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Abstract

W& survey some recent devel opmentsin the study of the com-
plexity of lattice problems. After a discussion of some prob-
lems on lattices which can be algorithmically solved effi-
ciently, our main focus is the recent progress on complex-
ity results of intractability. We will discuss Ajtai’s worst-
case/average-case connections, NP-hardness and non-NP-
hardness, transference theorems between primal and dual
lattices, and the Ajtai-Dwork cryptosystem.

1 Introduction

There have been some exciting devel opments recently con-
cerning the complexity of lattice problems. Research in the
algorithmic aspects of lattice problems has been active in
the past, especially following Lovész's basis reduction al-
gorithm in 1982. The recent wave of activity and interest
can be traced in large part to two seminal papers written by
Miklos Ajtai in 1996 and in 1997 respectively.

In his 1996 paper [1], Ajtai found a remarkable worst-
case to average-case reduction for some versions of the
shortest lattice vector problem (SV P), thereby establishing a
worst-caseto average-case connection for these | attice prob-
lems. Such a connection is not known to hold for any other
problem in NP believed to be outside P. In his 1997 paper
[2], building on previous work by Adleman, Ajtai further
proved the NP-hardness of SV P, under randomized reduc-
tion. The NP-hardness of SVP has been a long standing
open problem. Stimulated by these breakthroughs, many re-
searchershave obtained new and interesting resultsfor these
and other lattice problems[3, 11, 13, 14, 15, 16, 17, 18, 19,
23,30, 31, 32, 33, 34, 52, 55, 57]. Our purposeinthisarticle
isto survey some of this development.

| think theselattice problemsareintrinsically interesting.
Moreover, the worst-case to average-case connection dis-
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covered by Ajtal aso opens up possibilities regarding prov-
ably secure public-key cryptography based on only worst-
case intractability assumptions. It is well known that the
existence of secure public-key cryptosystems presupposes
P # NP. However the converse is far from being proven
true.! The intractability required by cryptography is more
concerned with average-case complexity rather than worst-
case complexity. Even if we assume that some problemin
NPisnot solvablein P or BPP, this <till leaves open the pos-
sibility that the problem might be rather easy onthe average.

Consider the security of RSA and theintractability of fac-
toring. First, we do not know if factoring is not solvable in
P or BPP. We do not know if thisis so assuming P # NP. We
do not even know whether it isNP-hard. Second, evenif we
assumeit is NP-hard or not solvablein P or BPP, we do not
know it is as hard for the special case of factoring a prod-
uct of two largeprimesp - ¢. Third, even if factoringp - g is
hard in theworst case, we do not know if it ishard on the av-
erage, under some reasonable distribution on such numbers.
Fourth, we do not know if decrypting RSA without the pri-
vate key is equivalent to finding o(pq) = (p — 1)(q — 1),
(although given n = p - ¢, finding ¢(pq) is equivalent to
factoring). Thus although RSA is believed to be an excel-
lent public-key cryptosystem, there is a large gap between
the assumption that factoring is hard in the worst-case (say
itisnot in BPP) and a proof that the system is secure.

Building on Ajtai’s worst-case to average-case connec-
tion, Ajtai and Dwork [3] proposed a public-key cryptosys-
tem that is provably secure, assuming only the worst case
intractability of a certain version of SV P, namely to find the
shortest lattice vector in a lattice with n¢-unique shortest
vector, for a sufficiently large c. Thisis the first time that
such a provable security guarantee based on the worst-case
complexity alone has been established.

In Section 2 we collect somedefinitions. After that, | will

1| do not want to say “the converse is false”, since it is probably true
for the reason that both P £NP and there exist secure public-key cryptosys-
tems. But it isbelieved that it isinsufficient to assume only P ANPin order
to prove pseudorandom number generators exist.
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first discuss what is algorithmically computable efficiently
for some lattice problems (Section 3), then | will discuss
Ajtai’ sworst-case/average-case connection (Section 4), NP-
hardness results (Section 5), evidence of non-NP-hardness
(Section 6), transference theorems relating primal and dual
lattices (Section 7), and the Ajati-Dwork cryptosystem (Sec-
tion 8).

The selection of the topicsis highly subjective and it re-
flects my limited knowledge and personal taste. They are
also restrained by the space limitation. | am sure many im-
portant works have been neglected or not given its proper
due. | apologize for any such omissions or mistakes.

2 Preéliminaries

A lattice is a discrete additive subgroup in some R"™. Dis-
creteness means that every lattice point is an isolated point
inthetopology of R™. An alternativedefinitionisthat alat-
tice consists of al the integral linear combinations of a set
of linearly independent vectors,

L= {Znibi | n; € Z, for all ’l},

wherethevectorsb;’sarelinearly independent over R. Such
aset of generating vectorsare called abasis. Thedimension
of thelinear span, or equivalently the number of b;’sinaba
sisisthe rank (or dimension) of the lattice, and is denoted
by dim L. We may without loss of generality assume that
dim L = n, for otherwise we can replace R™ by its linear
span. We denote L as L(by, b, . . . , by,).

Thebasisof alatticeisnot unique. Any two basesarere-
lated to each other by an integral matrix of determinant +1.
Such amatrix is called a unimodular matrix. Clearly anin-
tegral matrix hasan integral inverseiff it isunimodular, fol-
lowing Cramer’srule.

The parallelepiped
P(bl,... ,bn) = {inbi | 0<x; < 1}

is called the fundamental domain of the lattice.

Since basis transformation is unimodular, the determi-
nant | det (b1, ... , b,)| which is the volume of the funda-
mental domain P(by, ... ,by,) isindependent of the basis,
and is denoted by det(L).

We use Isp to denote linear span over R. Given abasis
{bl, bg, . ;bn} of L, |etHz = ISp{bl, . 7bi} bethelinear
Span of {bl, . ,bi}, and L; = L(bl, - ,bi) be the sub-
|attice generated by {b1, ... ,b;}. We denote by TT;- the or-
thogonal complement of I1;. The process of Gram-Schmidt
orthogonalizationobtainsfromabasis{by, b, . .. , b, } aset

of orthogonal vectors {51,52, ... ,Zn}, where EZ- is the or-
thogonal component of b; perpendicular to IT;_; :

R STy
j<i \Y5»Yg

where (-, -) denotesinner product.

The fundamental domain as well as the orthogonal
“brick” P(by,...,by) = [0,b1) X --- x [0,by,) form ates-
sellation of R™ by translation. We can also tessellate R™ by

thecentralized“brick’ B = [—&, &) x. .. x [zt biot).
R"=|J(¢+B).
LeL

We note that the volume vol D = vol B = det L.

The length of the shortest non-zero vector of L is de-
notedby A; (L). Ingeneral, Minkowski’ssuccessive minima
;i (L) aredefined asfollows: for1 <4 < dim L,

Ai(l) = min - max ||,
where the sequence of vectors vy, ... ,v; € L rangesover
all 7 linearly independent lattice vectors. It isnot difficult to
show that to get v; € L with ||v;|| = A4, one can always
take greedily any linearly independent vy, ... ,v,-1 € L,
with ||’U1|| = /\1, . ,”1}1'_1” = /\i—l-

We denote by bl(L) the basis length of L

bl(L) = min max |bg|-
al basess,,...,b, for L =1

The dual lattice L* of alattice L of dimensionn in R™
is defined as those vectors u € R™, such that {u,v) € Z,
foradl v € L. For abasis {b1,bs,...,b,} of L, its dua
basisis {b7,b3,...,b}}, where (b7, b;) = d;;. Then L* =
L(bj,b5,...,b%). Inparticular det(L*) = 1/ det(L), and
L** = L. For alattice with dimension less than n, its dua
is defined within its own linear span.

Welet kL = {kv | v € L} bethedilatation of L for any
positivek € R. Letz + A = {z +y | y € A} for any
zeR"andACR" LetA+B={a+b|la€cAbe
B}. Wedenoteby |z | thegreatestinteger < z, [z] theleast
integer > z, [z] = —|—=z], and [z] the closest integer to
z, [z] = |z + 1]

3 From Gaussto L ovasz

Before we discuss intractability results on lattice problems,
let usfirst take alook at what is agorithmically feasible. In
thissection we giveabrief account of the motivationsfor the



study of lattice problems, some ramifications, and the main
ideas of the basis reduction algorithm of Lovasz.

We should start with Gauss. The original motivation for
the study of 2-dimensional lattices came from the theory of
quadratic forms in number theory, which culminated in the
Theory of Genus and Composition by Gauss (see e.g., [28,
22, 21]).

Gauss gave an agorithm which completely solved the
classification problem of 2-dimensiona lattices. The ago-
rithm can be viewed as a 2-dimensional generalization of
a version of the Euclidean agorithm, the Centralized Eu-
clidean Algorithm (CEA). In this CEA, given two integers
n and m, suppose 0 < |m| < |n|, we dividen by m with
aquotient ¢ and aremainder r, such that |r| < %|m|. Thus
n = gm+r andr isassmall aspossible. If r # 0 we repeat
with the substitution n < m, m < r, until the remainder is
zero.

Given a2-dimensional lattice generated by v and v. Sup-
pose ||v|| < ||u||. Gauss agorithm “dides’ u against v,
i.e., it finds an integral multiple qv so that w' = u — qu
is as short as possible. Clearly this is the case precisely
when the orthogonal projection of «’ onto v is as small as
possible in absolute value, and it can always be made <
{|v||. Thisis quite obvious geometrically. Numerically,
qg = RIIZH 7o) Will do. In a possible tie when (u —
qu, = 3llvll, and {u — (¢ + 1), ||UH> = —3llvll, we
Break the tie arbitrarily. Gauss algorithm terminates if
[lw'|| > ||v]|. Otherwise, we switch therole of u and v with
the substitution v + v and v « «’ and continue.

It is not difficult to show that, like CEA, Gauss algo-
rithm terminates in polynomial time. In fact the number
of iterations is at most linear in the number of bits in the
length of « and v. Moreover the precise constant in the lin-
ear rate has been determined. A worst-case bound of both
log, /5 M aregiven by Dupré[25] and Vallée[61], where
M = max{]|ull, |[v]}-

While the Euclidean a gorithm can be viewed as an algo-
rithm for the one-dimensional lattices (generated by the two
integers n and m), Gauss algorithm finds a reduced basis
for any 2-dimensional lattice, which is essentially unique.
Supposethealgorithm terminateswith the vectorsug and vg,
with [|vg|| < ||uol|. If vo is scaled to unity 1 and ug to the
upper half plane (in terms of the complex plane C, we apply
z — z/vg Or (z/vo), asadilatation and rotation with possi-
bly areflection), then «, ismapped to apoint inthe so-called
fundamental region R of the upper half planeasin Figure 1.
Thus up to a scaling factor the fundamental region R (with
asuitableidentification of its boundary points) isin 1-1 cor-
respondencewith the space of all 2-dimensional lattices. Of
course the upper half plane with the tessellation in Figure 2,
induced by the action of the unimodular group SLy(Z) is

endowed with a hyperbolic metric. This then can be used
to introduce a metric on the space of 2-dimensional lattices.
The actions of SL2(Z) and its subgroups in the upper half
planeisthe starting point of arich interplay between hyper-
bolic geometry, elliptic curves and modular forms [5, 42].
We will, however, leave the world of 2-dimensional lattices
for higher dimensions.

The reduction theory of 2-dimensional lattices extends
to 3-dimensional lattices without much difficulty. Perhaps
the first indication that something non-trivial happens in
higher dimensions came with a discovery by Korkin and
Zolotarev [43] on shortest vectors. Originally their result is
concerned with quadratic forms; we will instead present an
examplein the same spirit directly in terms of lattices.

Consider the lattice L generated by e; together with h =
(3,%,...,3), where, 1 < ¢ < n, ande; hasasin-
gle 1 in the 4th coordinate and O elsewhere. We note that
{h,es,... e} isabasisfor L, fore; = 2h — 3, €.
Meanwhile, {e1,e2,...,e,} is not a basis for L, for h
does not belong to Z™ which is the sublattice generated by
{e1,€a,...,ex}. M(L) = ... = A,(L) = 1, since they
are achieved by {ey,... ,e,}. For n > 4, then, the short-
est n linearly independent lattice vectors do not form a ba-

sis, which is rather unintuitive. The shortest basis length
bl(L) = y/n/2.

Let L be an n-dimensional lattice in R™ with basis
{b1,ba,...,b,}. Since the trandations of the fundamen-
tal domain D = P(by,be,...,b,) form atiling of R™,
the volume vol(D) = det(L) provides a certain measure
of the size of L. Minkowski’s First Theorem makes an ex-
plicit connection of the shortest lattice vector and this quan-
tity [54, 21, 36]:

Theorem 3.1 (Minkowski)
)\1 (L) S 'Yn(det(L))l/n7
where ~,, is some universal constant.

Thesmallest such constant for dimensionn isdenoted by .,
and called Hermite's constant of rank n. Minkowski proved

that v, < -=T'(2 + 1)/, which is asymptotically

v
Itisknownthat /5% < v, < /4. Theupshot s, for a
lattice with det(L ) = 1 (after a suitable scaling), thereis

always a non-zero short vector of length no morethan /n.

Minkowski's First Theorem has a short and elegant
proof: Consider the lattice L' = 2L, which is a dilatation
of L by afactor of 2inal directions. det(L') = 2™ det(L).
Consider aball of radiusr centered at every lattice point of
L'. Let w,, denotethe volume of aunit ball B,,, then w,r"
isthe volume of abal B,,(r) of radiusr. Now if w,r™ >
det(L'), there must be some overlap among two different



balls, thus 3¢ # ¢' both € L, suchthat 2¢ + z = 2¢' + y for
somez,y € B, (r). Thenl — ¢ = (y — x)/2 € By,(r) by
convexity. And £ — ¢’ is our non-zero lattice point of L. It
isknown that w,, = 7/2/T(2 + 1). It follows that

A(L) < —F(2 +1)Y™(det(L)"" = ©(V/n)(det(L))"/".

7

Theorem 3.1 follows.

A more general theorem, also due to Minkowski, is con-
cerned with successive minima:

Theorem 3.2 (Minkowski)
n 1/n
(H )\i(L)> < ©(vn)(det(L))!/™.
i=1

While Minkowski’s theorem guarantees the existence of
vectors as short as y/n det(L)'/™, there is no polynomial-
time algorithm to find such a vector. Minkowski’s proof is
decidedly non-constructive. The Shortest Vector Problem
(SVP) is the following: Given a basis of L, find a vector
v € L suchthat ||v|| = A1 (L). One can aso define vari-
ous approximate short vector problems, seeking a non-zero
v € L with ||v|| bounded by some approximation factor,
l[oll < F(n)As(L) or [[v]] < f(n)(det(L))"/™.

The celebrated Lovasz basis reduction algorithm is one
such algorithm that finds some approximate short vector for
any lattice in dimension . This algorithm has proven to
be widely applicable, so that it forms a benchmark against
which claims of intractability has to be measured.

Theorem 3.3 (Lovasz) Given any basis {b;,... ,b,} of a
lattice, Lovasz's basis reduction algorithmfindsa new basis

{b},...,b,}, suchthat

() ||4]] < 2"7 A (L);

(ii) ||b4]| < 27 3/det(L);

(iii) [[B1]] - - - [ ]] < 23 G) det(L).

We will sketch this algorithm. Given abasis {b1,... ,b,},
we consider the “brick tiling” of R™ induced by the Gram-
Schmidt orthogonalization {b1,... ,b,}. Recal that b; =

b, by = by — %E, et.c. We may “dide” by against

by = by, e, replaceb2 by bs — qb; so0 that we can as-

sume that |<b2”’1 | < L. Ingenera we want to “dide’ b

against bl,.. . ,bzfl, sothat@z- = b, — Zk<i l'l/ik/b\ka with
al |px| < 1/2,fordl k < i. Suppose we have taken
careof all by,bs, ... ,b;_1. Consider the orthogonal projec-
tion of b; to the linear span IT;_; of by,... ,b;—1. We can

“dide” b; against b;_1, . .. , by, inthat order, so that the pro-
jection of b, lies in the orthogonal box [—&, %] x .- x

272
[_”1 1 b “=+]. Thefollowing steps are natural. We can re-

placéb- by b; — [pi,i—1]bi—1, which can be expressed as
b; — [ui,i_1J3i_1 + D hciot ngk- We then repeat this for
Mii—2,-- -, b1, inthat order. Notethat for k£ < 7,“diding”
against by, later will not change any previous ; ; which has
aready been made to have absolutevalueat most 1/2. Thus
wefinally havemadeall |u ;| < 1/2,fork < i. Suchabasis
iscalled weakly reduced, and can be achievedin polynomial
time.

Geometrically these steps are rather obvious and unre-
markable. What makes Lovasz's algorithm remarkable is
the following requirement which is best visualized in afaux
3-dimensional picture as in Figure 3. Suppose we have
a weskly reduced basis {b1, ... ,b,}. Consider the linear
span I1,_; of {b1,...,b;i—1}. Let m;_1 be the orthogonal
projectiontoIT;_4. Letv(i) = v — m;_1 (v) be the orthogo-
nal component of v perpendicular toII;_; . A basis satisfies
the following condition is called L ovéasz reduced

. 2 . .
b)) < ZZllbia ()], forall 1 < <n.

Some explanations are in order. Note that for 4, everything
happensinIl;;1 = lsp{b1,... ,b;+1}, whichisasothelin-
ear span of I,y and {b;(3), by (i)} INlsp{bi(s), biss (5)}
there is a 2-dimensional lattice L(b;(7), b;+1(4)), which is
the orthogonal projection of L(by, ... ,b;1) aong T} ,

Thusiit is natural to perform Gauss 2-dimensional lattice
basis reduction on L(b;(7), b;+1(7)). Note that the Gaus-
sian stepson b;(4) and b; 1 (i) can be easily lifted to be per-
formed on the pair b; and b; ;1.

Since our basis is already weakly reduced, it is easy to
see that the only Gaussian step that is possibly applicable
is to swap b; (i) and bi1(2), if [[biy1 (1)|| < [|bi(4)]]. This
should ideally be performed, had it not been for the desire
that this procedure be guaranteed to terminate quickly. Thus
for efficiency considerationswe swap b; and b; 1 only when
bis1(8)]] < 2||bi(3)]|. Thus, we can show that when
a swap takes place, a significant gain is realized. We note
that after the swap, b;11 () is the new b;(4), and the previ-
ousb; (i) isthenew b; 1 (), and henceit satisfiesthe Lovasz
condition at ¢. (The constant = isjust for convenience; it
can be replaced by any other consxant between 1 and 1.5.)

The L ovasz basisreduction algorithm then consists of the
following steps being alternated. Step (1): Achieve weakly

reducedness. Step (I1): If thereisany 4 violating Lovasz's
condition then swap b; and b; 1.

The proof of convergence relies on the potential func-

tion D = D(by,...,by) = [Ti, |[B:]|"~. Note that
det(L) = [Ty |[bsl], det(L (b1, ... ,b:)) = TTiey l[Bxll,



and D - det(L) = [T7, (I}, I[b])). Since Step (1) pre-
serves each det(L(by, ... ,b;)), D isinvariant under Step
(). What happens to D under Step (1) swapping b; and
bi+1? Clearly II,_; is unaffected, 9031,... ,E-_l are the
same. Since everything happensin Hi+1,@+2, e ,Zn are
asothesame. Let a = b;(¢) and b = b, 1 (7). Let theangle
between a and b be §. Then the current E- = a and the cur-
rent ||bi+1|| = ||b|| sin 8. After the swap the updated b; = b
and |[bi11 ]| = ||al| sin 6. Hence Dyew /Dowa = |[b]|/[lal| <
V3/2. Clearly theinitid D < (max ||bi]])(2), and for any
integral lattice det(L(by, ... ,b;)) > 1, thus D isalwaysat
least one. It follows that Lovasz's algorithm terminates in
polynomial time. (A dlight extension of the argument han-
dles the rational case. For more details on this and the is-
sue of bit size, see [47].) Once the algorithm terminates, we
have

[[bl* = lI: ()]

IA

4 .
§||bz'+1(l)||2
41 ~ . ~
= 3 [l + il 1Bl
4 ~ 1~
< 5lBial I+ 5Bl

It follows that |[b;11]|> > %|[B:]|>. By induction |[;||*> >
|2 = gl

Leeany v = > .mb; € L. Supposev # 0. Then
notal n; = 0, and let j be the maximum such . Then
v =7)c;mibi = b + 37, &b, and by orthogonality
]| > |n;]|[B;]| > |b;]| Since n; isintegral. In particular
A1(L) > ming |[b;]]. It followsthat (i) ||b1]| < 2"% Ay (L).
Similarly [[by |27 < 27— [T, [B]|? = 2(3) (det(L))2.
Thus (ii) follows. (iii) also follows similarly.

Thebound2"Z" can beimprovedto (1+¢)™ for any fixed
€ > 0, within polynomial time. (The polynomial of course
dependson e€.) Thisis dueto Schnorr [58] and is accom-
plished by a k-dimensional variant of Lovasz's reduction,
for some large constant k.

The main application of Lovasz'sagorithmoriginaly in
[47] was a solution to a centuries old problem: How to fac-
tor a polynomial into irreducible polynomials over the ra-
tionals Q. The LLL algorithm has had atremendousimpact
in the field. Another celebrated result is Lenstra's polyno-
mial time algorithm [48] for integer programming for fixed
dimensions.

Babai [ 7] used Lovasz'salgorithmto find an approximate
closest vector: Given L and avector y € R™, one can find
in polynomial time avector b € L such that

3\" .
Iy =0l < () minly = ol
Hastad [37] also proved an interesting related result.

The basis reduction algorithm has been one of the most
important algorithms. It has been used successfully in a
variety of context, including the attack on knapsack based
cryptosystems by Lagarias and Odlyzko [46], algebraic
computations [40], the disproof of Merten’s conjecture by
Odlyzko and te Riele [56]. Other important results can be
found in [41, 50]. In practice, Lovasz's algorithm and its
variants have performed rather well for moderate dimen-
sions (up to 100), and much better than the theoretical upper
bound (see [59]). Thus, any claim of intractability should
bear in mind this computational experience.

4 Ajtai’s worst-case to average-case
connection

Let n, m and g be arbitrary integers. Let Z7*™ denote the
set of n x m matrices over Z,, and let Q,, ., , denote the
uniform distribution on Z7*™. For any X € Zg*™, the
st A(X) = {y € Z™ | Xy = 0 mod g} (where the con-
gruence is component-wise) defines a lattice of dimension
m. Let A = A, , 4 denote the probability space of lattices
consisting of A(X') by choosing X according to Q,, , 4.

We note that indeed A(X) is alattice of dimension m,
since it is clearly a discrete additive subgroup of Z™, and
each ge; € A(X), wheree; hasasingle 1 at the ith posi-
tion and O elsewhere. It also follows that A(X) repeats it-
self withineach g x ¢ x - - - x ¢ box. In other words, A(X)
isinvariant under the trandationsy — y + ge;, for each
1 <1< m.

By Minkowski’s First Theorem, it can be shown that

Ve3d st.VA(X) € Ay crnne Fv (v € A(X) and 0 < ||v]| < n).

In fact the bound n can be reduced to n2+<. The bound
||lv|l < n isneeded to ensure that the assumption on the hy-
pothetical algorithm .4 below is non-vacuous.

Theorem 4.1 (Ajtai) Supposethereisa probabilistic poly-
nomial time algorithm .4 such that for all n, when given a
randomlattice A(X) € A, Wherem = anlogn and
q = nP for appropriate constants o, 3, returns with proba-
bility 7, avector of A(X) of length < n, thenthereexists
a probabilistic polynomial timealgorithm B such that for all
n, when given abasis {a1, ... ,a,} for an arbitrary lattice
L = L(ay,--. ,ay), performsthe following with high prob-
ability:

1) Findsabasis{b1,... ,b,} for L such that

max||b;]| < n°* - bI(L),



2) Findsan estimate \ of \; (L) such that,
A1 (L)

nec2

<A< AL,

3) Findsthe uniqueshortest vector +v of L, if L hasann 3
unique shortest vector, i.e. Az(L) > n - A1 (L),

where ¢y, ¢o, c3 are absolute constants.

Remark: This is the first such worst-case to average-case
connection proved for a problem in NP believed not in
P. While random-self-reducibilities were known for other
problems, such as Quadratic Residuosity (QR), there is a
technical difference. In QR, one must fix a modulus, then
there is a worst-case to average-case connection for this
modulus. But no such reduction is known among different
moduli. The permanent is another example wherethereisa
certain worst-case to average-case connection (see [29, 27,
20, 35]), but the permanent is not believed to bein NP,

Items?2) and 3) arederived fromitem 1) viaatransference
type argument, about which we will say more later in Sec-
tion 7. Here we will focus on the ideas in the proof of item
1). Without loss of generality, we can assume that the lat-
tice consists of integral vectors. The same result also holds
for latticeswith rational entriesor with entriesfromany sub-
field of C, aslong asthere is an effective bit representation
for the lattice.

AsAjta related to me, aguiding philosophical ideaisthe
perspectivethat when you look from sufficiently afar, all lat-
ticestend to look more alike.

We will now present some ideas from the proof.

Suppose we currently have a basis {b1, ... ,b,}, where
max}, ||b;|| isgreater thanbl(L) by alarge polynomial fac-
torn®,i.e

1 =lef max [|bif| > n®bI(L).

The main procedure of B isiterative. Let S be a set of
n independent vectors of L (initidly S = {by,...,b,}).
If the length of the elements of S at the start of the current
iteration is large enough, the algorithm finds a set of inde-
pendent vectors, each of at most half the length, with high
probability. This means, in a polynomia number of steps
we will have a set of short enough vectors, which can then
be converted to a short basiswith aloss of afactor < /n.

The fundamental domain D = P(by,...
tiling of R™ viatransdations under L,

,bp) forms a

R" =]+ D),

leL

asadigoint union.

Consider alarge cube

n
Q:{xeR”|$:inei,0§xi<M},

i=1

where M is a certain polynomial factor greater than u, say,
M = n"u. For each ¢, we can “round” the corner point
Me; to alattice point according to which trandate I; + D
it belongsto. Thisonly involves solving alinear system ex-
pressing Me; as arational linear combination of the basis
{b1,...,by} and then rounding the coordinates. Thus for
eachi=1,... ,n,let

n

Me; = iaijbj and [; = ZLaiijj.
7j=1

j=1

Now

Q'={x€R”|x=Zmili,0§xi<1},

=1

is a reasonably good approximation of @; we will cal it a
pseudocube. Notethat the corner verticesof Q' areall lattice
points. To ensure that Q' looks reasonably close to a cube,
Ajtai chosey = 3.

In the next step we subdivide @)’ into afamily of digoint
sub-pseudocubes, by subdividing Q' along each direction I;
into ¢ subintervals, where g is polynomially bounded in n.

o= (Z %zi +Q”> ,

0<ky,e. kn<q \i=1

where the basic sub-pseudocube

" 1
Q”Z{l‘ERn|LE=Z$ili;OS$i < E}

i=1

We will make sure that the length of aside of Q”, whichis
roughly £, is still larger than bl () by asignificant polyno-
mial factor.

Suppose thisisthe case. Then with a series of technical
lemmas, Ajtai showsthat the number of lattice pointswithin
each trandate Q" + Y7, %:1; isroughly the same. Thisis
intuitively quite plausible. But the technical details are not
straightforward, especially if one wants a reasonably good
bound. (See below.)

Once this approximate equi-distribution of lattice points
is established, one can samplethe “addresses’ (k1, ... , kx)
of sub-pseudocubes, by uniformly sampling a lattice point
in @'. Once alattice point v is picked, we decide to which
sub-pseudocubeit belongs by expressing v as alinear com-
bination "7 , %li, where0 < z; < ¢, by solving alinear
system. Then, we round off z; and set k; = |z;].



Moregenerally, supposewe get m suchsamples, v; € L,
1 < 7 < m. We decomposewv; asfollows, (See Figure 4)

n

k..
v; = Z ili +rj,
=1 q
wherer; isavector in Q”. Notethat ||r;||, is O(¥2M).

Here is the key observation: Suppose we are able to ob-
tain anintegral solution X = (&;,...,&,) to

Zki_jg]’ = 0 mod q,

Jj=1

then Z;”:l &;v; would be alattice point which has an inter-
esting decomposition,

m n m_ k'i' . m
DD <M> L+ &ry. (1)
j=1 i=1 q j=1
We note that the quantity iz ks is actualy an integer,
which makes the first term in (1) a lattice vector. Hence
>ty &, being the difference of two lattice points, must
be alattice point itself, (even though each r; is probably not
alattice point.)

Suppose theintegral solution X hasevery |¢;| < n, then

1S 6l < men- o)
=t 1
RNCECI

Now ¢ can be chosen ©(n°) so that || 72, &4l < %,
which is at most half of every ||b;]|.

With the choice of v = 3, Ajtai showed that the shape
of the pseudocube and thus that of the sub-pseudocubesis
very close to a perfect cube. With achoice of ¢ = ©(nf),
and a corresponding m = O(nlogn), Minkowski’s The-
orem applies. Hence the assumption on A is non-vacuous
and the newly produced | attice vector Z;.":l &;r; haslength
< 4. On the other hand, the length of a side of a sub-
pseudocubeisapproximately % whichisbounded below by

222BI(L) = O(n ~? bi(L)).

With the shape of the pseudocube approximately a per-
fect cube, and with asufficiently large ¢y, which makeseach
side of the sub-pseudocube sufficiently larger than bl(L),
Ajtai showed that the distribution induced on the address
space {(k1,...,kn) | 0 < k; < ¢} by uniformly sampling
lattice points from L is close to uniform. In fact, not only
must the distribution of each sample (k1, ... ,k,) be close
to uniform, but also the joint distribution on all the m sam-
ples forming the matrix (k;;) must be close to the uniform

distribution €, ,,, 4. Only then can one legitimately invoke
the assumed algorithm A and be guaranteed to obtain ashort
vector X with 377 | k;;¢; = 0 mod ¢, and || X || < n, with
nontrivial probability.

So far we have only produced one lattice vector b} =
doiey &g, which is shorter than 4 = max ||b;]| by a
factor of 2. We continue this process to produce n lin-
early independent lattice vectors {b},...,b.,} to replace
{b1,...,b,}. To show that these successive b are lin-
early independent demands another set of technical lem-
mas which ultimately depend on the fact that ¢y is suffi-
ciently large. In that case, Ajtai showed that within each
sub-pseudocubethe latticeis quitedense. It followsthat, for
every n — 1 dimensiona hyperplane IT, the number of lat-
ticepointsonIIN Q" is much smaller compared to the total
number of lattice pointsin Q”. Moreover, thisistruefor ev-
ery trandateof Q. Itfollowsthat the successived;’'sarenot
likely to be linearly dependent on {b}, ... ,b,_;}. We will
not provide any moretechnical details of Ajtai’s proof. The
interested reader isreferred to [1].

Improving Ajtai’s connection factors

What isoutlined aboveisessentially Ajtai’sproof [1], where
some universal constants ey, ¢c; and ¢z are shown. Although
no explicit values for these ¢;’s were given, and apparently
no special effort was made to minimize them, implicitly a
factor less than 8, 10 and 19, respectively, can be derived
from the proofs of [1].

Thefactorsn arecalled Ajtai’s connection factors; they
provide a measure of the tightness of the worst-case to
average-case connection. The smaller the constants are, the
tighter the connection one gets. As 2) and 3) are derived
through 1) (see Section 7), n“* isthe crucia factor. Cai and
Nerurkar [18] obtained a substantial improvement to n°t,
and conseguently to the other factors as well. Here we give
an overview of some of the ideas involved in thisimprove-
ment. Asisthe case with Ajtai’s proof [1], there are anum-
ber of technical points we have to gloss over dueto limited
space.

The general structure of the procedure of Cai and
Nerurkar [18] closely follows Ajtai’s proof, but much of the
technica judtification is different. As we saw above, the
general ideais to sample lattice points, in order to induce
an amost uniform distribution on a set of “address’ vec-
tors, which form the columnsof amatrix that is closeto uni-
formly distributed. The assumed algorithm 4 is applied to
this matrix. By hypothesis, this algorithm performswell on
the average, and thus we get a short vector which can be
turned into a short vector of the original lattice.

In the choice of M = n7u, we need ~ to be a suffi-



ciently large constant in order to ensure that the resulting
pseudocube is reasonably close to a perfect cube. We call
this the shape condition. Then, we need to choose an inte-
ger ¢ to be asufficiently large polynomial (in n) in order to
ensure that the newly produced remainder vector is shorter
than the previous||b;||. Thisinvolvesm inthe numerator in
n7T1%m/qin (2), which hasto be chosen after ¢ in order to
ensure that short vectors exist by Minkowski's First Theo-
rem. Fortunately, thisis not circular; for any polynomially
bounded ¢, m only needs to be O(n). But still ¢ must de-
pend on . Finally, given ¢, we must ensure that the length
of aside of asub-pseudocube M /q issufficiently large com-
pared to bl(L). We know that,
Mo
q q q

Thisiswhere u > n°bl(L) isused and ¢; hasto be large.
Cal and Nerurkar [18] achievec; = 3 + € for linearly inde-
pendent vectors, and ¢; = 3.5 + e for basis length.

The algorithmic improvement by Cai and Nerurkar [18]
starts with a tiling of R™ by orthogonal “bricks’ of sides
at most p, via Gram-Schmidt orthogonalization. Thisisin
contrast to thetiling by fundamental domainsin[1]. Thead-
vantage is that one can round off from a perfect cube to a
lattice pseudocube with less error. Thus, for M = nl'u
and w; = Me;, we can round off w; to alattice point /;
such that w; = I; + & and ||6;]] < YZ£. Thisimplies
L]l < ('S + ¥y u. P(ly,... ,1,) is the pseudocube
constructed.

Secondly, in[18], the pseudocubeis positioned centrally
and subdivided. Each sub-pseudocubewill have an address
vector at the center. More precisely we will take Q' =
P(2l1,... ;2ln) — Z?:l l;, = {E:-;l 2il; | -1< 2z <
1}. We partition Q' into ¢ sub-pseudo-cubes, (where ¢
is odd, say), such that the basic sub-pseudocubeis Q' =
{2l | — % <z < %}. We will samplelattice points
uniformly in the pseudocube @Q’. This induces an almost
uniform distribution on the address space. But thistime we
consider each address as corresponding to the center of the
sub-pseudocube. When we express a sampl e lattice point v ;
asthe sum of this address vector and a remainder vector r;,
theseremainder vectorstend to be symmetrically distributed
with respect to the address vector at the center. (See Figure
5) Here an address vector is of theform )~ ; %li, where
each k;; iseven, —(¢—1) < k;; < ¢—1. Thecorresponding
“address’ is (kq;, k2, ... , kn;) reduced modulo g. Thus,
whenweestimate || 372, &;r;| probabilistically, the inde-
pendent r;’s tend to cancel out instead of adding up. Note
that X = (&,...,&n) isa(short) solution obtained by
the algorithm A given only the address matrix (k;;). Given
suchamatrix onemust ensurethat ther ; arealmost indepen-
dently and centrally symmetrically distributed. Thisis geo-

metrically quite intuitive, given a sufficiently large ratio of
the sides of the sub-pseudocubeto bl(L). But the hard part
isto minimizethisnotion of “sufficiently large”. It turnsout
that ¢ = n3t¢ and u > n3+<bl(L) will do. The technical
part of the proof is rather involved.

There is one more idea in [18] in the improvementsin
terms of the algorithmic steps. It turns out to be insuffi-
cient to guarantee the generation of one ailmost uniform ad-
dress vector, which makes up one column of the matrix. We
must be able to generate m columnsto form an almost uni-
formly generated matrix. Thismorestringent requirementis
needed to apply the algorithm A. In[18] we used an ideato
amplify the“randomness’ in each column vector generated,
by adding together [2/¢€] copies of independent samples

i%li +r,

v =
=1
/ ) !
vo= —l; + 1, etc.
;qz :

This gives alattice point
n
k. + Kk +-.-.
U+UI+._.:ZMZH(THIJF...)‘
=1 q
Starting from the column vector (ki,ks,... ,k,) being
n~¢-close to uniform, we show that the address vector

(kv +ky+- kot ky+---,...,kn+k,+---) modgq

isn~2-closeto uniform, which would be sufficient to ensure
that the matrix is close to being uniform. The price we pay
for thisisthat each remainder vector is enlarged by afactor
at most [2/€].

Themoredifficult part of the proof isto show that the | at-
ticesamplesdoinduceadistributionthat isn ~¢-closeto uni-
form on the address space. In addition to our “shape condi-
tion”, which is accomplished by v = 1.5, we need to esti-
mate the volume of each sub-pseudocube to ensure that the
number of lattice points within each sub-pseudocubeis al-
most identical. Moreover, in order to obtain independent
lattice vectors, we need to ensure that the proportion of |at-
tice pointsin a sub-pseudocubethat lie on any (co-1 dimen-
sional) hyperplaneis negligible.

The boundsin [18] use eigenvalues and singular values,
and atheorem of K. Ball [8]. We cannot go into much detail
here, but the following lemmas give aflavor of it.

Lemma4.l Let eq,...,e, be the standard unit vectors.
Let ug,...,u, be linearly independent vectors such that
||lu; — ei]| < €. Thenthe parallelepiped P (u1, - - - ,u,) has
volume

1—ne < vol(P(u1,-.. ,up)) <(1+€)".



(One cannot improve the lower bound to (1 — €)™ for large
n.)

Lemma4.2 Letey,...,e, and uq, ... ,u, be as above.
Let H be a hyperplane. Then the (n — 1)-dimensional vol-
umeof P(uy,... ,u,) N H isat most v/2e(1 + €)" 1.

5 NP-hardness

Lagarias [44] showed that SVP, under the [ .-norm, is NP-
hard. For the related Closest Vector Problem (CVP), Van
Emde Boas [62] showed it to be NP-hard for all /,-norms,
p > 1. Aroraet a. [6] showed that, under any [,,-norm, CVP
is NP-hard to approximate within any constant factor, and
that if it can be approximated within afactor of glog'/*~n
then NP isin quasi-polynomial time.

It had long been thought that the Shortest Vector Prob-
lem for the natural I>-norm is NP-hard. This was conjec-
tured e.g., by Lovéasz [49]. It remained a major open prob-
lem until, in 1997, Ajtai [2] proved the NP-hardness of the
SV Pfor thisnorm, under randomized reductions. Moreover,
Ajtai showed that to approximatethe shortest vector of ann-

dimensional lattice within afactor of (1 + 2%) (for asuf-
ficiently large constant &) isalso NP-hard under randomized
reductions. Thiswasimprovedto (1 + -1 for any constant
€ > 0 by Ca and Nerurkar [19], and then to any constant

smaller than /2 by Micciancio [52].

Theorem 5.1 It is NP-hard, under randomized polynomial
time reductions, to find a shortest lattice vector, even to ap-
proximate it within a factor of v/2 — ¢, for any e > 0.

In the next subsection we outline Ajtai’s result. The pre-
sentation incorporatesthe simplificationsand improvements
of [19] but the main ideas are due to Ajtai. After that we
present Micciancio’simprovement.

Ajtai’sresult

Ajtai gave arandomized reduction from the following vari-
ant of the subset sum problem to SVP.

The restricted subset sum problem Given integers
ai,...,a;, A, each of bit-length < I3, find a 0-1 solution
tothesystem ! az; = Aand 3 @ = | L].

We first define a lattice which will play a crucia rolein
the proof. Thislattice isamodified version of the one used
by Adleman (unpublished) in hisreduction from factoring to
the SV P, under some unproven assumptions. For thislattice,
we need to choose several parameters depending onthel in
the restricted subset sum instance.

n is chosen to be a sufficiently large polynomial in .

m IS chosen to be a sufficiently large polynomial in n.
m>n> L

b is chosen randomly from the set of productsof n dis-
tinct elementsof {p1,... ,pm}, thefirst m primes.

e w ischosen aconstant root of b.

B ispolynomial inw.

Clearly, B,b and w are exponential in n. We will not be
overly precise here about the values of these parameters
in order not to obscure the main points. Using these pa-
rameters, Ajtai defines the following matrix, whose m + 2
columns generate a lattice.

Viegpr - 0 0 0

0 /ngm 0 0

0 0 0 w2
Blog p1 Blogpm Blogb Blog (1 + %)

Lattice L

This lattice is then normalized. The normalized lattice has
every vector of length at least 1 and alot of vectorsof length
very closeto 1. We will denote by v;, the columns of the ba-
sis matrix for this modified lattice. We will denote this nor-
malized matrix, aswell asthelatticeit generates, by L. With
high probability, thislattice, L = L(v1, ... ,vmy2), hasthe
interesting properties we outline next. These properties are
aconsequenceof theway primesaredistributed and the con-
vexity of the logarithm function.

1. All non-zero vectors have length at least 1.

2. Therearealot of vectors of small norm with the prop-
erty that their first m basis coefficients € {0, —1}.
More precisely, let Y bethesetof dll v € L, v =
S o with Y7 |ay| = n, a; € {0,—1} fori €
{1,...,m}, and ||v||*> < 1 + 4. Then |Y| > 2nlosn,
Here, § isan exponentially small quantity.

3. Any two distinct elements of Y differ in their first m
basis coefficients.

4. If visanon-zerovector of L of squared norm lessthan

14+ —27, thenthefirst m + 1 coefficients of v have

aspecia form. More precisdly, if v = 37 a0,

||(U||2 < 1+m32€/41andam+l 2 O,thena]_,.. Oy S
{0,—1} and Am41 = 1.



This lattice is now extended in the following random
manner depending on the given instance of the restricted
subset sum problem. With high probability, given areason-
ably short vector in this extended lattice, a solution to the
instance can be produced.

Let Zizl a;x; = A be the given instance of the re-
stricted subset sum problem. Let e > 0 be any constant. Let
T=2/m‘and 3 = /7. Let C = C},...,C; bearan-
dom sequence of pairwise digoint subsets of {1,...,m}.
Definean (I + 2) x (m + 2) matrix D as follows. The
(m + 2)"d columnis al zeros. The (m + 1)% column is
(AlB, [£]18,0,...,0)T. Theother entriesof the matrix are
defined in the following manner.

1. Thefirst row has the entry a;13 in the j** position if
j € C;, and otherwise has zero.

2. Thesecond row hastheentry I3 in the 5t positioniif ;
isin some C;, and otherwise has zero.

3. Forifrom3tol + 2, rowi has 3 inthe j** position if
j € C;_5 and otherwise has zero.

IfCy,...,C;areconsecutiveintervalsof {1,... ,m}, then
D isthefollowing matrix,

alB - alB - alB - alB - Al 0
% B - 1B 18 LB 0
g - B - 0 - 0 0 0
0 v 0 o B e B 00

The extended lattice is the lattice L(”) generated by the
columns of the matrix (é) A vector 5 € L(P) can be

written [:,] , Where for some integral column vector o =

2
(a1, yamp2)T v = S au; € Landv' = Da.

Each v uniquely determinesits o and thus uniquely deter-
minesv’.

Ajtai uses aconstructive variant of the following combi-
natorial lemma, due to Sauer, to show that any solution to a
subset sum instance can be produced from the coefficients
of some short vector. A proof of this lemma can be found,
for example, in [4].

Lemmab5.1 (Sauer) Let S beafiniteset and S be a set of
subsets of S. If for somek, S| > S5, (9), then thereis
aX C Swithk elementssuchthat2X = {XNZ | Z € S}.

That is, every subset of X can be realized by intersecting
it with some element of S. A consequence of Ajtai’s con-
structive lemmais that arandom sequence C' = C4,...C)
of subsetsof {1,... ,m}, hasthefollowing property:

10

Vs € {0,1}, Tv = ZT:JEQ ajv; € Y suchthat,
Vi € {1,.. . ,l},si = _EjECi Q.

This property impliesthat if thereis a solution to the re-
stricted subset sum instance then there is a vector in the set
Y that givesriseto it. That is, suppose Y"\_, a;z; = A has
asolutionz; = s;, i.e.

i I
S; € {0, ].}, Zaisi =A and Zsi = I_%J
=1 i=1

Then, Fv € Y, v such that Vi €

{1,...,1},

m—+2
Zj:l Q;Vj,

S; = — E ay.

JjeC;

Sincev € V,0 < |[v]|>? < 1+46. Letz € L) 5

[:}J,] ,wherev' = Daanda = (ay, ... ,ame2)’. Leto!

(W} ,v}y,). Then

l
I1511* = lloll* + [lv']I* < (1 + ) +7lgl <147l (3)

Thefirst inequality holds becausev] = v} = 0, and exactly
|£] of v} fori > 3 are — 3, therest being zero. Thelast in-
equality holds because § is exponentially small. Also, since
v Isanon-zero vector, so is @, which implies

A(LP) < o). €)

We now provethat, assuming asolution to the restricted sub-
set sum instance exists, one such solution can be constructed

from an approximate shortest vector. Let w = [:UU,] be a

(1 + Z) approximate shortest non-zero vector of L(?), i.e.

MEP) < ol < (14 ) W@ @)

We will construct a solution to the subset sum instance,
givenw. Since T = 2/m¢, this shows that it is NP-hard to

approximatethe shortest vector within afactor (1 + —dﬁ) ,

for any constant € > 0, where dim stands for the dimension
of the lattice.

From (3), (4) and (5) we get
ol < (14 ) @+, ®)

and by the choice of 7 and m (m®/* > I), one can show that

12
fol? <1+ —

This matches the bound in property 4 of L. Let w
(Wi, , Wmy2a), W' (wh,... ,w,) and w



ST 05, By property 4, replacing w by —w if neces-
sy, Ym+1 = 1. We now prove that

Yi = — Z Yj
JEC;

is also a solution by showing that, if not, the length of w
would betoo large. Itis easy to seethat since y,,+1 = 1,

l
’LU;_ /BI(A - Zaiyi)a
i=1

I 1
wy = B3] = > ),
i=1
andfor1 < j </,

—By;. (7

r_
Wjqo =

Assumethey; arenot asolution. Then, at least one of the
following three conditions must hold.

1) Y ayi # A or
2 Sioyui # 4] or
3) Fiy: ¢ {0,1}.
If 1) holds, then |w| > 31, which means
[@]|* = [lw]]® + lw'|* > 1+ f%12 =1 + 717,

where ||w|| > 1 holds by property 1 of L. This contradicts
(6). If 2) holds, then |w4| > I, and we get asimilar con-
tradiction again. Finally, it can be shown that if for some,

yi € {0,1} and ), y; = | £], then
d l
2
Zy- > {—J + 2.
j=1 ’ 2
Thismeans, by (7) and property 1 of L,
{
ol = ol + 1w 2 147 (| 3| +2).
Since [|o]|” < (146) +7[%] (see (3)),

@] = ||o)|? > 2r =6 > 7.

Dueto our choice of m asasufficiently large polynomial in
I, we have

Tl = 3l < 1.
m€
Thusby (3), ||7]|? < 2, and s0

0 _ T=
lol* = llal* >  llol*.
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Therefore,
g T\ 52 T (D)2
lall? > (1+ 2) 192 > (14 F) (TP,

which contradicts (5).
This completesthe proof of Ajtai’s result.

Micciancio’s improvement

With the same basic framework, but using the closest vector
problem instead of the restricted subset sum problem, Mic-
ciancio [52] got an improved hardness result for the SVP.
He showed that it is NP-hard, under randomized reductions,
to approximate the SV P to within any constant smaller than
V2, using thefact that it is NP-hard to approximatethe CVP
to within any constant. (Infact, it is even NP-hard to do so
to within a factor 21°6'~“" for ane = o(1) [23], but this
does not seem to lead to any improvement in his proof.)

To describe this result, it is convenient to formalize the
approximation problemsas promise problems[26]. Thefol-
lowing defines the problem to approximate the closest vec-
tor within afactor ¢ > 1.

CVP Promise Problem

Givenaninstance (B, y, d), where B € Z"** isa
basismatrix,y € Z™ isatargetvector,andd € R,
with the promise that either || Bz — y|| < d for
somez € ZF, or | Bz — y|| > cd foral z € ZF,
decide which is the case.

Arora et.al.[6] showed that for all constants ¢ > 1, this
promise problem isNP-hard. From the proof in [6] one gets
that even the following modified version of the above prob-
lemis NP-hard for all constantsc¢ > 1.

M odified CVP Promise Problem

Given an instance (B, y,d), where B € Z™*k,
y € Z™, and d € R, with the promise that either
|Bx — y|| < dforsomez € {0,1}*, or | Bz —
ay|| > cdforal z € ZF andforal a € Z \ {0},
decide which is the case.

We will call instances that satisfy the first alternative, YES
instances, and those that satisfy the second one, NO in-
stances. Note that, in the modified problem, aY ES instance
has a 0-1 solution and a NO instance has no solution even
for arbitrary integral = and arbitrary (non-zero) multiples of
the target vector.

Here is the definition of the corresponding SVP promise
problem. It formalizes the problem of approximating the
SVP within afactor ¢'.



SVP Promise Problem

Given an instance (V, t), where V' is a basis ma-
trix, and ¢ € R, with the promise that either
|[Vw|| < t for some non-zero integral w, or
[Vw| > 't for dl non-zero integral w, decide
whichisthe case.

We define Y ES and NO instances in asimilar manner.

Micciancio gave a randomized many-one reduction that
reducesthe modified CVP promise problemwith ¢ = /2/e
to the SVP promise problem with ¢/ = /2/(1 + 2¢), for
any constant ¢ > 0, mapping YES instances to YES in-
stances and NO instances to NO instances. This shows
that the SVPis NP-hard to approximate within any constant
smaller than /2.

Theheart of hisproof isatechnical lemmathat assertsthe
existence of aprobabilistic algorithmthat oninput 1%, where
k is from the CVP promise problem instance, constructs a
lattice L € R(™+DX™ amatrix C € ZF*™, andans €
R™*!, such that with high probability,

e For every non-zeroz € Z™, || Lz||* > 2, and

e Foralz € {0,1}%,32 € Z™, suchthat Cz = x and
ILz —s]|> < 1+e.

Here, m depends polynomially on &.

Thelattice L aboveis essentially the same as Ajtai’s lat-
tice L 4 and C' can bethought of asrepresenting the 0-1 vec-
tor z by z. The existence of such aC and the fact that such
a C can be randomly constructed depends on a version of
Sauer’'s Lemma.

Let (B,y,d) be a given instance to the CVP promise
problem with ¢ 2/e. The reduction maps it to the
instance (V,t) of the SVP promise problem with ¢’

V2/(1 + 2¢), where
L

v=(
YeBC

andt = /1 + 2¢. Notethat ¢'t = /2.

Let (B,y,d) beaYESingtance. Thatis, || Bz —y|| < d
for somez € {0,1}*. Then3z € Z™, suchthat ||(BC)z —

y|| < dand||Lz — s||? < 1 + €. Let w bethe vector (i)
Then

+ 5 P =142 =12

IVwl? < 5

(1+e¢)

Let (B,y,d) beaNOinstance. Let w = (z be anon-

zero vector in Z™H  wherez € Z™ anda € Z. If a = 0,

12

then z # 0 and so
IVw| > |2l > V2 = ¢'t.

If o # 0, then
||Vw||>\/—||B(Cz —ay||>—\/7d V2 =ct.

This completes the description of Micciancio’s result.

Other hardnessresults

Dinur, Kindler and Safra[23] have recently improved the
hardness factor for CVP. They show that CVP is NP-hard
to approximate within a factor 2!°8" " for ane = o(1).
Blomer and Seifert [11] study two problems considered by
Ajtai in his worst-case/ average-case connection. These are
the problems of computing a shortest set of independent |at-
tice vectors and a shortest basis. Using the result of [23],
they provethat both these problemsare hard to approximate
within a factor n¢/ 198187 for some constant ¢ < 1. Gol-
dreich et a [34] show areduction from the CVP to the SVP.
While this reduction does not give us an improved hardness
result, it has the properties of preserving the factor of ap-
proximation for the two problems and the dimension of the
lattice.

Ravikumar and Sivakumar [57] consider the problem of
deciding whether alattice vector shorter than a given bound
exists, under the promisethat thereisat most one such vector
(not countingits negation). They provearandomized reduc-
tion from the decision version of the general shortest vector
problem to this problem, in the style of Valiant and Vazirani
[6Q]. Lattice problems for a specia kind of lattice defined
by certain graphs have been studied in [17].

6 Non-NP-hardnessresults

To what extent can we expect to improve further the ap-
proximation factor for SVP and remain NP-hard? The cur-
rent proof appears not feasible beyond /2. On the other
hand, the best polynomial time approximation algorithms of
Lovész and Schnorr are exponential in the approximation
factor.

For polynomially bounded factors, transference theo-
rems provide evidence that beyond afactor of ©(n), the ap-
proximate SVP isnot NP-hard. Thisisaresult of Lagarias,
Lenstraand Schnorr [45]. Transferencetheoremsin the Ge-
ometry of Numbers give boundsto quantitiessuch A; of the
primal and the dual lattice. In [45] the following theoremis



proved

1< XN(L)Ap—ip1 (L) <

n?,

| =

forn > 7,1 <1i <n. Thisaready givesan “NP proof” for
alower boundfor \; (L) upto afactor of ©(n?) by guessing
an appropriate set of linearly independent |attice vectors of
L* al with length at most A,, (L*).

Lagarias, Lenstraand Schnorr [45] proved more. A basis
{b1,ba,...,b,} issaidto bereduced in the sense of Korkin
and Zolotareyv, if the following hold:

L ||b1]| = A (D).

2. Let {31,32, ... ,En} be the Gram-Schmidt orthogonal -
ization of {b1,ba,... ,bp},

bi :bi—z,uikgk; I<i<n.
k<i

Then|uik| 31/2,1 <k<i<n.

3. If L(n=*D) s the orthogonal projection of L to
(lsp{bl, ... ,bi_l})L then ||b1|| =X\ (L(n_i—i_l)).

Essentialy, aKorkin-Zolotarev basisis onewhichis weakly
reduced, and the orthogonal projection of b; is a vector of
minimum length in the orthogonal projection of L in the
complement of {b1,... ,b;_1}. Interms of Lovasz's algo-
rithm, if instead of comparingb; () and b; 1 (¢), wesearched
for a vector of minimum length in lsp{b;(3),... ,b,(3)},
and called it b;, we would have obtained aK orkin-Zolotarev
basis. (Of course then this agorithm would have run in ex-
ponential time.)

Let B* be a Korkin-Zolotarev basis of L*. Then its
dual basis B = {by,ba,...,b,} iscaled adua Korkin-
Zolotarev basisof L. Let A(B) = min{|[b;]| | 1 < i < n},
where {31,32, ... ,En} isthe Gram-Schmidt orthogonaliza-
tion of B. Thenitisshownin[45] that

A(B) < M (L) < nA(B).

In particular this gives a way to provide an “NP proof”
of alower bound for \{ (L) up to a factor of n by guess-
ing an appropriate basis B* and then calculating B. This
places the promise problem of approximating A; (L) up to
afactor n within coNP.2 Thusif NP # coNP, then approxi-
mating \; (L) up to afactor n isnot NP-hard in the sense of
Karp reductions. More precisely, if NP # coNP, then there
is no deterministic polynomial time reduction o from SAT,
o(y) = (L, A), such that if ¢ € SAT, then A1 (L) < A, and
if o & SAT, then A1 (L) > nA.

20f course, technically a promise problem is not a decision problem
while coNP is a decision problem class. But the meaning of this is clear
and one can always modify the definitions slightly to make it proper.
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Theorem 6.1 (Lagarias, Lenstra, Schnorr)
If NP # coNP, then the problem of approximating A (L)
within a factor n is not NP-hard.

Theinterplay between theprimal and dual latticesand the
related transferencetheoremsplay important rolesin Ajtai’s
worst-case to average-case connection aswell. We will dis-
cuss this topic in more detail in the next section. Here we
present the following rather pretty result due to Goldreich
and Goldwasser which improved the approximation factor
for non-NP-hardnessto /n.

The proof of Goldreich and Goldwasser [30] isbased on
constant round interactive proof systems. More precisely,
they giveabounded roundinteractive proof systemfor prov-
ing a lower bound up to a factor /n for both SVP as well
as CVP. Of course the number of rounds can be reduced
to one, either by standard techniques or by directly paral-
lelizing their IP protocol. Also by standard techniques pri-
vate coins can bereplaced by public coins, so that what they
showed can be stated as follows:

Theorem 6.2 (Goldreich, Goldwasser)

The problem of approximating A; (L) within a factor 1/ is
in NP N coAM. Thusif this problemis NP-hard under Karp
reductionsin the sense given above, then £ = II5.

The last statement follows from a well-known result of
Bopannaet. al. [12] which states that if coNP C AM, then
¥ =118

2 2"

The basic idea of the IP protocol of [30] is rather simple

and elegant and we will describe it here.

Suppose L satisfies the promise of either A;(L) < t or
A1(L) > t-+/n, and the prover claimsthat Ay (L) > t- y/n.
Imagine we surround each lattice point p € L aball B,(r)
centered at p with radiusr = ¢ - \/n/2. If the prover Pis
correct, then all such ballsaredigoint. Now theverifier ran-
domly picksalattice point p in secret, and randomly picksa
point z in B, (r). The verifier presents z to the prover, who
should respond with p, the center of the ball from which z
was chosen. It is clear that for an honest prover P with un-
limited computing power, since al the balls B, (r) are dis-
joint, he has no difficulty meeting his obligation. However,
supposethe prover P’ isdishonest, sothatinfact A1 (L) < ¢.
Then for any lattice point p picked by the verifier, thereis at
least one nearby lattice point p’ with ||p — p/|| < ¢. Then
B,(r) and B, (r) would have alargeintersection. Thisfol-
lows from the fact that the radius is amost n'/? times the
distance of their respective centers. It followsthat thereisa
significant probability that adishonest prover will be caught,
sincein caseapoint z € B, (r) N By (r) ischosen, thever-
ifier could equally have chosen p or p'.

The exponent 1/2 in this interactive proof protocol



comes from the well known fact that in n-dimensional
space, two unit balls with center distance d have a signifi-
cantintersection if d < 1/4/n, and anegligibleintersection
if d > 1/n'/?=¢ forany e > 0. With some care the proof in
[30] can improvethefactor 4/n to \/n/logn. It also shows
the same bound for the Closest Vector Problem.

What about some other problems? The problem of n°-
unique shortest vector problem is prominent in the Ajtai
worst-case to average-case connection. It also plays anim-
portant role in the Ajtai-Dwork public-key cryptosystem
(see Section 8). Recall that alattice is said to have an n°-
unique shortest vector if A2(L)/A1(L) > n¢. Equivalently,
there existsv € L,v # 0, such that for all v’ € L, if
[|v'|| < m€-||v]|, thenv' isan integral multiple of v.

Define the following promise problem:

Thenc-unique shortest lattice vector problem:
Given a lattice with an°-unique shortest vector v, find the
shortest vector +v.

Building on the idea of Goldreich and Goldwasser [30],
Cai [15] proved the following:

Theorem 6.3 The n°-unique shortest lattice vector prob-
lemfor ¢ < 1/4 isnot NP-hard unless the polynomial time
hierarchy collapsesto ¥5 = II%.

7 Transferencetheorems

We have already mentioned the transference theorem of La-
garias, Lenstra and Schnorr [45] in the last section. There
is along history in geometry of numbers to study relation-
shipsbetween various quantities such asthe successive min-
ima associated with the primal and dual lattices, L and L*.
Such theorems are called transference theorems. The esti-
mate for the product

Ai(L)An—iy1(L7)

has aillustrious history: Mahler [51] proved that the upper
bound (n!)2 holds for all lattices. This was improved by
Cassels[21] ton!. Thefirst polynomial upper boundwasob-
tained by Lagarias, Lenstraand Schnorr [45] as mentioned.
Thebest estimate for this product isdue to Banaszczyk [10],
who showed that

1 < Xi(L)An—it1 (L") < Cn,

for some universal constant C. The Banaszczyk bound is
optimal up to a constant, for Conway and Thompson (see
[53]) showed that there existsa self-dual lattice family { L., }
with \; (L) = Q(y/n).
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Part 2) and part 3) of Ajtai’s worst-case to average-case
connectionin Theorem 4.1 are proved viatransferencetype
argument. Basically, if one can get a good estimate for the
basis length for any lattice, one can apply this to the dual
L*. From agood estimate for bl(L*), thus A, (L*), atrans-
ference theorem gives estimate for A;(L). Thisis part 2)
in Theorem 4.1. Part 3) employs some additional argument
also of atransferencetype. We will discuss these mattersin
more detail. But first we take a closer look at transference
theorems.

In additionto A;, there are several other lattice quantities
that have been studied. The covering radius of L is defined
to be the minimum radius of balls centered at each lattice
point whose union coversR™.

w(L) =min{r | L+ B(0;r) = R"}.

Alsoif d(u, L) denotes the minimum distance from a point
winR™toapointin L, then

w(L) = max{d(u,L) | u € R"}.

(The minimum and maximum are obvoiusly achieved.)
We have seen the quantity
£= sup max Ai(L)An—iv1(L7),

where the supremum is taken over all n-dimensiona |at-
tices. Regarding covering radius (L) the relevant quantity
is

n = sup (L)1 (L7).
L

< Inx, (L), sothat

By triangle inequality u(L) < 5

DN | = ~—

n < sné.

Given any L, we say asublattice L’ C L is asaturated
sublattice if L' = L N II, where II is the linear subspace
of R™ spanned by L'. Saturated sublattices of dimension
n — 1 arein one-to-one correspondence with primitive vec-
tors of L*. (A lattice vector v # 0 is primitive if it is not
an integral multiple of any other vector in the | attice except
+v.) The correspondenceis smply L' = L N {v}+ and
{v}*+ = lsp(L'). For any L and a saturated sublattice L’ of
dimensionn — 1 with normal (and primitive) vectorv € L*,
Lisadigoint union of parallel trandationsof L',

L=J@ +ku),
kEZ

for somew € L suchthat (u,v) = 1. Thus, each pair of
nearest hyperplanes {v}+ + ku and {v}+ + (k + 1)u has



. We call thisaparallel

IEll

orthogonal distance (u, HZ—H) =
decomposition of L.

For any L and any u € R™\ L, we can compare d(u, L),
to the distance from u to the closest parallel trandation of
some {v}+ = Isp(L') which intersects L, over all such L'.
Let

dz((u,v)) = [(u,v) — [{u,v)]|

bethefractional part of (u, v) roundedto the nearest integer,
then we consider

dz({u, v))

ol

6= sup

vEL*, (u,0)¢Z

which measures the distance from  to the closest parallel
trand ation, maximized among all directionsv € L*. Now
the following quantity is defined

d(u, L
¢ =sup sup (u, )
L weRm\L O

By definition dz ({(u,v)) < 1/2 and ||v|| > A1 (L*), S0
that 6 < %%—L) Hence
¢ 2> 2.

An upper bound ( < (8 saysthat VL and Vu ¢ L, there
exists a parallel decomposition where the distance from u
to the nearest lattice hyperplaneis > (d(u, L).

Lagariaset al. [45] provedthat £ < in? andn < 1n/2.
Babai [7] proved that { < C™ for some universa con-
stant C. Hastad [37] showed that ¢ < 6n% + 1. Similar
boundsfor £, » and ¢ were also shown by Banaszczyk [9].
The best bounds for £, n and ¢ were shown later by Ba-
naszczyk [10], where £, n and ¢ are al bounded by O(n).
The Banaszczyk bounds are all optimal up to a constant by
the Conway-Thompson family of lattices (see [53]).

In [13] an extension of Banaszczyk’s theorem of [10] is
proved. Defineg; (L) to betheminimumr such that the sub-
lattice generated by L N B(0;r) contains an i-dimensional
saturated sublattice L', where1 < 4 < n. When¢ = n, itis
called the generating radiusandisdenoted by g(L). Clearly
g(L) istheminimum such that aball B(0;r) centered at O
with radius r contains a set of lattice vectors generating L.
Thestudy of g(L) ismotivated by theinvestigation of bl(L)
anditsrelationto A, (L). Clearly

An(L) < g(L) < DI(L).

The following inequality is shown in [13] for every lat-
tice L of dimension n, using and extending the techniques
of [10]:

gl(L) ) )\nfi+1 (Lx) < CTL, (8)

15

for some universal constant C, andforal i,1 < i < n. We
will sketch the proof for the case ¢ = n for the generating
radius g(L).

The main tools of the proof are Gaussian-like measures
on alattice, and their Fourier transforms. For a given lattice
L we define

e—llvl?
Ysepe eIl

The Fourier transform of o, is

or({v}) = ©)

7L (u) = / e oy =3 e a ({v)), (10)
zeR™

veEL

whereu € R™. Notethat o, isan even function, so that

o) = > op({v})cosm(u,v).  (11)
veEL
Define
EyeHu =yl
TL(U) - EmeL e*ﬂ'HZ‘HZ . (12)
Then the following identity holds
Lemma7.1l
or(u) = 1p+ (u). (13)

The proof of Lemma 7.1 uses Poisson summation formula,
see [39, 10]. Thefollowing lemmais provedin [10] and is
crucia:

Lemma 7.2 For eachc > 1/+/2m,

o1 (D\B(0; ev/n)) < (c\/%e*”f)n, (14)

and for all u € R™,

—mllv[|?

2ve(Ltu)\ BOey/m) ©
., eIl

where B(0; ¢14/n) isthen-dimensional ball of radiuscy v/n
centered at O.

<2 (cx/%e*“g)n, (15)

Thislemmabasically saysthat the total weight under o1, of
all lattice (or affine lattice) points outside of radius ¢/ is
exponentially small.

Now we prove (8) for i = n and C' = 3/(2r). Suppose
g(L)A1(L*) > 3n/2x. Letc; and ¢ betwo constants, such
that ciex > 3/27‘( ande¢; > 1/\/271' and ¢y > 3/\/271'. By



substituting L with s L for asuitable scaling factor s, we may
assume that

g(L) > Cl\/ﬁ and /\1(L*) > CQ\/ﬁ.

Let ' bethe sublattice of L generated by theintersection
LN B(0;¢14/n). Then L' isaproper sublattice of L, since
g(L) > c14/n. If dim L' < n, thenlet P be the linear span
of L', and let by, ... ,b; bealattice basis of L N P, where
i = dim L' < n. Thiscan be extended to a lattice basis
bi,...,bi,...,b, for L and we may replace L' by the sub-
lattice generated by by, ... ,b;, ... , 2b,, SAy. Thuswithout
loss of generality we may assume L’ isof dimensionn. The
important point is that we have a proper sublattice I C L,
whichis of dimensionn and contains L N B(0; ¢1+4/7).

For any fixed u € R™,

Gi(u) = ZLJL({v})cos(Zﬂu,w)

- vezyam{v})cos(zﬂu,v))
fg;l(ﬂ({u}) — o1 ({v})) cos(2m{u, v))
+UEZ o1({v}) cos(2r(u,0))

veINL

o (u)+A+ B, sa.
Since L N B(0;¢14/n) C L', thelast term

>

vEL\B(0;c1v/n)

2\ T
< <c1v27ree_”1) ,

|B| <

or({v})

by Lemma 7.2 inequality (14). Denote the last term by €7,
say.
For the other error term A, we can show similarly that

Hence

or(u) > opr(u) — 2€7. (16)

Our next task is to show that we can choose an appro-
priate v so that oz (u) is small yet 6z (u) is large. By
Lemma 7.1, we have c(u) = 7r+(u), and 67 (u) =
71y~ (u). Thusweonly need to chooseaw suchthat 7r.- (u)
issmall and 71,1y« (u) islarge.

Thefollowing lemmais proved in [13].
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Lemma 7.3 Suppose L, is a proper sublattice of L5, then
thereexistsap € Lo, such that
A1 (L4)

i — >
min |lp—qll > —5
(Since a lattice is a discrete subset of R"™, the above mini-
mum over q clearly exists.)

Now we note that since L' isafull ranked proper sublat-
ticeof L, L* isaproper sublattice of (L")*. That it is proper
follows from the identity of index

det((L')*)/ det(L*) = det(L)/ det(L') > 1.

By Lemma7.3, takeau € (L')*, such that minger» ||u —
gll > 27 Thensinceu € (L')*, wehave (L')* + u =
(L')*, and

—||z||?

Z:I:E(L’)*—i-u €
Taewr €T

T(L')*(U) =

On the other hand, since

}\1 (L*) > C_Q

i —ql|l >
min [ju—ql| = — 3V,

we note that no pointin L* 4w iswithin % /n in norm, and
S0

—|le|*

ZwEL*+u €
Yecsr eI

< 2 (%—2\/2%(”(?)2) — 2 sy,
by Lemma 7.2 inequality (15). Since both ¢; and ¢2/3 >

1/v/2n,wehavebothe; andes < 1 by elementary estimate.
Thusit followsfrom (16) that

7L (u)

2ey > 1 — 2€7,
which isacontradiction for largen.

For the special class of lattices possessing n¢-unique
shortest vector, a stronger bound is proved [14], which lead
to a further improvement in the Ajtai connection factors of
part 2) and 3) in Theorem 4.1.

Theorem 7.1 For every lattice L of dimension n, if L* has
an n°-unique shortest vector, then

1 < A(D)A(LF) < O(nf),

where
1-c¢ if0<c<1/2,
s_d 172 if1/2<c<1,
) 3/2—c¢ ifl<e<3/2,
0 ifc>3/2.



Intermsof the Ajtai connection factorsin Theorem4.1—
in part 2) and part 3)—these new transference theoremsim-
prove al the factors to the range of approximately 3 and 4.
Details can be found in [14]. Here we outline the general
ideato derive parts 2) and 3) from 1).

Theideafor theestimationof A; (L) isrelatively straight-
forward. From an estimate of the maximumlength of aset of
linearly independent vectors from L*, one gets an estimate
of A1 (L), viatransference theorem.

To actually compute the shortest vector, the following
ideaisdueto Ajtai [1]. If L* hasan n°-unique shortest vec-
tor v, then L admits a parallel decomposition

L=J @ +ku),

kEZ

where the parallel hyperplanescontaining L' + ku have or-
thogonal distance much larger than the basis length of L'.
Now randomly sample a large polynomia number of |at-
tice points within a certain bound. A 1/n°M) fraction of
samplesfall onthe same parallel hyperplane, and the differ-
encevector of such apair belongsto the hyperplanelsp(L').
If we can distinguish such pairs from the rest, then we can
identify the normal vector for the hyperplanelsp(L'), and by
taking out the gcd, we can recover the shortest vector tv.

For two sample lattice points z and y, if they belong to
the same parallel hyperplane, then by includingasmall frac-
tional vector (z —y)/N to the generating set of L, one does
not changebl (L), sincethisis controlled by the distance be-
tween the parallel hyperplanes.

But if z and y belong to different parallel hyperplanes,
then by including (z — y) /N to the generating set of L, the
new lattice will have many additional parallel trandationsof
L' between any two originally adjacent parallel hyperplanes
Isp(L") + ku and1sp(L’) + (k — 1)u. Thiswill reducethe
basislength significantly.

Thus to be able to compute a good estimate of the ba-
sis length for L (actualy an estimate of A\, (L) will do)
leads to the identification of the unique shortest vector for
L*. Clearly improved transference theorem bounds sharpen
the provable estimatesin Ajtai’s worst-case to average-case
connection factors.

8 Latticebased cryptosystems

The Ajtai-Dwork public-key cryptosystem is based on the
intractability of SVP for lattices with n¢-unique shortest
vectors. Their cryptosystem has the provable property that
if for a random instance the probability that an encryption
of a zero can be distinguished from an encryption of a one
isatleast 1/2+1/nCM), thentheworst-casen-unique SVP

17

can be solved in probabilistic polynomial time. Thisis the
only public-key cryptosystem with the property that break-
ing a random instance is as hard as solving the worst-case
instance of the problem on which the cryptosystemis based.

Their cryptosystemisbest viewed intermsof thedual lat-
tice of alattice possessing an n¢-unique shortest vector. For
notational simplicity we will assume L* has an n-unique
shortest vector u. Then {u}~ is a hyperplane whose inter-
section with L** = L isasaturated n — 1 dimensional sub-
lattice L, of L,

L1 =LN {u}L
L then admits a parallel decomposition

L= (L +kv),

kEZ

wherev € L and (u,v) = 1. The (affine) hyperplanes
{{u}*++kv}rez haveorthogonal distancelllTH. Let 7 bethe
orthogonal projection to {u}+. Then it can be shown that

m(L*) = Lj.

(Thedual of L; isdefined within its own linear span {u}=.)
It followsthat L3 has no short vectors comparedto u. More
precisely every non-zerow € L7 can belifted to a vector
w' = w+oaou € L*, where |a] < 1/2. Sincew' is not
parallel to u,

1
el [* < flw'[[* < fwl|f* + Z[ull*.

Thus||w|| > ||u||y/n2%¢ —1/4 = n||u||. By the transfer-
ence theorems of Section 7, L, has a generating set of vec-

tors of length O (T\L\IT_H)

Let ¢ > 5 andlet d, u be real numbers such that d >
nu. Ajtai and Dwork consider lattices with the following
properties:

1. L hasann — 1 dimensional sublattice L’ with basis
length at most ;

2. If H =1sp(L') and H' # H isacoset of H intersect-
ing L, then the orthogona distance d;, of H and H' is
at least d.

Such alattice iscalled a (d, 1) lattice. Clearly for a (d, u)
lattice, every v € L\H has|[v|| > dr > d > n°p. It
followsthat then — 1 dimensional saturated sublattice LN H
isuniquely determined by L. Thisis denoted by L(4:#).

Let £ beadistribution on the set of (d, u) latticeswhere
d < dr, < 2d. Then the hidden hyperplane assumption for



L saysthat given arandom (d, u) lattice L € L, itiscom-
putationally infeasibleto computethe hyperplane H (equiv-
dently L(4#) = [N H).

Ajtai and Dwork [3] actually present three cryptosys
tems. Inall three systems, thevalue O isencrypted by apoint
in R™ whichisobtained asasmall perturbation of arandom
lattice point, and the value 1 is encrypted as a totally ran-
dompointin R™ (inan exponentially largeregion). Theidea
isthat an encrypted 0 is near some affine trandation of the
hyperplane H intersecting the lattice, while an encrypted 1
most likely is not near such an affine hyperplane.

To decrypt, with the private key which isthe normal vec-
tor to H (the unique shortest vector in L*), onefindsthedis-
tance of the ciphertext (apoint in R™) from the closest such
affine hyperplane and decodes it as a 0 if it is near enough
and as a 1 otherwise. Clearly, thereis a very small chance
that a1 may be decrypted as a 0. Goldreich et al [33] mod-
ify the cryptosystem to make the decryption error-free.

The exact details of the three cryptosystems differ some-
what. In the first and second systems security is proved
under a distributional intractability for some hidden hyper-
plane assumption.

In the third system, no explicit lattice is presented. The
private key is a randomly chosen vector in the unit ball.
The public key is a set of random points near some regu-
larly spaced affine hyperplanesin {H;}, where H; = {z |
(x,u) = i} isthe family of hyperplanesinduced by w. The
sum of arandom subset of thesepointsisitself closeto some
H;. An encryption of 0 is a small perturbation on such a
random subset sum, reduced modul o acertain parallelepiped
determined by the public key. The encryption of 1 is till a
totally random point in R™ in an exponentially large region.

A rough idea of the security of Ajtai-Dwork cryptosys-
tem is the following: Suppose one can distinguish whether
apointisnear oneof the (affine) hyperplanes. Then onecan,
with non-trivial probability, identify the normal vector to H .
They [3] showed that the third cryptosystem is provably se-
cure assuming only the worst case intractability of the n¢-
unigue shortest vector problem for some constant c.

Nguyen and Stern [55] have shown a converse to this.
They prove that if the CVP can be approximated within a
factor en®/3 then one can distinguish between encryptions
of 0 and 1 with a constant advantage d, where d depends
on c¢. Note that, Goldreich and Goldwasser [30] show that
approximating the CVP within a factor 1/n is unlikely to
be NP-hard. It follows that to break the Ajtai-Dwork cryp-
tosystem is also unlikely to be NP-hard. Nguyen and Stern
also show that if the SVP can be approximated within afac-
tor n'/2=¢, for any constant € > 0, then a distinguishing al-
gorithm with an inverse polynomial advantageis possible.

Goldreich, Goldwasser and Halevi [32] proposed another
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cryptosystem based on the hardness of | attice problems. An-
other system based on the hardness of |attice problemswas
proposed by Cai and Cusick [16]. However no average-
case/worst-case proof is known for either of these two sys-
tems.
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