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Abstract

We survey some recent developments in the study of the com-
plexity of lattice problems. After a discussion of some prob-
lems on lattices which can be algorithmically solved effi-
ciently, our main focus is the recent progress on complex-
ity results of intractability. We will discuss Ajtai’s worst-
case/average-case connections, NP-hardness and non-NP-
hardness, transference theorems between primal and dual
lattices, and the Ajtai-Dwork cryptosystem.

1 Introduction

There have been some exciting developments recently con-
cerning the complexity of lattice problems. Research in the
algorithmic aspects of lattice problems has been active in
the past, especially following Lovász’s basis reduction al-
gorithm in 1982. The recent wave of activity and interest
can be traced in large part to two seminal papers written by
Miklós Ajtai in 1996 and in 1997 respectively.

In his 1996 paper [1], Ajtai found a remarkable worst-
case to average-case reduction for some versions of the
shortest lattice vector problem (SVP), thereby establishing a
worst-case to average-case connection for these lattice prob-
lems. Such a connection is not known to hold for any other
problem in NP believed to be outside P. In his 1997 paper
[2], building on previous work by Adleman, Ajtai further
proved the NP-hardness of SVP, under randomized reduc-
tion. The NP-hardness of SVP has been a long standing
open problem. Stimulated by these breakthroughs, many re-
searchers have obtained new and interesting results for these
and other lattice problems [3, 11, 13, 14, 15, 16, 17, 18, 19,
23, 30, 31, 32, 33, 34, 52, 55, 57]. Our purpose in this article
is to survey some of this development.

I think these lattice problems are intrinsically interesting.
Moreover, the worst-case to average-case connection dis-
�
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covered by Ajtai also opens up possibilities regarding prov-
ably secure public-key cryptography based on only worst-
case intractability assumptions. It is well known that the
existence of secure public-key cryptosystems presupposes
P
�� NP. However the converse is far from being proven

true. � The intractability required by cryptography is more
concerned with average-case complexity rather than worst-
case complexity. Even if we assume that some problem in
NP is not solvable in P or BPP, this still leaves open the pos-
sibility that the problem might be rather easy on the average.

Consider the security of RSA and the intractability of fac-
toring. First, we do not know if factoring is not solvable in
P or BPP. We do not know if this is so assuming P

�� NP. We
do not even know whether it is NP-hard. Second, even if we
assume it is NP-hard or not solvable in P or BPP, we do not
know it is as hard for the special case of factoring a prod-
uct of two large primes ���	� . Third, even if factoring �
��� is
hard in the worst case, we do not know if it is hard on the av-
erage, under some reasonable distribution on such numbers.
Fourth, we do not know if decrypting RSA without the pri-
vate key is equivalent to finding �������� � ����������������� ,
(although given � � ����� , finding �������� is equivalent to
factoring). Thus although RSA is believed to be an excel-
lent public-key cryptosystem, there is a large gap between
the assumption that factoring is hard in the worst-case (say
it is not in BPP) and a proof that the system is secure.

Building on Ajtai’s worst-case to average-case connec-
tion, Ajtai and Dwork [3] proposed a public-key cryptosys-
tem that is provably secure, assuming only the worst case
intractability of a certain version of SVP, namely to find the
shortest lattice vector in a lattice with ��� -unique shortest
vector, for a sufficiently large  . This is the first time that
such a provable security guarantee based on the worst-case
complexity alone has been established.

In Section 2 we collect some definitions. After that, I will

!
I do not want to say “the converse is false”, since it is probably true

for the reason that both P "# NP and there exist secure public-key cryptosys-
tems. But it is believed that it is insufficient to assume only P "# NP in order
to prove pseudorandom number generators exist.
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first discuss what is algorithmically computable efficiently
for some lattice problems (Section 3), then I will discuss
Ajtai’s worst-case/average-case connection (Section 4), NP-
hardness results (Section 5), evidence of non-NP-hardness
(Section 6), transference theorems relating primal and dual
lattices (Section 7), and the Ajati-Dwork cryptosystem (Sec-
tion 8).

The selection of the topics is highly subjective and it re-
flects my limited knowledge and personal taste. They are
also restrained by the space limitation. I am sure many im-
portant works have been neglected or not given its proper
due. I apologize for any such omissions or mistakes.

2 Preliminaries

A lattice is a discrete additive subgroup in some ��� . Dis-
creteness means that every lattice point is an isolated point
in the topology of ��� . An alternative definition is that a lat-
tice consists of all the integral linear combinations of a set
of linearly independent vectors,� �����
	 �

	��	��
�
	������

for all ��� �
where the vectors

��	
’s are linearly independent over � . Such

a set of generating vectors are called a basis. The dimension
of the linear span, or equivalently the number of

� 	
’s in a ba-

sis is the rank (or dimension) of the lattice, and is denoted
by ����� �

. We may without loss of generality assume that����� � � � , for otherwise we can replace ��� by its linear
span. We denote

�
as

�  � � ���� �"!"!#!$��� � � .
The basis of a lattice is not unique. Any two bases are re-

lated to each other by an integral matrix of determinant %�� .
Such a matrix is called a unimodular matrix. Clearly an in-
tegral matrix has an integral inverse iff it is unimodular, fol-
lowing Cramer’s rule.

The parallelepiped&

�
�
�"!#!"!'��� � � ���(� ) 	 � 	 ��*,+ ) 	�- � �

is called the fundamental domain of the lattice.

Since basis transformation is unimodular, the determi-
nant

� ��."/  � � �"!"!#!'��� � � � which is the volume of the funda-
mental domain

&

�
�
�"!"!#!'��� � � is independent of the basis,

and is denoted by ��."/  � � .
We use 0�132 to denote linear span over � . Given a basis� �
�
�4� � �#!"!#!'��� � � of

�
, let 5 	 � 0�132 � � � �"!#!"!'�4�	 � be the linear

span of � �
�
�"!#!"!'�4�	 � , and

� 	 � �  � � �#!"!#!$���	 � be the sub-
lattice generated by � �

�
�"!"!#!'���	 � . We denote by 576	 the or-

thogonal complement of 5 	
. The process of Gram-Schmidt

orthogonalizationobtains from a basis � � � �4��(�#!"!#!'��� � � a set

of orthogonal vectors �38 �
�
� 8 ��(�#!"!#!$� 8 � � � , where 8 � 	 is the or-

thogonal component of

� 	
perpendicular to 5 	:9

� :8 � 	 � � 	
� � ;�< 	7= � 	 � 8 ��;">= 8 � ; � 8 � ; > 8

�3; �
�
+ � + �

�
where = � � � > denotes inner product.

The fundamental domain as well as the orthogonal
“brick”

&
 8 � � �"!#!"!'� 8 � � � �@? *A� 8 �

� �CB � � �
B ? *A� 8 � � � form a tes-
sellation of �D� by translation. We can also tessellate ��� by

the centralized “brick” E �F? �HG IKJ� � G ILJ� �MB � � �3B ? � G I�N:O J� � G IPNQO J� � :

� � �SRT3UWV :X�YZE�� !
We note that the volume [W\ 0^] � [W\ 0^E � ��."/ � .

The length of the shortest non-zero vector of
�

is de-
noted by _ �  � � . In general, Minkowski’s successive minima_ 	  � � are defined as follows: for �

+ � + ����� �
,_ 	  � � � �`��ab J�cedededfc b N UWV �hg(i

�4j ; j 	
��� kl;M���m�

where the sequence of vectors

k
�
�#!"!#!$�nk 	 � �

ranges over
all � linearly independent lattice vectors. It is not difficult to
show that to get

k 	 � �
with

��� k 	 ���
� _ 	 , one can always

take greedily any linearly independent

k
�
�"!#!"!'�nk(	o9

�
� �

,
with

��� k
�
���
� _ � �"!"!#!$�l��� k(	:9 � ��� � _ 	o9 � .

We denote by pA0  � � the basis length of
�

pA0  � � � �,��a
all bases IKJ cedededKc IPq for V ��hg�i	�r

�ts
� 	
s
!

The dual lattice
�vu

of a lattice
�

of dimension � in � �
is defined as those vectors w � ��� , such that = w �nk�>x�y�

,
for all

k@� �
. For a basis � �

�
���� �"!#!"!'��� � � of

�
, its dual

basis is � � u
�
��� u� �"!#!"!'�4� u� � , where = � u	 ���3;l> ��z 	 ; . Then

� u ��  � u� �4� u� �#!"!#!$��� u� � . In particular ��."/  � u � � �|{���.�/� � � , and� u4u � �
. For a lattice with dimension less than � , its dual

is defined within its own linear span.

We let } � ��� } kD��kx� � � be the dilatation of
�

for any
positive } � � . Let ) Y�~ ���l) Y�� � � � ~�� for any) � �x� and ~����x� . Let ~�Y�E ���l� Y �h� � � ~ �����
Eh� . We denote by � )
� the greatest integer

+ ) , � )A� the least
integer � ) , � )
� � �x� � )
� , and � )
� the closest integer to) , � )A� � � ) Y �

� � .
3 From Gauss to Lovász

Before we discuss intractability results on lattice problems,
let us first take a look at what is algorithmically feasible. In
this section we give a brief account of the motivations for the
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study of lattice problems, some ramifications, and the main
ideas of the basis reduction algorithm of Lovász.

We should start with Gauss. The original motivation for
the study of 2-dimensional lattices came from the theory of
quadratic forms in number theory, which culminated in the
Theory of Genus and Composition by Gauss (see e.g., [28,
22, 21]).

Gauss gave an algorithm which completely solved the
classification problem of 2-dimensional lattices. The algo-
rithm can be viewed as a 2-dimensional generalization of
a version of the Euclidean algorithm, the Centralized Eu-
clidean Algorithm (CEA). In this CEA, given two integers
� and � , suppose

* - � � � +S�
�
�
, we divide � by � with

a quotient � and a remainder � , such that

� � � + �
� � � �

. Thus
� � ��� Y�� and � is as small as possible. If � �� *

we repeat
with the substitution ����� , ����� , until the remainder is
zero.

Given a 2-dimensional lattice generated by w and

k
. Sup-

pose

��� k'����+ ��� w ��� . Gauss’ algorithm “slides” w against

k
,

i.e., it finds an integral multiple �
k

so that w 	 � w � �
k

is as short as possible. Clearly this is the case precisely
when the orthogonal projection of w 	 onto

k
is as small as

possible in absolute value, and it can always be made

+
�
� ��� k'���

. This is quite obvious geometrically. Numerically,
� � � = 
��� b ��� � b��� b ��� > � will do. In a possible tie when = w �
�
k � b��� b ��� > � �

� ��� k'���
, and = w �  � Y � �

k � b��� b ��� > � � �
� ��� k'���

, we
can break the tie arbitrarily. Gauss’ algorithm terminates if��� w 	 ��� � ��� k'���

. Otherwise, we switch the role of w and

k
with

the substitution w� k
and

k � w 	 and continue.

It is not difficult to show that, like CEA, Gauss’ algo-
rithm terminates in polynomial time. In fact the number
of iterations is at most linear in the number of bits in the
length of w and

k
. Moreover the precise constant in the lin-

ear rate has been determined. A worst-case bound of both0�\�� ��� � ��� are given by Dupré [25] and Vallée [61], where�
� �,g(i � ��� w ��� �l��� k'��� � .
While the Euclidean algorithm can be viewed as an algo-

rithm for the one-dimensional lattices (generated by the two
integers � and � ), Gauss’ algorithm finds a reduced basis
for any 2-dimensional lattice, which is essentially unique.
Suppose the algorithm terminates with the vectors w�� and

k � ,
with

��� k � ��� + ��� w�� ��� . If

k � is scaled to unity 1 and w�� to the
upper half plane (in terms of the complex plane C, we apply������ { k � or  � { k � � , as a dilatation and rotation with possi-
bly a reflection), then w � is mapped to a point in the so-called
fundamental region � of the upper half plane as in Figure 1.
Thus up to a scaling factor the fundamental region � (with
a suitable identification of its boundary points) is in 1-1 cor-
respondence with the space of all 2-dimensional lattices. Of
course the upper half plane with the tessellation in Figure 2,
induced by the action of the unimodular group � � �  � � is

endowed with a hyperbolic metric. This then can be used
to introduce a metric on the space of 2-dimensional lattices.
The actions of � � �  � � and its subgroups in the upper half
plane is the starting point of a rich interplay between hyper-
bolic geometry, elliptic curves and modular forms [5, 42].
We will, however, leave the world of 2-dimensional lattices
for higher dimensions.

The reduction theory of 2-dimensional lattices extends
to 3-dimensional lattices without much difficulty. Perhaps
the first indication that something non-trivial happens in
higher dimensions came with a discovery by Korkin and
Zolotarev [43] on shortest vectors. Originally their result is
concerned with quadratic forms; we will instead present an
example in the same spirit directly in terms of lattices.

Consider the lattice
�

generated by � 	 together with  �
 �
� �
�
� �"!#!"!$�

�
�
� , where, �

+ � +
� , and � 	 has a sin-

gle 1 in the � th coordinate and 0 elsewhere. We note that�  � � ���#!"!"!'� � � � is a basis for
�

, for � � �"!  �$# �	�r � � 	 .
Meanwhile, � � � � � � �"!#!"!'� � � � is not a basis for

�
, for  

does not belong to

� � which is the sublattice generated by� � � � � � �"!#!"!'� � � � . _ �  � � � !#!"!
� _ �  � � � � , since they

are achieved by � � � �"!"!#!'� � � � . For �&%(' , then, the short-
est � linearly independent lattice vectors do not form a ba-
sis, which is rather unintuitive. The shortest basis lengthpA0  � � �&) � { ! .

Let
�

be an � -dimensional lattice in � � with basis� �
�
��� � �"!"!#!'��� � � . Since the translations of the fundamen-

tal domain ] �
&

�
�
�4��(�#!"!#!'��� � � form a tiling of �D� ,

the volume [ \W0 �] � � ��.�/� � � provides a certain measure
of the size of

�
. Minkowski’s First Theorem makes an ex-

plicit connection of the shortest lattice vector and this quan-
tity [54, 21, 36]:

Theorem 3.1 (Minkowski)_ �  � � ++* � o��."/  � � � ��,�� �
where

* � is some universal constant.

The smallest such constant for dimension � is denoted by

* �
and called Hermite’s constant of rank � . Minkowski proved

that

* � + �� -/.  � � Y � � ��,�� , which is asymptotically 0 � �-21 .
It is known that 3 �� -�1 +$* � + 3 �-21 . The upshot is, for a
lattice with ��."/  � � � � , (after a suitable scaling), there is
always a non-zero short vector of length no more than ) � .

Minkowski’s First Theorem has a short and elegant
proof: Consider the lattice

� 	 �4! � , which is a dilatation
of

�
by a factor of 2 in all directions. ��.�/� � 	 � �$! � ��."/� � � .

Consider a ball of radius � centered at every lattice point of� 	
. Let 5 � denote the volume of a unit ball E � , then 5 � �|�

is the volume of a ball E � 6��� of radius � . Now if 5 � ���7%��.�/� � 	 � , there must be some overlap among two different
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balls, thus �MX �� X 	 both

� �
, such that ! X Y ) �$! X 	 Y � for

some ) � � � E � 6��� . Then X � X 	 � :� � ) ��{ ! � E �  ��� by
convexity. And X � X 	 is our non-zero lattice point of

�
. It

is known that 5 � ��� �2, � { .  � � Y � � . It follows that

_ �  � � + !) � .  � ! Y � � ��,�� ���.�/  � � � � ,�� ���  ) � � o��."/� � � � ��,�� !
Theorem 3.1 follows.

A more general theorem, also due to Minkowski, is con-
cerned with successive minima:

Theorem 3.2 (Minkowski)� ��	�r
�
_ 	  � ��� ��,�� + �  ) � � o��."/� � � � � ,3� !

While Minkowski’s theorem guarantees the existence of
vectors as short as ) ����."/  � � � ,�� , there is no polynomial-
time algorithm to find such a vector. Minkowski’s proof is
decidedly non-constructive. The Shortest Vector Problem
(SVP) is the following: Given a basis of

�
, find a vectork�� �

such that

��� k'���
� _ �  � � . One can also define vari-

ous approximate short vector problems, seeking a non-zerok�� �
with

��� k'���
bounded by some approximation factor,��� k ���^+�	

 � �3_ �  � � or

��� k'���A+
	
 � � o��."/� � � � � ,�� .

The celebrated Lovász basis reduction algorithm is one
such algorithm that finds some approximate short vector for
any lattice in dimension � . This algorithm has proven to
be widely applicable, so that it forms a benchmark against
which claims of intractability has to be measured.

Theorem 3.3 (Lovász) Given any basis � �
�
�"!#!"!'��� � � of a

lattice, Lovász’s basis reduction algorithm finds a new basis� � 	
�
�#!"!#!'��� 	� � , such that

(i)

��� � 	
�
���^+ ! q O J� _ �  � � ;

(ii)

��� � 	
�
���^+ ! q O J� q3 ��.�/� � � ;

(iii)

��� � 	
�
���
� � �

��� � 	� ���^+ ! J�  q � � �A.�/  � � .
We will sketch this algorithm. Given a basis � �

�
�"!#!"!'�4� � � ,

we consider the “brick tiling” of � � induced by the Gram-
Schmidt orthogonalization �38 �

�
�"!#!"!$� 8 � � � . Recall that 8 � � ��

� ,
8 �� �

��
�� I � c G ILJ�� G IKJ c G ILJ�� 8 � � , e.t.c. We may “slide”

�"�
against�

�
� 8 �

� , i.e., replace

� �
by

� �
� �

�
� so that we can as-

sume that

�  I � c G IKJ�� G IKJ c G IKJ�� � +
�
�
. In general we want to “slide”

� 	
against

�
�
�#!"!#!'���	o9

� , so that 8 �	 � �	
� #�� < 	�� 	 � 8 � � , with

all

� � 	 � �D+
��{ ! , for all } - � . Suppose we have taken

care of all

�
�
����(�"!"!#!$��� 	:9

� . Consider the orthogonal projec-
tion of

� 	
to the linear span 5 	:9

� of

�
�
�"!#!"!$�4� 	:9

� . We can

“slide”

� 	
against

� 	o9
�
�"!#!"!'�4�

� , in that order, so that the pro-

jection of

��	
lies in the orthogonal box ? � G I J� � G I J��� B � � � B? � G I NQO J� � G I N:O J��� . The following steps are natural. We can re-

place

��	
by

��	
� � � 	 c 	o9 � � �	o9 � , which can be expressed as�	

�F� � 	 c 	o9 � � 8 �	o9 � Y #�� < 	:9 ��� � 8 � � . We then repeat this for� 	 c 	o9 �W�"!#!"!'� � 	 c � , in that order. Note that for } -��
, “sliding”

against

� � later will not change any previous
� 	 c ; which has

already been made to have absolute value at most ��{ ! . Thus
we finally have made all

� � 	 � ��+ �|{ ! , for } - � . Such a basis
is called weakly reduced, and can be achieved in polynomial
time.

Geometrically these steps are rather obvious and unre-
markable. What makes Lovász’s algorithm remarkable is
the following requirement which is best visualized in a faux
3-dimensional picture as in Figure 3. Suppose we have
a weakly reduced basis � �

�
�#!"!"!'�4� � � . Consider the linear

span 5 	o9 � of � �
�
�#!"!#!'���	o9

� � . Let � 	:9 � be the orthogonal
projection to 5 	o9 � . Let

k
:� � � k

� � 	:9 �  k � be the orthogo-
nal component of

k
perpendicular to 5 	o9

� . A basis satisfies
the following condition is called Lovász reduced��� �	

:� � ���^+ !) � ��� �	 � � o� � ���m� for all �
+ � + �

!
Some explanations are in order. Note that for � , everything
happens in 5 	 � � � 0�132 � � � �"!#!"!'��� 	 � � � , which is also the lin-
ear span of 5 	:9 � and � �	 :� � �4�	 � � o� �� . In 0 132 � ��	 o� � ���	 � � :� �4�
there is a 2-dimensional lattice

�  �"	 :� � �4�	 � � :� � � , which is
the orthogonal projection of

�  � � �"!#!"!'����	 � � � along 576	:9 � .
Thus it is natural to perform Gauss’ 2-dimensional lattice
basis reduction on

�  �"	 o� � ����	 � � :� � � . Note that the Gaus-
sian steps on

��	
:� � and

�	 � � o� � can be easily lifted to be per-
formed on the pair

� 	
and

� 	 � � .
Since our basis is already weakly reduced, it is easy to

see that the only Gaussian step that is possibly applicable
is to swap

� 	
o� � and

� 	 � � :� � , if

��� � 	 � � :� � ��� - ��� � 	
o� � ��� . This

should ideally be performed, had it not been for the desire
that this procedure be guaranteed to terminate quickly. Thus
for efficiency considerations we swap

� 	
and

� 	 � � only when��� � 	 � � o� � ��� - � �� ��� � 	
o� � ��� . Thus, we can show that when

a swap takes place, a significant gain is realized. We note
that after the swap,

��	 � � :� � is the new

��	
o� � , and the previ-

ous

�	
:� � is the new

�	 � � :� � , and hence it satisfies the Lovász
condition at � . (The constant

�� � is just for convenience; it
can be replaced by any other constant between 1 and 1.5.)

The Lovász basis reduction algorithm then consists of the
following steps being alternated. Step (I): Achieve weakly
reducedness. Step (II): If there is any � violating Lovász’s
condition then swap

�"	
and

��	 � � .
The proof of convergence relies on the potential func-

tion ] � ] 
�
�
�#!"!#!'��� � � �! �	�r � ��� 8 � 	 ��� �

9 	
. Note that��.�/� � � �" �	�r � ��� 8 � 	 ��� , ��.�/� �  � � �"!"!#!'��� 	 � � �" 	 � r � ��� 8 � � ��� ,
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and ] �(��.�/  � � �  �	�r �   	 � r � ��� 8 � � ��� � . Since Step (I) pre-
serves each ��.�/  �  � � �#!"!#!'��� 	 � � , ] is invariant under Step
(I). What happens to ] under Step (II) swapping

�#	
and� 	 � � ? Clearly 5 	:9 � is unaffected, so 8 �

�
�#!"!#!'� 8 � 	o9

� are the
same. Since everything happens in 5 	 � � , 8 � 	 � �(�#!"!#!$� 8 � � are
also the same. Let � � � 	

:� � and

�
�

� 	 � � o� � . Let the angle
between � and

�
be � . Then the current 8 � 	 �y� and the cur-

rent

��� 8 � 	 � � ��� � ��� �(��� 1n��a�� . After the swap the updated 8 � 	 � �
and

��� 8 ��	 � � ��� � ��� � ��� 13��a�� . Hence ]�������{�]�	�
 � � ��� �(��� { ��� � ���^+) � { ! . Clearly the initial ] +
:�hg(i ��� �"	3���

�  q � � , and for any
integral lattice ��."/  �  � � �"!#!"!$�4�	 � �v� � , thus ] is always at
least one. It follows that Lovász’s algorithm terminates in
polynomial time. (A slight extension of the argument han-
dles the rational case. For more details on this and the is-
sue of bit size, see [47].) Once the algorithm terminates, we
have��� 8 � 	 ��� � � ��� � 	

:� � ��� � + ' � ��� � 	 � � :� � ��� �
� ' �  ��� 8 � 	 � � ��� � Y � �	 � � c 	 ��� 8 � 	 ��� ���+ ' � ��� 8 �	 � � ��� � Y �� ��� 8 ��	���� � !

It follows that

��� 8 � 	 � � ���
� � �

� ��� 8 � 	 ��� � . By induction

��� 8 � 	 ��� � �
�

� N:O J ��� 8 � � ���
�
� �

� N:O J ��� � � ���
�
.

Let any

k
� # �

	 � 	 � �
. Suppose

k ��
*
. Then

not all �
	
�

*
, and let

�
be the maximum such � . Thenk

� # 	 j ; � 	L�	 � �
; 8 � ; Y # 	 <
;�� 	 8 �	 , and by orthogonality��� k ��� � �

�
;M����� 8 ��;M��� � ��� 8 �3;M��� since �

;
is integral. In particular_ �  � �C� �,��a 	 ��� 8 � 	 ��� . It follows that (i)

��� �
�
���^+ ! q O J� _ �  � � .

Similarly

��� �
�
��� � � + ! ����� 9 ���  �	�r � ��� 8 � 	 ���

�
� !  q � � ���.�/  � � � � .

Thus (ii) follows. (iii) also follows similarly.

The bound ! q O J� can be improved to  �(Y����n� for any fixed��% *
, within polynomial time. (The polynomial of course

depends on � .) This is due to Schnorr [58] and is accom-
plished by a } -dimensional variant of Lovász’s reduction,
for some large constant } .

The main application of Lovász’s algorithm originally in
[47] was a solution to a centuries old problem: How to fac-
tor a polynomial into irreducible polynomials over the ra-
tionals Q. The LLL algorithm has had a tremendous impact
in the field. Another celebrated result is Lenstra’s polyno-
mial time algorithm [48] for integer programming for fixed
dimensions.

Babai [7] used Lovász’s algorithm to find an approximate
closest vector: Given

�
and a vector � � � � , one can find

in polynomial time a vector

� � �
such that��� ��� �(���M+�� �) !�� � �,��ab UWV ��� �
� k'��� !

Håstad [37] also proved an interesting related result.

The basis reduction algorithm has been one of the most
important algorithms. It has been used successfully in a
variety of context, including the attack on knapsack based
cryptosystems by Lagarias and Odlyzko [46], algebraic
computations [40], the disproof of Merten’s conjecture by
Odlyzko and te Riele [56]. Other important results can be
found in [41, 50]. In practice, Lovász’s algorithm and its
variants have performed rather well for moderate dimen-
sions (up to 100), and much better than the theoretical upper
bound (see [59]). Thus, any claim of intractability should
bear in mind this computational experience.

4 Ajtai’s worst-case to average-case
connection

Let � , � and � be arbitrary integers. Let

� ������ denote the
set of � B � matrices over

� � , and let � � c � c � denote the
uniform distribution on

� ��� �� . For any ! � � ��� �� , the
set " #!�� � � � � � � � !t�%$ *

mod �M� (where the con-
gruence is component-wise) defines a lattice of dimension� . Let " � " � c � c � denote the probability space of lattices
consisting of " &!�� by choosing ! according to � � c � c � .

We note that indeed " #!�� is a lattice of dimension � ,
since it is clearly a discrete additive subgroup of

� � , and
each � � 	 � " &!�� , where � 	 has a single 1 at the � th posi-
tion and 0 elsewhere. It also follows that " #!�� repeats it-
self within each �HB � B � � �MB � box. In other words, " &! �
is invariant under the translations � �� �DY � � 	 , for each
�
+ � + � .

By Minkowski’s First Theorem, it can be shown that'  �  	 s.t.
' " &!��

� " � c ��(m� c �*) � k  kD� " &!�� and

* -
s
k
s
+
� �

!
In fact the bound � can be reduced to � J� �,+ . The bounds
k
s
+
� is needed to ensure that the assumption on the hy-

pothetical algorithm - below is non-vacuous.

Theorem 4.1 (Ajtai) Suppose there is a probabilistic poly-
nomial time algorithm - such that for all � , when given a
random lattice " #!��

� " � c � c � where � �/. � 0�\2� � and
� � �10 for appropriate constants . ��2 , returns with proba-
bility ��4365 J87 , a vector of " &!�� of length

+
� , then there exists

a probabilistic polynomial time algorithm 9 such that for all
� , when given a basis �l�

�
�"!"!#!$� � � � for an arbitrary lattice� � �  � � �#!"!"!'� � � � , performs the following with high prob-

ability:

1) Finds a basis � �
�
�#!"!#!$��� � � for

�
such that

��hg�i	�r
� s

� 	
s
+
� � J � bl  � � �
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2) Finds an estimate �_ of _ �  � � such that,_ �  � �� � � +
�_ + _ �  � � �

3) Finds the unique shortest vector % k of
�

, if
�

has an ��� �
unique shortest vector, i.e. _ �  � � � � � � �l_ �  � � ,

where  �
�
 
� �
 � are absolute constants.

Remark: This is the first such worst-case to average-case
connection proved for a problem in NP believed not in
P. While random-self-reducibilities were known for other
problems, such as Quadratic Residuosity (QR), there is a
technical difference. In QR, one must fix a modulus, then
there is a worst-case to average-case connection for this
modulus. But no such reduction is known among different
moduli. The permanent is another example where there is a
certain worst-case to average-case connection (see [29, 27,
20, 35]), but the permanent is not believed to be in NP.

Items 2) and 3) are derived from item 1) via a transference
type argument, about which we will say more later in Sec-
tion 7. Here we will focus on the ideas in the proof of item
1). Without loss of generality, we can assume that the lat-
tice consists of integral vectors. The same result also holds
for lattices with rational entries or with entries from any sub-
field of

�
, as long as there is an effective bit representation

for the lattice.

As Ajtai related to me, a guiding philosophical idea is the
perspective that when you look from sufficiently afar, all lat-
tices tend to look more alike.

We will now present some ideas from the proof.

Suppose we currently have a basis � �
�
�#!"!#!'��� � � , where�,g(i^�	�r � s

� 	
s is greater than bl  � � by a large polynomial fac-

tor � � J , i.e. � $ def
��hg(i	�r
� s

�	
s % � � J bl  � � !

The main procedure of 9 is iterative. Let � be a set of
� independent vectors of

�
(initially � � � �

�
�#!"!#!$��� � � ).

If the length of the elements of � at the start of the current
iteration is large enough, the algorithm finds a set of inde-
pendent vectors, each of at most half the length, with high
probability. This means, in a polynomial number of steps
we will have a set of short enough vectors, which can then
be converted to a short basis with a loss of a factor

+ ) � .

The fundamental domain ] �
&

�
�
�"!#!"!$�4� � � forms a

tiling of �D� via translations under
�

,

� � � R
� UWV ��
YZ] � �

as a disjoint union.

Consider a large cube

� ���#) � � � � ) � �� 	�r
�
) 	 � 	n�3*,+ ) 	 - � � �

where
�

is a certain polynomial factor greater than
�

, say,�
� ���

�
. For each � , we can “round” the corner point� � 	 to a lattice point according to which translate �

	 Y�]
it belongs to. This only involves solving a linear system ex-
pressing

� � 	 as a rational linear combination of the basis� �
�
�"!"!#!$��� � � and then rounding the coordinates. Thus for

each � � �
�#!"!#!'�

� , let� � 	 � ��; r
�
. 	 ;|�3; and �

	
� ��; r

�
� . 	 ; � �3;(!

Now

� 	 ���l) � � � � ) � �� 	�r
�
) 	 � 	n�3*,+ ) 	 - �(� �

is a reasonably good approximation of
�

; we will call it a
pseudocube. Note that the corner vertices of

� 	
are all lattice

points. To ensure that
� 	

looks reasonably close to a cube,
Ajtai chose

*
� � .

In the next step we subdivide
� 	

into a family of disjoint
sub-pseudocubes, by subdividing

� 	
along each direction �

	
into � subintervals, where � is polynomially bounded in � .

� 	 � R� j � J cedededKc � q < �
� �� 	�r

�

} 	
� �

	 Y � 	 	 � �
where the basic sub-pseudocube

� 	 	 ���l) � � � � ) � �� 	�r
�
) 	 � 	3�3*`+ ) 	 - �

� � !
We will make sure that the length of a side of

� 	 	
, which is

roughly 	 � , is still larger than bl  � � by a significant polyno-
mial factor.

Suppose this is the case. Then with a series of technical
lemmas, Ajtai shows that the number of lattice points within
each translate

� 	 	 Y # �	�r � � N� � 	 is roughly the same. This is
intuitively quite plausible. But the technical details are not
straightforward, especially if one wants a reasonably good
bound. (See below.)

Once this approximate equi-distribution of lattice points
is established, one can sample the “addresses” ( } � �"!"!#!$� } � )
of sub-pseudocubes, by uniformly sampling a lattice point
in

� 	
. Once a lattice point

k
is picked, we decide to which

sub-pseudocube it belongs by expressing

k
as a linear com-

bination # �	�r � 
 N� � 	 , where

*D+ ) 	v- � , by solving a linear
system. Then, we round off ) 	 and set } 	 � � ) 	 � !
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More generally, suppose we get � such samples,

k�;H� �
,

�
+ � + � . We decompose

k|;
as follows, (See Figure 4)kl;

� �� 	�r
�

} 	 ;
� �

	 Y � ; �
where � ; is a vector in

� 	 	
. Note that s �

;
s
�

is �  � � 	� � .
Here is the key observation: Suppose we are able to ob-

tain an integral solution ! � 
�
�
�#!"!#!'� � � � to��; r

�
} 	 ; � ; $ * �,\�� � �

then # �; r � � ;#kl; would be a lattice point which has an inter-
esting decomposition,��; r

�

� ;"kl; � �� 	�r
�

� # �; r � } 	 ; � ;� � �
	 Y ��; r

�

� ; � ;M! (1)

We note that the quantity
������ J � N ���	�� is actually an integer,

which makes the first term in (1) a lattice vector. Hence# �; r � � ; � ; , being the difference of two lattice points, must
be a lattice point itself, (even though each � ; is probably not
a lattice point.)

Suppose the integral solution ! has every

� � ; �^+
� , then

s ��; r
�

� ; � ; s + � � � �
�  ) � �� �

� �
� � � � � d � ���

�
� � !

(2)

Now � can be chosen �  �� � so that s # �; r � � ; � ; s -�� �
,

which is at most half of every s
�#	
s .

With the choice of

*
� � , Ajtai showed that the shape

of the pseudocube and thus that of the sub-pseudocubes is
very close to a perfect cube. With a choice of � � � ���� � ,
and a corresponding � � �  � 0�\�� � � , Minkowski’s The-
orem applies. Hence the assumption on - is non-vacuous
and the newly produced lattice vector # �; r � � ; � ; has length- � �

. On the other hand, the length of a side of a sub-
pseudocube is approximately 	 � which is bounded below by��� � ) J� bl  � � ���  � � J 9 � bl  � � � .

With the shape of the pseudocube approximately a per-
fect cube, and with a sufficiently large  � , which makes each
side of the sub-pseudocube sufficiently larger than bl  � � ,
Ajtai showed that the distribution induced on the address
space � �} � �"!"!#!$� } � � �|* + } 	 - �M� by uniformly sampling
lattice points from

�
is close to uniform. In fact, not only

must the distribution of each sample P} � �#!"!#!'� } � � be close
to uniform, but also the joint distribution on all the � sam-
ples forming the matrix �} 	 ; � must be close to the uniform

distribution � � c � c � . Only then can one legitimately invoke
the assumed algorithm - and be guaranteed to obtain a short
vector ! with # �; r � } 	 ; � ; $ * �`\�� � , and s ! s

+
� , with

nontrivial probability.

So far we have only produced one lattice vector

� 	
�
�# �; r � � ; � ; , which is shorter than

�
� �,g(i s

�"	
s by a

factor of 2. We continue this process to produce � lin-
early independent lattice vectors � � 	

�
�#!"!"!'�4� 	� � to replace� �

�
�"!"!#!$��� � � . To show that these successive

� 		
are lin-

early independent demands another set of technical lem-
mas which ultimately depend on the fact that  � is suffi-
ciently large. In that case, Ajtai showed that within each
sub-pseudocube the lattice is quite dense. It follows that, for
every � � � dimensional hyperplane 5 , the number of lat-
tice points on 5�� � 	 	

is much smaller compared to the total
number of lattice points in

� 	 	
. Moreover, this is true for ev-

ery translate of
� 	 	

. It follows that the successive

� 		
’s are not

likely to be linearly dependent on � � 	
�
�"!"!#!'��� 		o9

� � . We will
not provide any more technical details of Ajtai’s proof. The
interested reader is referred to [1].

Improving Ajtai’s connection factors

What is outlined above is essentially Ajtai’s proof [1], where
some universal constants  �

�
 
�

and  � are shown. Although
no explicit values for these  

	
’s were given, and apparently

no special effort was made to minimize them, implicitly a
factor less than � , �

*
and ��� , respectively, can be derived

from the proofs of [1].

The factors � � N are called Ajtai’s connection factors; they
provide a measure of the tightness of the worst-case to
average-case connection. The smaller the constants are, the
tighter the connection one gets. As 2) and 3) are derived
through 1) (see Section 7), � � J is the crucial factor. Cai and
Nerurkar [18] obtained a substantial improvement to ��� J ,
and consequently to the other factors as well. Here we give
an overview of some of the ideas involved in this improve-
ment. As is the case with Ajtai’s proof [1], there are a num-
ber of technical points we have to gloss over due to limited
space.

The general structure of the procedure of Cai and
Nerurkar [18] closely follows Ajtai’s proof, but much of the
technical justification is different. As we saw above, the
general idea is to sample lattice points, in order to induce
an almost uniform distribution on a set of “address” vec-
tors, which form the columns of a matrix that is close to uni-
formly distributed. The assumed algorithm - is applied to
this matrix. By hypothesis, this algorithm performs well on
the average, and thus we get a short vector which can be
turned into a short vector of the original lattice.

In the choice of
� � � �

�
, we need

*
to be a suffi-
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ciently large constant in order to ensure that the resulting
pseudocube is reasonably close to a perfect cube. We call
this the shape condition. Then, we need to choose an inte-
ger � to be a sufficiently large polynomial (in � ) in order to
ensure that the newly produced remainder vector is shorter
than the previous

��� �"	3���
. This involves � in the numerator in

����� � d � �t{ � in (2), which has to be chosen after � in order to
ensure that short vectors exist by Minkowski’s First Theo-
rem. Fortunately, this is not circular; for any polynomially
bounded � , � only needs to be �  � � . But still � must de-
pend on

*
. Finally, given � , we must ensure that the length

of a side of a sub-pseudocube
� { � is sufficiently large com-

pared to pA0  � � . We know that,�
�

� ���
�
� % ����� � J

� bl  � �
This is where

� % � � J pA0  � � is used and  � has to be large.
Cai and Nerurkar [18] achieve  �

� � Y � for linearly inde-
pendent vectors, and  �

� � ! � Y � for basis length.

The algorithmic improvement by Cai and Nerurkar [18]
starts with a tiling of � � by orthogonal “bricks” of sides
at most

�
, via Gram-Schmidt orthogonalization. This is in

contrast to the tiling by fundamental domains in [1]. The ad-
vantage is that one can round off from a perfect cube to a
lattice pseudocube with less error. Thus, for

� � � � d � �
and �

	
� � � 	 , we can round off �

	
to a lattice point �

	
such that �

	
� �

	 Y z 	 and s z
	
s

+ � � �� . This implies

s �
	
s

+
�� � d � Y � �� �

�
.

&
�� �

�"!#!"!$�
� � � is the pseudocube

constructed.

Secondly, in [18], the pseudocube is positioned centrally
and subdivided. Each sub-pseudocube will have an address
vector at the center. More precisely we will take

� 	 �&
 ! � � �"!"!#!$� ! � � ��� # �	�r � � 	 � � # �	�r � � 	 � 	 � � �

+ � 	 -
�(� . We partition

� 	
into ��� sub-pseudo-cubes, (where �

is odd, say), such that the basic sub-pseudocube is
� 	 �� # �	�r � � 	 � 	 � � �� + � 	 - �� � . We will sample lattice points

uniformly in the pseudocube
� 	

. This induces an almost
uniform distribution on the address space. But this time we
consider each address as corresponding to the center of the
sub-pseudocube. When we express a sample lattice point

k(;
as the sum of this address vector and a remainder vector � ; ,
these remainder vectors tend to be symmetrically distributed
with respect to the address vector at the center. (See Figure
5) Here an address vector is of the form # �	�r � � N �� �

	
, where

each } 	 ; is even, �  � � � �
+ } 	 ; +

� � � . The corresponding
“address” is P} � ; � } �K; �#!"!#!$� } � ; � reduced modulo � . Thus,
when we estimate

��� # �; r � � ; � ; ��� probabilistically, the inde-
pendent � ; ’s tend to cancel out instead of adding up. Note
that ! � 

�
�
�#!"!"! � � � � is a (short) solution obtained by

the algorithm - given only the address matrix �} 	 ; � . Given
such a matrix one must ensure that the � ; are almost indepen-
dently and centrally symmetrically distributed. This is geo-

metrically quite intuitive, given a sufficiently large ratio of
the sides of the sub-pseudocube to pA0  � � . But the hard part
is to minimize this notion of “sufficiently large”. It turns out
that � � �

� �,+ and
� % �

� � +KpA0  � � will do. The technical
part of the proof is rather involved.

There is one more idea in [18] in the improvements in
terms of the algorithmic steps. It turns out to be insuffi-
cient to guarantee the generation of one almost uniform ad-
dress vector, which makes up one column of the matrix. We
must be able to generate � columns to form an almost uni-
formly generated matrix. This more stringent requirement is
needed to apply the algorithm - . In [18] we used an idea to
amplify the “randomness” in each column vector generated,
by adding together � ! { � � copies of independent samplesk

� �� 	�r
�

} 	
� �

	 Y � �k 	 � �� 	�r
�

} 		
� �

	 Y � 	 � etc.

This gives a lattice pointk Y k 	 Y � � � �
�� 	�r
�

} 	 Y } 		 Y � � �
� �

	 Y  �CY � 	 Y � � � �
!

Starting from the column vector P} � � } � �#!"!#!'� } � � being
�
9 + -close to uniform, we show that the address vector

�} � Y } 	� Y � � �
� } � Y } 	� Y � � �

�"!#!"!'� } � Y } 	� Y � � �	� �,\^� �
is �

9 �
-close to uniform, which would be sufficient to ensure

that the matrix is close to being uniform. The price we pay
for this is that each remainder vector is enlarged by a factor
at most � ! { � � .

The more difficult part of the proof is to show that the lat-
tice samples do induce a distribution that is �

9 + -close to uni-
form on the address space. In addition to our “shape condi-
tion”, which is accomplished by

*
� �

! �
, we need to esti-

mate the volume of each sub-pseudocube to ensure that the
number of lattice points within each sub-pseudocube is al-
most identical. Moreover, in order to obtain independent
lattice vectors, we need to ensure that the proportion of lat-
tice points in a sub-pseudocube that lie on any (co-1 dimen-
sional) hyperplane is negligible.

The bounds in [18] use eigenvalues and singular values,
and a theorem of K. Ball [8]. We cannot go into much detail
here, but the following lemmas give a flavor of it.

Lemma 4.1 Let � � �"!"!#!$� � � be the standard unit vectors.
Let w � �#!"!#!'� w � be linearly independent vectors such thats w

	
� � 	 s

+ � . Then the parallelepiped � :w � �"!#!"!'� w � � has
volume

� � � � + [ \W0 �� ow � �"!#!"!'� w � � � +  � Y ��� � !
8



(One cannot improve the lower bound to  � � �	��� for large
� .)

Lemma 4.2 Let � � �"!#!"!$� � � and w � �#!"!#!'� w � be as above.
Let � be a hyperplane. Then the  ��� � � -dimensional vol-
ume of

&
:w � �"!#!"!'� w � � ��� is at most ) ! �  � Y ���f� 9 � .

5 NP-hardness

Lagarias [44] showed that SVP, under the ��� -norm, is NP-
hard. For the related Closest Vector Problem (CVP), Van
Emde Boas [62] showed it to be NP-hard for all ��� -norms,
��� � . Arora et al. [6] showed that, under any ��� -norm, CVP
is NP-hard to approximate within any constant factor, and
that if it can be approximated within a factor of ! 
 	�� J�	 � O�
 � ,
then NP is in quasi-polynomial time.

It had long been thought that the Shortest Vector Prob-
lem for the natural �

�
-norm is NP-hard. This was conjec-

tured e.g., by Lovász [49]. It remained a major open prob-
lem until, in 1997, Ajtai [2] proved the NP-hardness of the
SVP for this norm, under randomized reductions. Moreover,
Ajtai showed that to approximate the shortest vector of an � -

dimensional lattice within a factor of
�
� Y �

� q��� (for a suf-

ficiently large constant } ) is also NP-hard under randomized
reductions. This was improved to � � Y �� 
�� for any constant� % *

by Cai and Nerurkar [19], and then to any constant
smaller than ) ! by Micciancio [52].

Theorem 5.1 It is NP-hard, under randomized polynomial
time reductions, to find a shortest lattice vector, even to ap-
proximate it within a factor of ) ! � � , for any � % *

.

In the next subsection we outline Ajtai’s result. The pre-
sentation incorporates the simplifications and improvements
of [19] but the main ideas are due to Ajtai. After that we
present Micciancio’s improvement.

Ajtai’s result

Ajtai gave a randomized reduction from the following vari-
ant of the subset sum problem to SVP.

The restricted subset sum problem Given integers�
�
�"!#!"!'� � � � ~ , each of bit-length

+
�
�
, find a 0-1 solution

to the system # �	�r
�
� 	 ) 	 � ~ and # �	�r

�
) 	 � � �� � .

We first define a lattice which will play a crucial role in
the proof. This lattice is a modified version of the one used
by Adleman (unpublished) in his reduction from factoring to
the SVP, under some unproven assumptions. For this lattice,
we need to choose several parameters depending on the � in
the restricted subset sum instance.

� � is chosen to be a sufficiently large polynomial in � .� � is chosen to be a sufficiently large polynomial in � .��� ��� � .� �
is chosen randomly from the set of products of � dis-

tinct elements of � � � �"!#!"!'� � � � , the first � primes.� 5 is chosen a constant root of

�
.� E is polynomial in 5 .

Clearly, E ���
and 5 are exponential in � . We will not be

overly precise here about the values of these parameters
in order not to obscure the main points. Using these pa-
rameters, Ajtai defines the following matrix, whose � Y !
columns generate a lattice.������� � �����! !#"�"$" % % %

...
. . .

...
...

...% "�"$" � ���&�' )( % %% "�"$" % % *,+.-/ �����! !0"�"$" / ���&�' ( / �����21 / �3�&�547698;: <�=
>$?????@

Lattice ACB
This lattice is then normalized. The normalized lattice has
every vector of length at least 1 and a lot of vectors of length
very close to 1. We will denote by

k 	
, the columns of the ba-

sis matrix for this modified lattice. We will denote this nor-
malized matrix, as well as the lattice it generates, by

�
. With

high probability, this lattice,
� � �  k � �"!#!"!'�nk � � � � , has the

interesting properties we outline next. These properties are
a consequence of the way primes are distributed and the con-
vexity of the logarithm function.

1. All non-zero vectors have length at least 1.

2. There are a lot of vectors of small norm with the prop-
erty that their first � basis coefficients

� � *A� � � � .
More precisely, let D be the set of all

k � �
,

k
�# � � �	�r

�
. 	�k(	 with # �	�r � � . 	4� � � , . 	�� � *A� � �(� for � �� � �"!#!"! � � � , and s

k
s
� -

��Y z . Then

� D � � ! � 
 	E� � .
Here, z is an exponentially small quantity.

3. Any two distinct elements of D differ in their first �
basis coefficients.

4. If

k
is a non-zero vector of

�
of squared norm less than

� Y �
� � 
 	 � , then the first � Y � coefficients of

k
have

a special form. More precisely, if

k
� # � � �	�r

�
. 	�k(	 ,s

k
s
� -

� Y �
� � 
 	 � , and . � � � � *

, then . � �"!#!"!'� . � �
� *
� � � � and . � � � � � .
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This lattice is now extended in the following random
manner depending on the given instance of the restricted
subset sum problem. With high probability, given a reason-
ably short vector in this extended lattice, a solution to the
instance can be produced.

Let # �	�r
�
� 	 ) 	 � ~ be the given instance of the re-

stricted subset sum problem. Let � % *
be any constant. Let� ��! {�� + and

2
��) � . Let

� � �
�
�"!"!#!'� � � be a ran-

dom sequence of pairwise disjoint subsets of � � �"!"!#! � � � .
Define an �� Y ! �,B 6� Y ! � matrix ] as follows. The
6� Y ! � � � column is all zeros. The 6� Y ������� column is
o~ �

2�� � �� � � 2���*A�#!"!"! ��* ��� . The other entries of the matrix are
defined in the following manner.

1. The first row has the entry � 	 � 2 in the

� �	� position if� � � 	
, and otherwise has zero.

2. The second row has the entry �
2

in the

� �	� position if

�
is in some

� 	
, and otherwise has zero.

3. For � from 3 to �
Y ! , row � has

2
in the

� �	� position if� � � 	:9 �
and otherwise has zero.

If
�
�
�#!"!#!$� � � are consecutive intervals of � � �"!"!#!'� � � , then] is the following matrix,������� 
 !��� "$"�" 
 !��� "$"$" 
�� �� "$" " 
�� �� "$"$"�� �� %�� "$"�" ��� "$"$" �� "$" " �� "$"$"�� �-�� �� %� "$"�" � "$"$" % "$" "#% "$"$" % %
...

...
...

...
...

...% "$"�" % "$"$" � "$" " � "$"$" % %
>$?????@

The extended lattice is the lattice
� ��� � generated by the

columns of the matrix

� �] � . A vector �k � � ��� � can be

written

� kk 	� , where for some integral column vector � �

 . � �"!#!"!$� . � � � ��� ,

k
� # � � �	�r

�
. 	 k 	 � �

and

k 	 � ]�� .
Each

k
uniquely determines its � and thus uniquely deter-

mines

k 	
.

Ajtai uses a constructive variant of the following combi-
natorial lemma, due to Sauer, to show that any solution to a
subset sum instance can be produced from the coefficients
of some short vector. A proof of this lemma can be found,
for example, in [4].

Lemma 5.1 (Sauer) Let � be a finite set and � be a set of
subsets of � . If for some } ,

� � � %&# �	�r � � �  ��	 � , then there is
a ! � � with } elements such that !�! �y� ! �#" � " � ��� .
That is, every subset of ! can be realized by intersecting
it with some element of � . A consequence of Ajtai’s con-
structive lemma is that a random sequence

� � �
�
�"!#!"! � �

of subsets of � � �#!"!#! � � � , has the following property:

'%$ � � *
� �(� � � � k � # � � �; r
�
. ;"kl;x� D such that,' � � � � �"!#!"!'� �K� � $ 	 � � # ; U'& N . ; .

This property implies that if there is a solution to the re-
stricted subset sum instance then there is a vector in the setD that gives rise to it. That is, suppose # �	�r

�
� 	 ) 	 � ~ has

a solution ) 	 � $ 	
, i.e.

$ 	 � � *
� �(� � �� 	�r
�
� 	 $ 	 � ~ and

�� 	�r
�

$ 	 � � �! � !
Then, � k � D � k � # � � �; r

�
. ;"kl; , such that

' � �
� � �"!"!#! � �K� � $ 	 � � �; U'& N .

; !
Since

k � D ,

* -
s
k
s
� +

�HY z . Let �k � � ��� � � �k �� kk 	 � , where

k 	 � ]�� and � �  . � �#!"!"! � . � � � ��� ! Let

k 	 �

k 	
�
�"!#!"!'�nk 	� � � � . Then

s �
k
s
�
� s

k
s
� Y s

k 	 s
� +

 � Y z � Y � � �! � -
� Y � � ! (3)

The first inequality holds because

k 	
�
�

k 	� � *
, and exactly� �� � of

k 		
for � � � are �

2
, the rest being zero. The last in-

equality holds because z is exponentially small. Also, sincek
is a non-zero vector, so is �k , which implies_ �  � ��� � � + s �

k
s
!

(4)

We now prove that, assuming a solution to the restricted sub-
set sum instance exists, one such solution can be constructed

from an approximate shortest vector. Let �� �
� �
� 	(� be a

 � Y*) � � approximate shortest non-zero vector of
� ��� � , i.e.

_ �  � ��� � � � +
s �� s

� + �
� Y � ! � _ �  � ��� � � � ! (5)

We will construct a solution to the subset sum instance,
given �� . Since � � ! {�� + , this shows that it is NP-hard to

approximate the shortest vector within a factor
�
� Y �dim 
 � ,

for any constant � % *
, where dim stands for the dimension

of the lattice.

From (3), (4) and (5) we get

s �� s
� + �

� Y � ! �  � Y � � � � (6)

and by the choice of � and � ( � + ,,+5� � ), one can show that

s �� s
� +

� Y !� � + ,,+ !
This matches the bound in property 4 of

�
. Let � �

 � �
�"!"!#!'�

� � � � � , � 	 �  � 	�
�#!"!"! �

� 	� � � � and � �
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# � � �; r
�
*W;"kl;

. By property 4, replacing � by � � if neces-
sary,

* � � � � � . We now prove that

� 	 � � �; U'& N
* ;

is also a solution by showing that, if not, the length of ��
would be too large. It is easy to see that since

* � � � � � ,

� 	� �
2
� o~ �

�� 	�r
�
� 	 � 	 � �

� 	� �
2
� #� �! � � �� 	�r

�
� 	 � �

and for �
+ � +

� ,

� 	; � � � �
2 � ; ! (7)

Assume the � 	 are not a solution. Then, at least one of the
following three conditions must hold.

1) # �	�r
�
� 	 � 	 �� ~ , or

2) # �	�r
� � 	 �� � �� � , or

3) ���'� 	 �� � *
� �(� .

If 1) holds, then

�
� 	�

� � 2
� , which means

s �� s
�
� s � s

� Y s � 	 s
� ��� Y 2 �

�

�
� � Y � �

� �
where s � s � � holds by property 1 of

�
. This contradicts

(6). If 2) holds, then

�
� 	� � � 2

� , and we get a similar con-
tradiction again. Finally, it can be shown that if for some � ,� 	 �� � *A� �(� and # �; r

� � ; � � �� � , then

��; r
�
� �; ��� �!�� Y ! !

This means, by (7) and property 1 of
�

,

s �� s
�
� s � s

� Y s � 	 s
� � � Y � � � �! � Y ! � !

Since s �
k
s
� +

 � Y z � Y � � �� � (see (3)),

s �� s
�
� s �

k
s
� � ! � � z � � !

Due to our choice of � as a sufficiently large polynomial in
� , we have � � � !� + � - �

!
Thus by (3), s �

k
s
� - ! , and so

s �� s
�
� s �

k
s
� % � ! s �

k
s
� !

Therefore,

s �� s
� % �

� Y � ! � s �
k
s
� � �

� Y � ! � _ �  � ��� � � � �
which contradicts (5).

This completes the proof of Ajtai’s result.

Micciancio’s improvement

With the same basic framework, but using the closest vector
problem instead of the restricted subset sum problem, Mic-
ciancio [52] got an improved hardness result for the SVP.
He showed that it is NP-hard, under randomized reductions,
to approximate the SVP to within any constant smaller than) ! , using the fact that it is NP-hard to approximate the CVP
to within any constant. (In fact, it is even NP-hard to do so
to within a factor ! 
 	E� J O�
 � , for an � ���  � � [23], but this
does not seem to lead to any improvement in his proof.)

To describe this result, it is convenient to formalize the
approximation problems as promise problems [26]. The fol-
lowing defines the problem to approximate the closest vec-
tor within a factor  7��� .

CVP Promise Problem

Given an instance �E � � ��� � , where E � � ��� � is a
basis matrix, � � � � is a target vector, and

�h� � ,
with the promise that either s E ) � � s

+��
for

some ) � � �
, or s E ) � � s %  

�
for all ) � � �

,
decide which is the case.

Arora et.al.[6] showed that for all constants  � � , this
promise problem is NP-hard. From the proof in [6] one gets
that even the following modified version of the above prob-
lem is NP-hard for all constants  7� � .

Modified CVP Promise Problem

Given an instance �E � � ��� � , where E � � � � � ,� �Z� � , and

�t� � , with the promise that eithers E ) � � s
+	�

for some ) � � *A� �(� � , or s E ) �. � s %  
�

for all ) ��� �
and for all . ����
 � * � ,

decide which is the case.

We will call instances that satisfy the first alternative, YES
instances, and those that satisfy the second one, NO in-
stances. Note that, in the modified problem, a YES instance
has a 0-1 solution and a NO instance has no solution even
for arbitrary integral ) and arbitrary (non-zero) multiples of
the target vector.

Here is the definition of the corresponding SVP promise
problem. It formalizes the problem of approximating the
SVP within a factor  	 .
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SVP Promise Problem

Given an instance �� ��� � , where � is a basis ma-
trix, and

� � � , with the promise that eithers � � s
+ �

for some non-zero integral � , ors � � s %  	 � for all non-zero integral � , decide
which is the case.

We define YES and NO instances in a similar manner.

Micciancio gave a randomized many-one reduction that
reduces the modified CVP promise problem with  � 3 ! { �
to the SVP promise problem with  	 � 3 ! {  � Y ! ��� , for
any constant � % *

, mapping YES instances to YES in-
stances and NO instances to NO instances. This shows
that the SVP is NP-hard to approximate within any constant
smaller than ) ! .

The heart of his proof is a technical lemma that asserts the
existence of a probabilistic algorithm that on input � � , where} is from the CVP promise problem instance, constructs a
lattice

� � � � � � ��� � � , a matrix
� �y� � � � , and an

$ �
� � � � , such that with high probability,� For every non-zero � �t� � , s � � s

� % ! , and� For all ) � � *A� � � � , � � � � � , such that
� � ��) ands � � � $ s

� -
� Y%� .

Here, � depends polynomially on } .

The lattice
�

above is essentially the same as Ajtai’s lat-
tice

���
and

�
can be thought of as representing the 0-1 vec-

tor ) by � . The existence of such a
�

and the fact that such
a
�

can be randomly constructed depends on a version of
Sauer’s Lemma.

Let oE � � � � � be a given instance to the CVP promise
problem with  � 3 ! { � . The reduction maps it to the
instance �� ��� � of the SVP promise problem with  	 �3 ! {� � Y ! ��� , where

� �
� � � $� +� E � �

� +� ��� �
and

�
� ) � Y ! � . Note that  	 � � ) ! .

Let oE � � � � � be a YES instance. That is, s E ) � � s
+ �

for some ) � � *
� �(� � . Then � � ��� � , such that s oE � � � �� s
+ �

and s � � � $ s
� -

� Y%� . Let � be the vector

� �
� � !

Then

s � � s
� +

 � Y ��� Y �� � � � � � � Y ! � � � � !
Let �E � � ��� � be a NO instance. Let � �

� �. � be a non-

zero vector in

� � � � , where � � � � and . � �
. If . �

*
,

then � �� *
and so

s � � s � s � � s % ) ! �  	 �!
If . ��

*
, then

s � � s � ) �� s E  � � � � . � s % ) ���� ! � � � ) ! �  	 � !
This completes the description of Micciancio’s result.

Other hardness results

Dinur, Kindler and Safra [23] have recently improved the
hardness factor for CVP. They show that CVP is NP-hard
to approximate within a factor ! 
 	�� J O�
 � , for an � � �  � � .
Blömer and Seifert [11] study two problems considered by
Ajtai in his worst-case/ average-case connection. These are
the problems of computing a shortest set of independent lat-
tice vectors and a shortest basis. Using the result of [23],
they prove that both these problems are hard to approximate
within a factor � � , 
 	E��
 	�� � , for some constant  

-
� . Gol-

dreich et al [34] show a reduction from the CVP to the SVP.
While this reduction does not give us an improved hardness
result, it has the properties of preserving the factor of ap-
proximation for the two problems and the dimension of the
lattice.

Ravikumar and Sivakumar [57] consider the problem of
deciding whether a lattice vector shorter than a given bound
exists, under the promise that there is at most one such vector
(not counting its negation). They prove a randomized reduc-
tion from the decision version of the general shortest vector
problem to this problem, in the style of Valiant and Vazirani
[60]. Lattice problems for a special kind of lattice defined
by certain graphs have been studied in [17].

6 Non-NP-hardness results

To what extent can we expect to improve further the ap-
proximation factor for SVP and remain NP-hard? The cur-
rent proof appears not feasible beyond ) ! . On the other
hand, the best polynomial time approximation algorithms of
Lovász and Schnorr are exponential in the approximation
factor.

For polynomially bounded factors, transference theo-
rems provide evidence that beyond a factor of �  � � , the ap-
proximate SVP is not NP-hard. This is a result of Lagarias,
Lenstra and Schnorr [45]. Transference theorems in the Ge-
ometry of Numbers give bounds to quantities such _ 	 of the
primal and the dual lattice. In [45] the following theorem is
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proved

�
+ _ 	  � �3_ � 9 	 � �  � u � + �� �

� �
for � ��� � � + � + � . This already gives an “NP proof” for
a lower bound for _ �  � � up to a factor of �  � � � by guessing
an appropriate set of linearly independent lattice vectors of� u

all with length at most _ �  � u � .
Lagarias, Lenstra and Schnorr [45] proved more. A basis� �
�
�4� � �#!"!#!'��� � � is said to be reduced in the sense of Korkin

and Zolotarev, if the following hold:

1.

��� �
�
���
� _ �  � � .

2. Let �n8 � � � 8 ��(�#!"!"!'� 8 � � � be the Gram-Schmidt orthogonal-
ization of � � � �������"!#!"!$�4� � � ,8 � 	 � � 	

� � � < 	 � 	 � 8 � � � �
+ � + �

!
Then

� � 	 � �A+ ��{ ! , � + } - � + � .

3. If
� ��� 9 	 � � � is the orthogonal projection of

�
to

:0 1n2 � � � �#!"!#!$��� 	o9 � ���36 then

��� 8 � 	 ��� � _ �  � ��� 9 	 � ��� � .
Essentially, a Korkin-Zolotarev basis is one which is weakly
reduced, and the orthogonal projection of

� 	
is a vector of

minimum length in the orthogonal projection of
�

in the
complement of � � � �"!#!"!'����	:9 � � . In terms of Lovász’s algo-
rithm, if instead of comparing

�#	
o� � and

��	 � � :� � , we searched
for a vector of minimum length in 0 1n2 � �"	 :� � �#!"!#!'��� � o� �� ,
and called it

��	
, we would have obtained a Korkin-Zolotarev

basis. (Of course then this algorithm would have run in ex-
ponential time.)

Let E u
be a Korkin-Zolotarev basis of

� u
. Then its

dual basis E � � �
�
�4��(�#!"!"!'�4� � � is called a dual Korkin-

Zolotarev basis of
�

. Let _ �E�� � �,��a � ��� 8 ��	3���
� � + � + � � ,
where � 8 �

�
� 8 � � �#!"!#!'� 8 � � � is the Gram-Schmidt orthogonaliza-

tion of E . Then it is shown in [45] that_ oE � + _ �  � � + � _ oE�� !
In particular this gives a way to provide an “NP proof”

of a lower bound for _ �  � � up to a factor of � by guess-
ing an appropriate basis E u

and then calculating E . This
places the promise problem of approximating _ �  � � up to
a factor � within coNP.

�
Thus if NP

�� coNP, then approxi-
mating _ �  � � up to a factor � is not NP-hard in the sense of
Karp reductions. More precisely, if NP

�� coNP, then there
is no deterministic polynomial time reduction � from SAT,
� �� � �  � � _�� , such that if �

�
SAT, then _ �  � � + _ , and

if � ��
SAT, then _ �  � � � � _ .- Of course, technically a promise problem is not a decision problem

while coNP is a decision problem class. But the meaning of this is clear
and one can always modify the definitions slightly to make it proper.

Theorem 6.1 (Lagarias, Lenstra, Schnorr)
If NP

�� coNP, then the problem of approximating _ �  � �
within a factor � is not NP-hard.

The interplay between the primal and dual lattices and the
related transference theorems play important roles in Ajtai’s
worst-case to average-case connection as well. We will dis-
cuss this topic in more detail in the next section. Here we
present the following rather pretty result due to Goldreich
and Goldwasser which improved the approximation factor
for non-NP-hardness to ) � .

The proof of Goldreich and Goldwasser [30] is based on
constant round interactive proof systems. More precisely,
they give a bounded round interactive proof system for prov-
ing a lower bound up to a factor ) � for both SVP as well
as CVP. Of course the number of rounds can be reduced
to one, either by standard techniques or by directly paral-
lelizing their IP protocol. Also by standard techniques pri-
vate coins can be replaced by public coins, so that what they
showed can be stated as follows:

Theorem 6.2 (Goldreich, Goldwasser)
The problem of approximating _ �  � � within a factor ) � is
in NP � coAM. Thus if this problem is NP-hard under Karp
reductions in the sense given above, then � � � � 5 � � .

The last statement follows from a well-known result of
Bopanna et. al. [12] which states that if coNP � AM, then
� � � � 5 � � .

The basic idea of the IP protocol of [30] is rather simple
and elegant and we will describe it here.

Suppose
�

satisfies the promise of either _ �  � � + �
or_ �  � � % �

� ) � , and the prover claims that _ �  � � % �
� ) � .

Imagine we surround each lattice point �
� �

a ball E � 6���
centered at � with radius � �

�
� ) � { ! . If the prover P is

correct, then all such balls are disjoint. Now the verifier ran-
domly picks a lattice point � in secret, and randomly picks a
point � in E �  � � . The verifier presents � to the prover, who
should respond with � , the center of the ball from which �
was chosen. It is clear that for an honest prover P with un-
limited computing power, since all the balls E �  � � are dis-
joint, he has no difficulty meeting his obligation. However,
suppose the prover �

	
is dishonest, so that in fact _ �  � � + �

.
Then for any lattice point � picked by the verifier, there is at
least one nearby lattice point � 	 with

���
� � � 	 ��� + �

. ThenE � 6��� and E � ( 6��� would have a large intersection. This fol-
lows from the fact that the radius is almost � � , � times the
distance of their respective centers. It follows that there is a
significant probability that a dishonest prover will be caught,
since in case a point � � E5� 6��� �hE � ( 6��� is chosen, the ver-
ifier could equally have chosen � or � 	 .

The exponent �|{ ! in this interactive proof protocol
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comes from the well known fact that in � -dimensional
space, two unit balls with center distance

�
have a signifi-

cant intersection if

� -
��{ ) � , and a negligible intersection

if

� % �|{�� ��, � 9 + , for any � % *
. With some care the proof in

[30] can improve the factor ) � to 3 � { 0�\2� � . It also shows
the same bound for the Closest Vector Problem.

What about some other problems? The problem of � � -
unique shortest vector problem is prominent in the Ajtai
worst-case to average-case connection. It also plays an im-
portant role in the Ajtai-Dwork public-key cryptosystem
(see Section 8). Recall that a lattice is said to have an ��� -
unique shortest vector if _ �  � �3{ _ �  � �v� � � . Equivalently,
there exists

k � �
,

k ��
*
, such that for all

k 	 � �
, if��� k 	 ��� - � � �

��� k'���
, then

k 	
is an integral multiple of

k
.

Define the following promise problem:

The � � -unique shortest lattice vector problem:
Given a lattice with a � � -unique shortest vector

k
, find the

shortest vector % k .

Building on the idea of Goldreich and Goldwasser [30],
Cai [15] proved the following:

Theorem 6.3 The � � -unique shortest lattice vector prob-
lem for  

+
�|{ ' is not NP-hard unless the polynomial time

hierarchy collapses to � � � � 5 � � .
7 Transference theorems

We have already mentioned the transference theorem of La-
garias, Lenstra and Schnorr [45] in the last section. There
is a long history in geometry of numbers to study relation-
ships between various quantities such as the successive min-
ima associated with the primal and dual lattices,

�
and

� u
.

Such theorems are called transference theorems. The esti-
mate for the product

_ 	  � �3_ � 9 	 � �  � u �
has a illustrious history: Mahler [51] proved that the upper
bound  ��� �

�
holds for all lattices. This was improved by

Cassels [21] to ��� . The first polynomial upper bound was ob-
tained by Lagarias, Lenstra and Schnorr [45] as mentioned.
The best estimate for this product is due to Banaszczyk [10],
who showed that

�
+ _ 	  � �n_ � 9 	 � �  � u � + � � �

for some universal constant
�

. The Banaszczyk bound is
optimal up to a constant, for Conway and Thompson (see
[53]) showed that there exists a self-dual lattice family � � � �
with _ �  � � � � �  ) � � .

Part 2) and part 3) of Ajtai’s worst-case to average-case
connection in Theorem 4.1 are proved via transference type
argument. Basically, if one can get a good estimate for the
basis length for any lattice, one can apply this to the dual� u

. From a good estimate for pA0  �Cu � , thus _ �  � u � , a trans-
ference theorem gives estimate for _ �  � � . This is part 2)
in Theorem 4.1. Part 3) employs some additional argument
also of a transference type. We will discuss these matters in
more detail. But first we take a closer look at transference
theorems.

In addition to _ 	 , there are several other lattice quantities
that have been studied. The covering radius of

�
is defined

to be the minimum radius of balls centered at each lattice
point whose union covers ��� .�

 � � � �,��a � � � � Y E 
*
� ��� � � � � !

Also if

�
:w � � � denotes the minimum distance from a pointw in �D� to a point in

�
, then�

 � � � �hg(i � � ow � � � � w � � � � !
(The minimum and maximum are obvoiusly achieved.)

We have seen the quantity� � 1��A2V �,g(i
�4j 	 j � _

	
 � �n_ � 9 	 � �  � u � �

where the supremum is taken over all � -dimensional lat-
tices. Regarding covering radius

�
 � � the relevant quantity

is

� � 1��A2V �  � �n_ �  � u � !
By triangle inequality

�
 � � + �

�
� _ �  � � , so that

�
+ �! � � !

Given any
�

, we say a sublattice
� 	 � �

is a saturated
sublattice if

� 	 � � � 5 , where 5 is the linear subspace
of � � spanned by

� 	
. Saturated sublattices of dimension

� � � are in one-to-one correspondence with primitive vec-
tors of

� u
. (A lattice vector

k ��
*

is primitive if it is not
an integral multiple of any other vector in the lattice except% k .) The correspondence is simply

� 	 � � � � k �|6 and� k �|6 � 0 132  � 	 � . For any
�

and a saturated sublattice
� 	

of
dimension � � � with normal (and primitive) vector

kx� � u
,�

is a disjoint union of parallel translations of
� 	

,� � R� U��  � 	 Y }^w � �
for some w � �

such that = w �3k^> � � . Thus, each pair of
nearest hyperplanes � k �(6 Y }^w and � k �|6 Y �},Y ���Kw has
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orthogonal distance = w � b��� b ��� > � ���� b ��� . We call this a parallel
decomposition of

�
.

For any
�

and any w � � � 
 � , we can compare

�
ow � � � ,

to the distance from w to the closest parallel translation of
some � k ��6 � 0 132  � 	 � which intersects

�
, over all such

� 	
.

Let �
�  = w �nk�> � � � = w �3k^> ��� = w �nk�> � �

be the fractional part of = w �nk�> rounded to the nearest integer,
then we considerz � 1��A2b UWV�� c  
 c b � �U��

�
�  = w �nk�> ���� k'��� �

which measures the distance from w to the closest parallel
translation, maximized among all directions

k � ��u
. Now

the following quantity is defined� � 1��A2V 1 �A2
 U�� q�� V
�
ow � � �z !

By definition

�
�  = w �3k^> � +

��{ ! and

��� k'��� � _ �  � u � , so
that z +

�
��� J � V � � . Hence � � ! � !

An upper bound
� + 2

says that
' �

and
' w �� �

, there
exists a parallel decomposition where the distance from w
to the nearest lattice hyperplane is � 2 �

ow � � � .
Lagarias et al. [45] proved that

� +
�� �

�
and �

+
�
�
�
� , � .

Babai [7] proved that
� + � � for some universal con-

stant
�

. Håstad [37] showed that
� +

� �
� Y � . Similar

bounds for
�
, � and

�
were also shown by Banaszczyk [9].

The best bounds for
�
, � and

�
were shown later by Ba-

naszczyk [10], where
�
, � and

�
are all bounded by �  � � .

The Banaszczyk bounds are all optimal up to a constant by
the Conway-Thompson family of lattices (see [53]).

In [13] an extension of Banaszczyk’s theorem of [10] is
proved. Define 	 	  � � to be the minimum � such that the sub-
lattice generated by

� � E  * � ��� contains an � -dimensional
saturated sublattice

� 	
, where �

+ � + � . When � � � , it is
called the generating radius and is denoted by 	  � � . Clearly	  � � is the minimum � such that a ball E  * � � � centered at 0
with radius � contains a set of lattice vectors generating

�
.

The study of 	  � � is motivated by the investigation of pA0  � �
and its relation to _ �  � � . Clearly_ �  � � + 	  � � + pA0  � � !

The following inequality is shown in [13] for every lat-
tice

�
of dimension � , using and extending the techniques

of [10]: 	 	  � ���|_ � 9 	 � �  � u � + � � � (8)

for some universal constant
�

, and for all � , � + � + � . We
will sketch the proof for the case � � � for the generating
radius 	  � � .

The main tools of the proof are Gaussian-like measures
on a lattice, and their Fourier transforms. For a given lattice�

we define

� V  � k ��� � � 9 - ��� b ��� �# 
 UWV � 9 - ��� 
 ��� � ! (9)

The Fourier transform of � V is

� V ow � ���


 U�� q �
� - 	  
 c 
 � � � V ���b UWV �

� - 	  
 c b � � V  � k ��� � (10)

where w � �D� . Note that � V is an even function, so that

� V :w � � �b UWV � V  �

k �����\W1  !�� = w �nk�> � ! (11)

Define

� V :w � � #�� UWV � 
 �
9 - ��� � ��� �

# 
 UWV � 9 - ��� 
 ��� � !
(12)

Then the following identity holds

Lemma 7.1 

� V :w � � � V�� :w � ! (13)

The proof of Lemma 7.1 uses Poisson summation formula,
see [39, 10]. The following lemma is proved in [10] and is
crucial:

Lemma 7.2 For each  7����{ ) ! � ,

� V  � 
 E  * �  ) � � � - �
 ) ! � ��� 9 - � � � � � (14)

and for all w � �D� ,

# b U � V � 
 � ��� � ��� � � � � �
9 - ��� b ��� �

# 
 UWV � 9 - ��� 
 ��� � - ! �  ) !�� � � 9 - � � � � �
(15)

where E  * �  � ) � � is the � -dimensional ball of radius  �
) �

centered at 0.

This lemma basically says that the total weight under � V of
all lattice (or affine lattice) points outside of radius  ) � is
exponentially small.

Now we prove (8) for � � � and
� � � {� ! � � . Suppose	  � �3_ �  � u � % � � { !�� . Let  � and  
�

be two constants, such
that  �  

� % � { ! � and  � % ��{ ) ! � and  
� % � { ) ! � . By
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substituting
�

with
$ �

for a suitable scaling factor
$
, we may

assume that

	  � � %  �
) � and _ �  � u � %  

� ) � !
Let

� 	
be the sublattice of

�
generated by the intersection� � E  * �  � ) � � . Then

� 	
is a proper sublattice of

�
, since	  � � %  �

) � . If ����� � 	 - � , then let

&
be the linear span

of
� 	

, and let

�
�
�"!#!"!'����	

be a lattice basis of
� �

&
, where� � ����� � 	 -

� . This can be extended to a lattice basis�
�
�"!#!"!$�4� 	 �#!"!#!$��� � for

�
and we may replace

� 	
by the sub-

lattice generated by

�
�
�"!#!"!'��� 	 �#!"!"!'� ! � � , say. Thus without

loss of generality we may assume
� 	

is of dimension � . The
important point is that we have a proper sublattice

� 	�� �
,

which is of dimension � and contains
� �DE  * �  � ) � � .

For any fixed w � �D� ,

� V ow � � �b UWV � V  �

k ��� "\W1  ! � = w �3k^> �
� �b UWV ( � V (  �

k ��� "\W1  ! � = w �3k^> �
Y �b UWV (  � V  �

k ��� � � V (  � k ��� � �\M1  ! � = w �nk�> �
Y �b UWV � V ( � V  �

k ��� "\W1� ! � = w �3k^> �
� 

� V ( :w � YZ~ Y E �

say.

Since
� ��E  * �  � ) � � � � 	

, the last term� E � + �b UWV ��� � � � � J � � � � V  �
k ���- �

 �
) ! � � � 9 - � � J � � �

by Lemma 7.2 inequality (14). Denote the last term by �"� � ,
say.

For the other error term ~ , we can show similarly that� ~ � - � � � !
Hence 


� V :w � % 

� V ( :w ��� ! � � � ! (16)

Our next task is to show that we can choose an appro-
priate w so that



� V :w � is small yet



� V ( ow � is large. By

Lemma 7.1, we have


� V ow � � � V�� :w � , and



� V ( ow � �� � V ( � � :w � . Thus we only need to choose a w such that � V�� :w �

is small and � � V ( � � :w � is large.

The following lemma is proved in [13].

Lemma 7.3 Suppose
�
� is a proper sublattice of

� �
, then

there exists a �
� � �

, such that

�,��a� UWV J ��� � � �
��� � _ �  � � �� !

(Since a lattice is a discrete subset of ��� , the above mini-
mum over � clearly exists.)

Now we note that since
� 	

is a full ranked proper sublat-
tice of

�
,
� u

is a proper sublattice of  � 	 � u . That it is proper
follows from the identity of index��.�/   � 	 � u �3{ �A.�/  � u � � ��."/� � ��{ ��.�/  � 	 � % �

!
By Lemma 7.3, take a w �

 � 	 � u , such that �,��a � UWV�� ��� w �
�
��� � � J � V � �� . Then since w �

 � 	 � u , we have  � 	 � u Y w �
 � 	 � u , and

� � V ( � � :w � � # 
 U � V ( � � � 
 �
9 - ��� 
 ��� �

# 
 U � V ( � � � 9 - ��� 
 ��� � � �
!

On the other hand, since

�,��a� UWV�� ��� w � �
��� � _ �  � u �� %  

�� ) � �
we note that no point in

� u YDw is within � �� ) � in norm, and
so

� V�� :w � � # 
 UWV � � 
 �
9 - ��� 
 ��� �

# 
 UWV � � 9 - ��� 
 ��� �- ! �  �� ) ! � � � 9 -  ) �� � � � � �$! � �� say,

by Lemma 7.2 inequality (15). Since both  � and  
� { � %

�|{ ) !�� , we have both � � and � � -
� by elementary estimate.

Thus it follows from (16) that! � �� % � � ! � � � �
which is a contradiction for large � .

For the special class of lattices possessing � + -unique
shortest vector, a stronger bound is proved [14], which lead
to a further improvement in the Ajtai connection factors of
part 2) and 3) in Theorem 4.1.

Theorem 7.1 For every lattice
�

of dimension � , if
� u

has
an � � -unique shortest vector, then

�
+ _ �  � �3_ �  � u � + �  � � � �

where

z �
���� ���
� �  if

* -
 
+
��{ ! ,

�|{ ! if �|{ ! -  
+
� ,� { ! �  if �

-
 
+ � { ! ,*

if  % � { ! .
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In terms of the Ajtai connection factors in Theorem 4.1—
in part 2) and part 3)—these new transference theorems im-
prove all the factors to the range of approximately 3 and 4.
Details can be found in [14]. Here we outline the general
idea to derive parts 2) and 3) from 1).

The idea for the estimation of _ �  � � is relatively straight-
forward. From an estimate of the maximum length of a set of
linearly independent vectors from

� u
, one gets an estimate

of _ �  � � , via transference theorem.

To actually compute the shortest vector, the following
idea is due to Ajtai [1]. If

� u
has an � � -unique shortest vec-

tor

k
, then

�
admits a parallel decomposition� � R� U��  � 	 YZ}�w � �

where the parallel hyperplanes containing
� 	 Y }^w have or-

thogonal distance much larger than the basis length of
� 	

.
Now randomly sample a large polynomial number of lat-
tice points within a certain bound. A �|{ ��� � � � fraction of
samples fall on the same parallel hyperplane, and the differ-
ence vector of such a pair belongs to the hyperplane 0�132  � 	 � .
If we can distinguish such pairs from the rest, then we can
identify the normal vector for the hyperplane 0 132  � 	 � , and by
taking out the gcd, we can recover the shortest vector % k .

For two sample lattice points ) and � , if they belong to
the same parallel hyperplane, then by including a small frac-
tional vector  ) �D� �3{ � to the generating set of

�
, one does

not change pA0  � � , since this is controlled by the distance be-
tween the parallel hyperplanes.

But if ) and � belong to different parallel hyperplanes,
then by including  ) � � �3{ � to the generating set of

�
, the

new lattice will have many additional parallel translations of� 	
between any two originally adjacent parallel hyperplanes0�132  � 	 � Y }�w and 0 1n2  � 	 � Y P} � ���Kw . This will reduce the

basis length significantly.

Thus to be able to compute a good estimate of the ba-
sis length for

�
(actually an estimate of _ �  � � will do)

leads to the identification of the unique shortest vector for� u
. Clearly improved transference theorem bounds sharpen

the provable estimates in Ajtai’s worst-case to average-case
connection factors.

8 Lattice based cryptosystems

The Ajtai-Dwork public-key cryptosystem is based on the
intractability of SVP for lattices with ��� -unique shortest
vectors. Their cryptosystem has the provable property that
if for a random instance the probability that an encryption
of a zero can be distinguished from an encryption of a one
is at least ��{ ! Y �|{ ��� � � � , then the worst-case � � -unique SVP

can be solved in probabilistic polynomial time. This is the
only public-key cryptosystem with the property that break-
ing a random instance is as hard as solving the worst-case
instance of the problem on which the cryptosystem is based.

Their cryptosystem is best viewed in terms of the dual lat-
tice of a lattice possessing an � � -unique shortest vector. For
notational simplicity we will assume

��u
has an � � -unique

shortest vector w . Then � w �(6 is a hyperplane whose inter-
section with

� u4u � �
is a saturated � � � dimensional sub-

lattice
�
� of

�
, �

�
� � � � w � 6 !�

then admits a parallel decomposition� � R� U��  � � YZ} k � �
where

k � �
and = w �3k^> � � . The (affine) hyperplanes� � w ��6�Y�} k � � U�� have orthogonal distance ���� 
 ��� . Let � be the

orthogonal projection to � w � 6 . Then it can be shown that�  � u � � � u
�
!

(The dual of
�
� is defined within its own linear span � w � 6 .)

It follows that
� u
� has no short vectors compared to w . More

precisely every non-zero �
� � u

� can be lifted to a vector
� 	 � ��Y . w � � u

, where

� . �7+
��{ ! . Since � 	 is not

parallel to w ,

�
�
�
��� w ��� � +����

� 	 ��� � +����
�
��� � Y �'

��� w ��� � !
Thus

���
�
��� � ��� w ��� 3 � � � � ��{�'�� � �

��� w ��� . By the transfer-
ence theorems of Section 7,

�
� has a generating set of vec-

tors of length �
� � J O )��� 
 ��� � .

Let  % �
and let

� � �
be real numbers such that

� %
� �
�

. Ajtai and Dwork consider lattices with the following
properties:

1.
�

has an � � � dimensional sublattice
� 	

with basis
length at most

�
;

2. If � � 0 132  � 	 � and � 	 �� � is a coset of � intersect-
ing

�
, then the orthogonal distance

� V of � and � 	 is
at least

�
.

Such a lattice is called a 
� � �

� lattice. Clearly for a 
� � �

�
lattice, every

k � � 
 � has

��� k ��� � � V � � % � �
�

. It
follows that the ��� � dimensional saturated sublattice

� � �
is uniquely determined by

�
. This is denoted by

� � � c � � .
Let � be a distribution on the set of 

�
� �
� lattices where��+ � V + ! � . Then the hidden hyperplane assumption for
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� says that given a random 
� � �

� lattice
� �
� � , it is com-

putationally infeasible to compute the hyperplane � (equiv-
alently

� � � c � � � � � � ).

Ajtai and Dwork [3] actually present three cryptosys-
tems. In all three systems, the value 0 is encrypted by a point
in �x� which is obtained as a small perturbation of a random
lattice point, and the value 1 is encrypted as a totally ran-
dom point in �D� (in an exponentially large region). The idea
is that an encrypted 0 is near some affine translation of the
hyperplane � intersecting the lattice, while an encrypted 1
most likely is not near such an affine hyperplane.

To decrypt, with the private key which is the normal vec-
tor to � (the unique shortest vector in

� u
), one finds the dis-

tance of the ciphertext (a point in � � ) from the closest such
affine hyperplane and decodes it as a 0 if it is near enough
and as a 1 otherwise. Clearly, there is a very small chance
that a 1 may be decrypted as a 0. Goldreich et al [33] mod-
ify the cryptosystem to make the decryption error-free.

The exact details of the three cryptosystems differ some-
what. In the first and second systems security is proved
under a distributional intractability for some hidden hyper-
plane assumption.

In the third system, no explicit lattice is presented. The
private key is a randomly chosen vector in the unit ball.
The public key is a set of random points near some regu-
larly spaced affine hyperplanes in � � 	 � , where � 	

� �l) �
= ) � w > � ��� is the family of hyperplanes induced by w . The
sum of a random subset of these points is itself close to some� 	

. An encryption of 0 is a small perturbation on such a
random subset sum, reduced modulo a certain parallelepiped
determined by the public key. The encryption of 1 is still a
totally random point in ��� in an exponentially large region.

A rough idea of the security of Ajtai-Dwork cryptosys-
tem is the following: Suppose one can distinguish whether
a point is near one of the (affine) hyperplanes. Then one can,
with non-trivial probability, identify the normal vector to � .
They [3] showed that the third cryptosystem is provably se-
cure assuming only the worst case intractability of the � � -
unique shortest vector problem for some constant  .

Nguyen and Stern [55] have shown a converse to this.
They prove that if the CVP can be approximated within a
factor  �� + , � then one can distinguish between encryptions
of 0 and 1 with a constant advantage

�
, where

�
depends

on  . Note that, Goldreich and Goldwasser [30] show that
approximating the CVP within a factor ) � is unlikely to
be NP-hard. It follows that to break the Ajtai-Dwork cryp-
tosystem is also unlikely to be NP-hard. Nguyen and Stern
also show that if the SVP can be approximated within a fac-
tor � � , � 9 + , for any constant � % *

, then a distinguishing al-
gorithm with an inverse polynomial advantage is possible.

Goldreich, Goldwasser and Halevi [32] proposed another

cryptosystem based on the hardness of lattice problems. An-
other system based on the hardness of lattice problems was
proposed by Cai and Cusick [16]. However no average-
case/worst-case proof is known for either of these two sys-
tems.
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