Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 4 (1999) e TaTs

Almost k-Wise Independence and Hard Boolean Functions

Valentine Kabanets
Department of Computer Science
University of Toronto
Toronto, Canada
kabanets@cs.toronto.edu

November 5, 1999

Abstract

Andreev et al. [ABCRI7] gave constructions of Boolean functions (computable by polynomial-
size circuits) with large lower bounds for read-once branching program (1-b.p.’s): a function in
P with the lower bound 27~PoWI08(?) 5 function in quasipolynomial time with the lower bound
27-0(0gn) " and a function in LINSPACE with the lower bound 27~'987-9(1) We point out
alternative, much simpler constructions of such Boolean functions by applying the idea of al-
most k-wise independence more directly, without the use of discrepancy set generators for large
affine subspaces; our constructions are obtained by derandomizing the probabilistic proofs of
existence of the corresponding combinatorial objects. The simplicity of our new constructions
also allows us to observe that there exists a Boolean function in AC®[2] (computable by a depth
3, polynomial-size circuit over the basis {A, @, 1}) with the optimal lower bound gn—logn=0(1)
for 1-b.p.’s.

Keywords: almost k-wise independence, derandomization, exponential lower bounds for read-
once branching programs, r-mixed Boolean functions.

1 Introduction

Branching programs represent a model of computation that measures the space complexity of
Turing machines. Recall that a branching program is a directed acyclic graph with one source and
with each node of out-degree at most 2. Each node of out-degree 2 (a branching node) is labeled
by an index of an input bit, with one outgoing edge labeled by 0, and the other by 1; each node
of out-degree 0 (a sink) is labeled by 0 or 1. The branching program accepts an input if there is a
path from the source to a sink labeled by 1 such that, at each branching node of the path, the path
contains the edge labeled by the input bit for the input index associated with that node. Finally,
the size of a branching program is defined as the number of its nodes.

While there are no nontrivial lower bounds on the size of general branching programs, strong
lower bounds were obtained for a number of explicit Boolean functions in restricted models (see,
e.g., [Raz91] for a survey). In particular, for read-once branching programs (1-b.p.’s) — where, on
every path from the source to a sink, no two branching nodes are labeled by the same input index
— exponential lower bounds of the form 22UV") were given for explicit n-variable Boolean functions
in [Weg88, Zak84, Dun85, Juk88, KMW91, SS93, Pon99, Gal97, BW98] among others. Moreover,

[Juk88, KMW91, Gal97, BW98] exhibited Boolean functions in ACY that require 1-b.p.’s of size at
least 29UV7n)

ISSN 1433-8092

After lower bounds of the form 2V™) were obtained for 1-b.p.’s, the natural problem was to find
an explicit Boolean function with the truly exponential lower bound 28", The first such bound
was proved in [ABHT86] for the Boolean function computing the parity of the number of triangles
in a graph; the constant factor was later improved in [SS93]. With the objective to improve this
lower bound, Savicky and Zak [SZ96] constructed a Boolean function in P that requires a 1-b.p.
of size at least 2"~3V™ and gave a probabilistic construction of a Boolean function requiring a
1-b.p. of size at least 27=00°g7) Rinally, Andreev et al. [ABCR97] presented a Boolean function
in LINSPACE N P/poly with the optimal lower bound on=logn+O(1) " and, by derandomizing the
probabilistic construction in [SZ96], a Boolean function in QP N P/poly with the lower bound
97=0(logn) " aq well as a Boolean function in P with the lower bound 27=Po¥log(n): here QP stands
for the quasipolynomial time nPolog(n),

The combinatorics of 1-b.p.’s is quite well understood: a theorem of Simon and Szegedy [SS93],
generalizing the ideas of many papers on the subject, provides a way of obtaining strong lower
bounds. A particular case of this theorem states that any 1-b.p. computing an r-mixed Boolean
function has size at least 2" — 1. Informally, an r-mixed function essentially depends on every
set of r variables (see the next section for a precise definition). The reason why this lower-bound
criterion works can be summarized as follows. A subprogram of a 1-b.p. G,, starting at a node v
does not depend on any variable queried along any path going from the source s of GG,, to v, and
hence v completely determines a subfunction of the function computed by G,,. If GG, computes an
r-mixed Boolean function f,, then any two paths going from s to v can be shown to query the
same variables, whenever v is sufficiently close to s. Hence, such paths must coincide, i.e., assign
the same values to the queried variables; otherwise, two different assignments to a set of at most
r variables yield the same subfunction of f,,, contradicting the fact that f,, is r-mixed. It follows
that, near the source, G,, is a complete binary tree, and so it must have exponentially many nodes.

Andreev et al. [ABCR97] construct a Boolean function f,(z1,...,z,) in LINSPACE N P/poly
that is r-mixed for r = n—[log n]—2 for almost all n. By the lower-bound criterion mentioned above,
this yields the optimal lower bound ©(2"/n) for 1-b.p.’s. A Boolean function in DTIME(2'8*") n
P/poly that requires a 1-b.p. of size at least 27=0(logn) is constructed by reducing the amount of
randomness used in the probabilistic construction of [SZ96] to O(log®n) advice bits. Since these

bits turn out to determine a polynomial-time computable function with the lower bound 27~0logn)
2n—0(log2 n)

Y
one gets a function in P with the lower bound

input.

Both constructions in [ABCR97] use the idea of e-biased sample spaces introduced by Naor
and Naor [NN93], who also gave an algorithm for generating small sample spaces; three simpler
constructions of such spaces were later given by Alon et al. [AGHP92]. Andreev et al. define
certain e-discrepancy sets for systems of linear equations over GF(2), and relate these discrepancy
sets to the biased sample spaces of Naor and Naor through a reduction lemma. Using a particular

by making the advice bits a part of the

construction of a biased sample space (the powering construction from [AGHP92]), Andreev et
al. give an algorithm for generating e-discrepancy sets, which is then used to derandomize both a
probabilistic construction of an r-mixed Boolean function for r = n—[log n]—2 and the construction
in [SZ96] mentioned above.

Our results. We will show that the known algorithms for generating small e-biased sample
spaces can be applied directly to get the r-mixed Boolean function as above, and to derandomize
the construction in [SZ96]. The idea of our first construction is very simple: treat the elements (bit
strings) of an e-biased sample space as the truth tables of Boolean functions. This will induce a
probability distribution on Boolean functions such that, on any subset A of & inputs, the restriction

to A of a Boolean function chosen according to this distribution will look almost as if it were a
uniformly chosen random function defined on the set A. By an easy probabilistic argument, we will
show that such a space of functions will contain the desired r-mixed function, for a suitable choice
of parameters ¢ and k.

We indicate several ways of obtaining an r-mixed Boolean function with r = n—[log n] — 2. In
particular, using Razborov’s construction of e-biased sample spaces that are computable by AC"[2]
formulas [Raz88] (see also [Sav95]), we prove that there are such r-mixed functions that belong
to the class of polynomial-size depth 3 formulas over the basis {&, @, 1}. This yields the smallest
(nonuniform) complexity class known to contain Boolean functions with the optimal lower bounds
for 1-b.p.’s. (We remark that, given our lack of strong circuit lower bounds, it is conceivable that
the characteristic function of every language in EXP can be computed in nonuniform AC°[6].)

In our second construction, we derandomize a probabilistic existence proof in [SZ96]. We pro-
ceed along the usual path of derandomizing probabilistic algorithms whose analysis depends only
on almost k-wise independence rather than full independence of random bits [NN93]. Observ-
ing that the construction in [SZ96] is one such algorithm, we reduce its randomness complexity
to O(log®n) bits (again treating strings of an appropriate sample space as truth tables). This
gives us a DTH\/[E(QO(I"gS "))-computable Boolean function of quasilinear circuit-size with the lower
bound for 1-b.p.’s slightly better than that for the corresponding quasipolynomial-time computable
function in [ABCR97], and a Boolean function in quasilinear time, QL, with the lower bound for

gn—0(log’), which is only slightly worse than the lower bound for the corresponding

1-b.p.’s at least
polynomial-time function in [ABCR97]. In the analysis of our construction, we employ a combina-
torial lemma due to Razborov [Raz88], which bounds from above the probability that none of n

events occur, given that these events are almost k-wise independent.

The remainder of the paper. In the following section, we state the necessary definitions and
some auxiliary lemmas. In Section 3, we show how to construct an r-mixed function that has
the same optimal lower bound for 1-b.p. as that in [ABCR97], and observe that such a function
can be computed in AC°[2]. In Section 4, we give a simple derandomization procedure for a
construction in [SZ96], obtaining two more Boolean functions (computable in polynomial time and
quasipolynomial time, respectively) that are hard with respect to 1-b.p.’s.

2 Preliminaries

Below we give the standard definitions of k-wise independence and (¢, k)-independence. We consider
probability distributions that are uniform over some set S C {0, 1}"; such a set is denoted by S,
and called a sample space.

Let S, be a sample space, and let X = zy ...z, be a string chosen uniformly from S,,. Then
S, is k-wise independent if, for any k indices i; < 72 < -++ < 1 and any k-bit string «, we
have Pr(z;, 2, ...z;, = o] = 27%. Similarly, for S,, and X as above, S, is (e, k)-independent if
|Pr[z;, 7, .. .75, = a] — 27%| < e for any k indices i; < iy < --- < i), and any k-bit string a.

Naor and Naor [NN93] present an efficient construction of small (¢, k)-independent sample
spaces; three simpler constructions are given in [AGHP92]. Here we recall just one construction
from [AGHP92], the powering construction, although any of their three constructions could be used
for our purposes.

Consider the Galois field GF(2™) and the associated m-dimensional vector space over GF'(2).
For every element u of GF(2™), let bin(u) denote the corresponding binary vector in the associated

vector space. The sample space Pow%”" is defined as a set of N-bit strings such that each string w
is determined as follows. Two elements z,y € GF(2™) are chosen uniformly at random. For each
1 < i < N, the ith bit w; is defined as (bin(z'), bin(y)), where (a, b) denotes the inner product over
GF(2) of binary vectors a and b.

The next lemma follows from the results in [AGHP92] (Proposition 3 and Corollary 1).

Lemma 1 ([AGHP92]) For every k < N, the sample space Powi™ is (5%, k)-independent.

As we have mentioned in the introduction, we shall view the strings of the sample space Pow3/"
as the truth tables of Boolean functions of log NV variables. It will be convenient to assume that N
is a power of 2, i.e., N = 2”. Thus, the uniform distribution over the sample space Pow27 induces
a distribution F,, ,, on Boolean functions of n variables that satisfies the following lemma.

Lemma 2 Let A be any set of k strings from {0,1}", for any k < 2". Let ¢ be any Boolean
function defined on A. For a Boolean function f chosen according to the distribution F,, ,,, defined
above, we have |Pr[f|a = ¢] — 27%| < 270"~ where f|4 denotes the restriction of f to the set A.

Proof: The k strings in A determine k indices i1,...,7; in the truth table of f. The function ¢
is determined by its truth table, a binary string « of length k. Now the claim follows immediately
from Lemma 1 and the definition of (e, k)-independence. [|

Razborov [Raz88] showed that there exist complex combinatorial structures (such as the Ramsey
graphs, rigid graphs, etc.) of exponential size which can be encoded by polynomial-size bounded-
depth Boolean formulas over the basis {&, @, 1}. In effect, Razborov gave a construction of e-biased
sample spaces (using the terminology of [NN93]), where the elements of such sample spaces are the
truth tables of AC°[2]-computable Boolean functions chosen according to a certain distribution on
AC"[2]-formulas. We describe this distribution next.

For n,m,l € N, a random formula F(n, m,[) of depth 3 is defined as

F(n,m,l) = ®lly:1 Z?nzl((@z:l’\aﬁvx’v) @ Aaﬁ)? (1)

where {A,3, Aagy} is a collection of (n 4 1)ml independent random variables uniformly distributed
on {0,1}. The following lemma shows that this distribution determines an e-biased sample space;
as observed in [Sav95], a slight modification of the above construction yields somewhat better
parameters, but the simpler construction would suffice for us here.

Lemma 3 ([Raz88]) Let k,l,m € N be any numbers such that k < 27, let A be any set of k
strings from {0,1}", and let ¢ be any Boolean function defined on A. For a Boolean function f
computed by the random formula F(n,m, () defined in (1), we have |Pr[f|la = ¢] —27%| < 7?77,
where f|4 denotes the restriction of f to the set A.

The proof of Lemma 3 is most easily obtained by manipulating certain discrete Fourier trans-
forms. We refer the interested reader to [Raz88] or [Sav95] for details.

Below we give the definitions of some classes of Boolean functions hard for 1-b.p.’s. We say
that a Boolean function f,(z1,...,2,) is r-mized for some r < n if, for every subset X of r input
variables {z; ,...,z; }, no two distinct assignments to X yield the same subfunction of f in the
remaining n — r variables. We shall see in the following section that an r-mixed function for
r =n — [logn] — 2 has a nonzero probability in a distribution F, ,,, where m € O(n), and in the
distribution induced by the random formula F(n,m,!), where m € O(logn) and [€ poly(n).

It was observed by many researchers that r-mixed Boolean functions are hard for 1-b.p.’s. The
following lemma is implicit in [Weg88, Dun85], and is a particular case of results in [Juk88, SS93].

Lemma 4 ([Weg88, Dun85, Juk88, SS93]) Let f.(z1,...,2,) be an r-mized Boolean func-
tion, for some r < n. Then every 1-b.p. computing f, has size at least 2" — 1.

Following Savicky and Zik [SZ96], we call a function ¢ : {0,1}" — {1,2,...,n} (s,n,q)-
complete, for some integers s, n, and ¢, if for every set I C {1,...,n} of size n — s we have

1. for every 0-1 assignment to the variables z;, 7 € I, the range of the resulting subfunction of
¢ is equal to {1,2,...,n}, and

2. there are at most ¢ different subfunctions of ¢, as one varies over all 0-1 assignments to z;,
1€ 1.

Our interest in (s, n, ¢)-complete functions is justified by the following lemma; its proof is based
on a generalization of Lemma 4.

Lemma 5 ([SZ96]) Let ¢ : {0,1}" — {1,2,...,n} be an (s,n,q)-complete function. Then the
Boolean function f,(z1,...,2,) = Th(z1,nen) TEQUITES 1-b.p. s of size at least 2" /q.

The following lemma can be used to construct an (s, n, ¢)-complete function.

Lemma 6 ([SZ96]) Let A be a t X n matriz over GF(2) with every t X s submatriz of rank at
least r. Let ¢ : {0,1} — {1,2,...,n} be a mapping such that its restriction to every affine subset
of {0, 1} of dimension at least r has the range {1,2,...,n}. Then the function ¢(Z) = V(A7) is
(s, n,2")-complete.

A probabilistic argument shows that a ¢ x n matrix A and a function % : {0,1}' — {1,2,...,n}
exist that satisfy the assumptions of Lemma 6 for the choice of parameters s, t,r € O(logn), thereby

logn) ' Below we will show that

yielding a Boolean function that requires 1-b.p.’s of size at least 27~0(
the argument uses only limited independence of random bits, and hence it can be derandomized
using the known constructions of (¢, k)-independent spaces. Our proof will utilize the following

lemma of Razborov.

Lemma 7 ([Raz88]) Let | > 2k be any natural numbers, let 0 < 0,¢ < 1, and let &,...,& be
events such that, for every subset I C {1,...,1} of size at most k, we have |Pr[A;er&] — 071 < e.

Then Pr[Al_,&] < e + (k_lH)(ek + 6%).

We give the proof of Lemma 7 in Appendix A, since it does not appear to have been translated
into English before.

3 Constructing r-Mixed Boolean Functions

First, we give a simple probabilistic argument showing that r-mixed functions exist for r = n —
[logn] — 2. Let f be a Boolean function on n variables that is chosen uniformly at random from

the set of all Boolean n-variable functions. For any fixed set of indices {iy,...,i.} C {1,...,n}
and any two fixed binary strings @ = ay,...,a,. and § = (4,..., 3., the probability that fixing
Zi,...,2; toaand then to 8 will give the same subfunction of f in the remaining n — r variables

is 27% where k = 27". Thus, the probability that f is not r-mixed is at most (:‘)227’2_1‘“, which
tends to 0 as n grows.

We observe that the above argument only used the fact that f is random on any set of 2k inputs:
those obtained after the r variables z;,,...,z; are fixed to a, the set of which will be denoted as

A,, plus those obtained after the same variables are fixed to 3, the set of which will be denoted as
Ag. This leads us to the following theorem.

Theorem 8 There is an m € O(n) for which the probability that a Boolean n-variable function f
chosen according to the distribution ¥, ,,, is r-mized, for r = n— [logn| —2, tends to 1 as n grows.

Proof: By Lemma 2, the distribution F,, ,,, yields a function f which is equal to any fixed Boolean
function ¢ defined on a set A, U Bg of 2k inputs with probability at most 2=2k 4 9=(m=n) The
number of functions ¢ that assume the same values on the corresponding pairs of elements a € A,
and b € Ag is 2%, Thus, the probability that f is not r-mixed is at most ()22 (27% + 9= (m=n=k)),
If m = (74 §)n for any é > 0, then this probability tends to 0 as n grows. |

By definition, each function from F,, ,,, can be computed by a Boolean circuit of size poly(n, m).
It must be also clear that checking whether a function from F, ,,, given by a 2m-bit string, is r-
mixed can be done in LINSPACE. It follows from Theorem 8 that we can find an r-mixed function,
for r = n — [logn]| — 2, in LINSPACE by picking the lexicographically first string of 2m bits that
determines such a function. By Lemma 4, this function will have the optimal lower bound for
1-b.p.’s, Q(2"/n).

We should point out that any of the three constructions of small (¢, k)-independent spaces
in [AGHP92] could be used in the same manner as described above to obtain an r-mixed Boolean
function computable in LINSPACE N P/poly, for r = n — [logn] — 2. Applying Lemma 3, we can
obtain an r-mixed function with the same value of r.

Theorem 9 There are m € O(logn) and | € poly(n) for which the probability that a Boolean
n-variable function f computed by the random formula ¥ (n,m,l) defined in (1) is r-mized, for
r=n— [logn] — 2, tends to 1 as n grows.

Proof: Proceeding as in the proof of Theorem 8, with Lemma 3 applied instead of Lemma 2,
we obtain that the probability that f is not r-mixed is at most (7)2%"(27% + 2= (1277 =k)y - of
m = [logn] + 3 and [= (6 + §)n* for any & > 0, then this probability tends to 0 as n grows. W

Corollary 10 There exists a Boolean function computable by a polynomial-size depth 3 formula
over the basis {&,®, 1} that requires a 1-b.p. of size at least Q(2"/n) for all sufficiently large n.

4 Constructing (s,n,q)-Complete Functions

Let us take a look at the probabilistic proof (as presented in [SZ96]) of the existence of a matrix
A and a function ¥ with the properties assumed in Lemma 6. Suppose that a ¢ X n matrix A over
GF(2) and a function ¥ : {0,1}* — {1,2,...,n} are chosen uniformly at random. For a fixed ¢ x s
submatrix B of A, if rank(B) < r, then there is a set of at most r — 1 columns in B whose linear
span contains each of the remaining s —r+ 1 columns of B. For a fixed set R of such r — 1 columns
in B, the probability that each of the s — r + 1 vectors chosen uniformly at random will be in the
linear span of R is at most (27~!/2!)s="*+1. Thus, the probability that the matrix A is “bad” is at

most
n S —(t—r s—r
() (r_l)z (t=r+1)(s=r+1))

For a fixed affine subspace H of {0,1}" of dimension r and a fixed 1 < 7 < n, the probability
that the range of v restricted to H does not contain i is at most (1 — 1/n)?". The number of

different affine subspaces of {0, 1}! of dimension r is at most 200+t the number of different i’s is
n. Hence the probability that ¢ is “bad” is at most

27
o(r 1)t (1 3 l) < U+t =2 /0. (3)

n

An easy calculation shows that setting s = [(2+ §) logn], t = [(3+ 6) logn], and r = [logn +
2loglog n+b], for any § > 0 and sufficiently large b (say, b = 3 and 6 = 0.01), makes expressions (2)
and (3) tend to 0 as n grows.

Theorem 11 There exist constants dy, da, d3 € N such that every (2=% log® " dqlog? n)-independent
sample space over n% -bit strings contains both matriz A and function 1) with the properties as in
Lemma 6, for s,r,t € O(logn).

Proof: We observe that both probabilistic arguments used only partial independence of random
bits. For A, we need a tn-bit string coming from an (e, k)-independent sample space with k£ = ts
and ¢ = 279 1°g2”, for a sufficiently large constant ¢;. Indeed, for a fixed ¢ x s submatrix B of A
and a fixed set R of r — 1 columns in B, the number of “bad” ¢ x s-bit strings « filling B so that
the column vectors in R contain in their linear span all the remaining s —r+1 column vectors of B
is at most 2(r=D12(r=1)(s=r+1) — 9(r=1)(s+t=r+1) [f A is chosen from the (€, k)-independent sample
space with ¢ and k as above, then the probability that some fixed “bad” string « is chosen is at
most 27 + €. Thus, in this case, the probability that A is “bad” is at most

(n) (r i 1) (2—(t—r+1)(s—r+1) + 62(r—1)(s+t—r+1)).

S

Choosing the same s, t, and r as in the case of fully independent probability distribution, one can
make this probability tend to 0 as n grows, by choosing sufficiently large c;.

Similarly, for the function %, we need a 2‘[log n]-bit string from an (e, k)-independent sample
space with & = cylog?n and ¢ = 2% loge’n’ for sufficiently large constants ¢y and c¢3. Here we
view the truth table of ¢ as a concatenation of 2! [logn]-bit strings, where each [log n]-bit string
encodes a number from {1,...,n}. The proof, however, is slightly more involved in this case, and
depends on Lemma 7.

Let s, r, and ¢ be the same as before. For a fixed affine subspace H C {0, 1} of dimension r,
such that H = {ay,...,q;} for [= 2", and for a fixed 1 < ¢ < n, let &, 1 < j <[, be the event
that 1 (a;) = 7 when 9 is chosen from the (¢, k)-independent sample space defined above. Then
Lemma 7 applies with § = 2=°87] vielding that the probability that ¢ misses the value i on the
subspace H is

= r—|log n 2"”
Prip_ &) < e 4 (k i 1) (ck + 27 FMlogn]y, (4)

It is easy to see that the first term on the right-hand side of (4) is at most e=418" " (when b = 3

in 7). We need to bound from above the remaining two terms: (sz:l)Q_k“Ogﬂ and (kﬁfl)ek. Using

Stirling’s formula, one can show that the first of these two terms can be made at most 2_41°g2”,
by choosing ¢y sufficiently large. Having fixed ¢, we can also make the second of the terms at
most 2_41°g2”, by choosing c3 > ¢y sufficiently large. It is then straightforward to verify that the
probability that ¢ misses at least one value 7, 1 < ¢ < n, on at least one affine subspace of dimension
r tends to 0 as n grows. |

Using any efficient construction of almost independent sample spaces, for example, Pow%/
with N = tn € O(nlogn) and m € O(log?n), we can find a matrix A with the required prop-
erties in DTIME(QO(IOg2 ”)) by searching through all elements of the sample space and checking
whether any of them yields a desired matrix. Analogously, we can find the required function % in
DTIME(2°0°8" %)) by considering, e.g., Pow% with N’ = 2[logn] and m’ € O(log®n). Thus,
constructing both A and % can be carried out in quasipolynomial time.

Given the corresponding advice strings of O (log® n) bits, ¢ is computable in time polylog(n) and
all elements of A can be computed in time npolylog(n). So, in this case, the function ¢(Z) = ¥ (AZ)
is computable in quasilinear time. Hence, by “hard-wiring” good advice strings, we get the function
fu(@) = Z4(#) computable by quasilinear-size circuits, while, by Lemmas 5 and 6, f, requires 1-
b.p.’s of size at least 27~(5+)logn for any ¢ > 0 and sufficiently large n; these parameters appear
to be better than those in [ABCR97]. By making the advice strings a part of the input, we obtain
a function in QL that requires 1-b.p.’s of size at least gn—0(logn)

We end this section by observing that the method used above to construct an (s, n, g)-complete
Boolean function could be also used to construct an r-mixed Boolean function for r = n — O(log n)
by derandomizing Savicky’s [Sav99] modification of the procedure in [SZ96]. This r-mixed function
is also determined by an advice string of length polylog(n), and hence can be constructed in
quasipolynomial time.

5 Concluding Remarks

We have shown how the known constructions of small e-biased sample spaces [Raz88, NN93,
AGHP92] can be directly used to obtain Boolean functions that are exponentially hard for 1-
b.p.’s. One might argue, however, that the hard Boolean functions constructed in Sections 3 and 4
are not “explicit” enough, since they are defined as the lexicographically first functions in certain
search spaces. It would be interesting to find a Boolean function in P or NP with the optimal lower
bound ©(2"/n) for 1-b.p.’s. The problem of constructing a polynomial-time computable r-mixed
Boolean function with r as large as possible is of independent interest; at present, the best such
function is given in [SZ96] for r = n — Q(y/n). A related open question is to determine whether
the minimum number of bits needed to specify a Boolean function with the optimal lower bound
for 1-b.p.’s, or an r-mixed Boolean function for » = n — [log n] — 2, can be sublinear.

Acknowledgements. [am indebted to Alexander Razborov for bringing [Raz88] to my attention.
I would like to thank Stephen Cook and Petr Savicky for their comments on a preliminary version
of this paper, and Dieter van Melkebeek for helpful discussions. Finally, | want to express my
sincere gratitude to Stephen Cook for his constant encouragement and support.

References

[ABCRI7] A.E. Andreev, J.L. Baskakov, A.E.F. Clementi, and J.D.P. Rolim. Small pseudo-random
sets yield hard functions: New tight explicit lower bounds for branching programs.
FElectronic Colloquium on Computational Complexity, TR97-053, 1997.

[ABH*86] M. Ajtai, .. Babai, P. Hajnal, J. Komlés, P. Pudlak, V. Rédl, E. Szemerédi, and
G. Turan. Two lower bounds for branching programs. In Proceedings of the Eighteenth
Annual ACM Symposium on Theory of Computing, pages 30-38, 1986.

[AGHP92] N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of almost k—wise

[BWOS]

[Dun85]

[Gal97]

[Jukss]

[KMW91]

[NN93]

[Pon99]

[Raz88]

[Raz91]

[Sav95]

[Sav99]
[SS93]

[5296]

[Weg88]

independent random variables. Random Structures and Algorithms, 3(3):289-304, 1992.
(preliminary version in FOCS’90).

B. Bollig and 1. Wegener. A very simple function that requires exponential size read-once
branching programs. Information Processing Letters, 66:53-57, 1998.

P.E. Dunne. Lower bounds on the complexity of one-time-only branching programs. In
.. Budach, editor, Proceedings of the Second International Conference on Fundamentals
of Computation Theory, volume 199 of Lecture Notes in Computer Science, pages 90-99,
Springer Verlag, Berlin, 1985.

A. Gal. A simple function that requires exponential size read-once branching programs.
Information Processing Letters, 62:13-16, 1997.

S. Jukna. Entropy of contact circuits and lower bound on their complexity. Theoretical
Computer Science, 57:113—-129, 1988.

M. Krause, C. Meinel, and S. Waack. Separating the eraser Turing machine classes L.,
NL., co — NL. and P.. Theoretical Computer Science, 86:267-275, 1991.

J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and ap-
plications. STAM Journal on Computing, 22(4):838-856, 1993. (preliminary version in
STOC’90).

S. Ponzio. A lower bound for integer multiplication with read-once branching programs.

STAM Journal on Computing, 28(3):798-815, 1999. (preliminary version in STOC’95).

A.A. Razborov. Bounded-depth formulae over {&,®} and some combinatorial prob-
lems. In S. I. Adyan, editor, Problems of Cybernetics. Complezity Theory and Applied
Mathematical Logic, pages 149-166. VINITI, Moscow, 1988. (in Russian).

A.A. Razborov. Lower bounds for deterministic and nondeterministic branching pro-
grams. In L. Budach, editor, Proceedings of the Fighth International Conference on
Fundamentals of Computation Theory, volume 529 of Lecture Notes in Computer Sci-
ence, pages 47-60, Springer Verlag, Berlin, 1991.

P. Savicky. Improved Boolean formulas for the Ramsey graphs. Random Structures and

Algorithms, 6(4):407-415, 1995.
P. Savicky. personal communication, January 1999.

J. Simon and M. Szegedy. A new lower bound theorem for read-only-once branching pro-
grams and its applications. In J.-Y. Cai, editor, Advances in Computational Complezity,
pages 183-193. AMS-DIMACS Series, 1993.

P. Savicky and S. Zak. A large lower bound for 1-branching programs. FElectronic
Colloquium on Computational Complexity, TR96-036, 1996.

I. Wegener. On the complexity of branching programs and decision trees for clique
function. Journal of the ACM, 35:461-471, 1988.

[Zak84] S. Zak. An exponential lower bound for one-time-only branching programs. In Pro-
ceedings of the Fleventh International Symposium on Mathematical Foundations of
Computer Science, volume 176 of Lecture Notes in Computer Science, pages 562—566,
Springer Verlag, Berlin, 1984.

A Proof of Lemma 7

We first consider the case where k is even. Let Cq,...,C; be independent events, each having the
success probability 6. Applying the Boole-Bonferroni inequality to Pr[V!_ &] and Pr[Vi_ (], we
obtain that

k
PriVi &) 2 Y (1) Y Prlnerél] (5)

v=1 |I|=v
and
k
Privi_C] <) (-1 Y el YTkt (6)
v=1 [I|=v [I|l=k+1
The assumption of the lemma that &,...,& are almost k-wise independent implies that the
right-hand side in (5) is at least
: l
N gl —ek() 7
;() %::y i (7)

On the other hand, the independence of Cy,...,C; implies that
PrlVi_Cl=1-(1-6)>1-¢" (8)

Combining (5), (7), (6), and (8) yields (for even k) that

l l
I e15 1 _ =l _ k4l
Pr[V,_ &l > 1—e€ ek i 6 il

>1—e - (k—}— 1) (ek + 0F+1).

In the case where k is odd, we use the above argument with & — 1 substituted for k. This
completes the proof.

ECCC ISSN 1433-8092
10 http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

