed Boolean
function ¢ defined on a set A, U Bg of 2k inputs with probability at most 272k 4 9=(m=n) The
number of functions ¢ that assume the same values on the corresponding pairs of elements a € A,
and b € Ag is 2% Thus, the probability that f is not r-mixed is at most

(Z) 92r (9= | g=(m=n=h))
Setting m = (7 + d)n for any § > 0 makes this probability tend to 0 as n grows. |

By definition, each function from F,, ,,, can be computed by a Boolean circuit of size poly(n, m).
It must be also clear that checking whether a function from F, ,,, given by a 2m-bit string, is r-
mixed can be done in LINSPACE. It follows from Theorem 5 that we can find an r-mixed function,
for r = n — [logn]| — 2, in LINSPACE by picking the lexicographically first string of 2m bits that
determines such a function.

Remark 6 Any of the three constructions of small (¢, k)-independent spaces in [AGHP92] could
be used in the same manner as described above to obtain an r-mixed Boolean function computable
in LINSPACE N P/poly, for r = n — [logn] — 2.

4 Constructing (s,n,q)-Complete Functions

Let us take a look at the probabilistic proof (as presented in [SZ96]) of the existence of a matrix
A and a function v with the properties assumed in Lemma 3. Suppose that a ¢ X n matrix A over
GF(2) and a function ¢ : {0,1}* — {1,2,...,n} are chosen uniformly at random. For a fixed ¢ x s
submatrix B of A, if rank(B) < r, then there is a set of at most r — 1 columns in B whose linear
span contains each of the remaining s —r+ 1 columns of B. For a fixed set R of such r — 1 columns
in B, the probability that each of the s — r + 1 vectors chosen uniformly at random will be in the
linear span of R is at most (27~1/2%)*="*1 Thus, the probability that the matrix A is “bad” is at

most
n s —(t—r s—r
() (r_l)z (t=r 1) (s=r 1) (1)

For a fixed affine subspace H of {0,1} of dimension r and a fixed 1 < ¢ < n, the probability
that the range of © restricted to H does not contain i is at most (1 — 1/n)?". The number of
different affine subspaces of {0, 1} of dimension r is at most 201 the number of different i’s is
n. Hence the probability that ¢ is “bad” is at most

2T
o4, (11 < 9+t =2 /0. @)
n
An easy calculation shows that setting s = [(2+ §) logn], t = [(
2loglogn+b], for any § > 0 and sufficiently large b (say, b = 3 and ¢
and (2) tend to 0 as n grows.

+ &) logn], and r = [logn +
0.01

= 0.01 ), makes expressions (1)

Theorem 7 There exist constants dy, dy,ds € N such that every (2=4 logSn’ dy log? n)-independent
sample space over n® -bit strings contains both matriz A and function 1 with the properties as in
Lemma 3, for s,r,t € O(logn).



Proof: We observe that both probabilistic arguments used only partial independence of random
bits. For A, we need a tn-bit string coming from an (¢, k)-independent sample space with k = ts
and ¢ = 274 1°g2”, for a sufficiently large constant ¢;. Indeed, for a fixed ¢t x s submatrix B of A
and a fixed set R of r — 1 columns in B, the number of “bad” ¢ x s-bit strings « filling B so that
the column vectors in R contain in their linear span all the remaining s —r+ 1 column vectors of B
is at most 20— D =1)(s=r+1) — 9(r=1)(s+t=r+1) |f A is chosen from the (¢, k)-independent sample
space with ¢ and k as above, then the probability that some fixed “bad” string « is chosen is at
most 277 + ¢. Thus, in this case, the probability that A is “bad” is at most

s r—1

Choosing the same s, t, and r as in the case of fully independent probability distribution, one can
make this probability tend to 0 as n grows, by choosing sufficiently large ¢;.

Similarly, for the function 1, we need a 2'[log n]-bit string from an (e, k)-independent sample
space with k = ¢olog?n and ¢ = 27 1053”, for sufficiently large constants ¢y and c3. Here we
view the truth table of ¢ as a concatenation of 2! [logn]-bit strings, where each [log n]-bit string
encodes a number from {1,...,n}. The proof, however, is slightly more involved in this case, and
depends on Lemma 4.

Let s, r, and ¢ be the same as before. For a fixed affine subspace H C {0,1}" of dimension r,
such that H = {ay,...,a;} for [ =27, and for a fixed 1 < ¢ < n, let &, 1 < j <[, be the event
that 1 (a;) = 7 when % is chosen from the (¢, k)-independent sample space defined above. Then
Lemma 4 applies with § = 2=1°871 yielding that the probability that » misses the value i on the
subspace H is

> T— o n QT
Prinl_ &) < e (k +1) (ck + 27FTos™T), (3)

It is easy to see that the first term on the right-hand side of (3) is at most e=418" " (when b = 3

in 7). We need to bound from above the remaining two terms: (kQJ:l)Q_H]“g”-' and (kil)ek. Using

Stirling’s formula, one can show that the first of these two terms can be made at most 2_41°g2”,
by choosing ¢y sufficiently large. Having fixed ¢, we can also make the second of the terms at
most 2_41°g2”, by choosing ¢3 > ¢y sufficiently large. It is then straightforward to verify that the
probability that i) misses at least one value 7, 1 < 7 < n, on at least one affine subspace of dimension
r tends to 0 as n grows. |

Using any efficient construction of almost independent sample spaces, for example, Pow4/
with N = tn € O(nlogn) and m € O(log?n), we can find a matrix A with the required prop-
erties in T)TH\/[F)(QO(IOg2 ”)) by searching through all elements of the sample space and checking
whether any of them yields a desired matrix. Analogously, we can find the required function % in
DTIME(QO(10g3 ")), by considering, e.g., Pow%7 with N’ = 2/[logn] and m’ € O(log®n). Thus,
constructing both A and % can be carried out in quasipolynomial time.

Given the corresponding advice strings of O (log® n) bits, 1 is computable in time polylog(n) and
all elements of A can be computed in time npolylog(n). So, in this case, the function ¢(Z) = ¥ (AZ)
is computable in QL. Hence, by “hard-wiring” good advice strings, we get the function f(7) = T h(2)
computable by quasilinear-size circuits, while requiring 1-b.p.’s of size at least on=(5+e)logn for any
€ > 0 and sufficiently large n; these parameters appear to be better than those in [ABCR97]. By
making the advice strings a part of the input, we obtain a function in QL that requires 1-b.p.’s of
size at least 2n—0(log"n)
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A Proof of Lemma 4

We first consider the case where k is even. Let Cy,...,C; be independent events, each having the
success probability 8. Applying the Boole-Bonferroni inequality to Pr[vi_,&] and Pr[Vi_,C;], we
obtain that

k
Privi &) 2 Y (=1 ) Pr{niesél] (4)

v=1 |I|=v
and
k
Privi_C] <) (-1t Y el YTk (5)
v=1 |I|=l/ |I|=k+1
The assumption of the lemma that &;,...,& are almost k-wise independent implies that the
right-hand side in (4) is at least
: [
—)rHEN T ek ).
Y X -k 0



On the other hand, the independence of Cy,...,C; implies that
PrlVi_C]=1-(1-0)">1-"

Combining (4), (6), (5), and (7) yields (for even k) that

- l l
PrlVi&] > 1—e " — ek (k) — grtt (k N 1)

>1—e - (k-l- ]) (ek + 65 F1).

In the case where £ is odd, we use the above argument with & — 1 substituted for k. This

completes the proof.
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