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Pierre McKenzie and Sambuddha Roy pointed out that the proof of statements (b) and
(c) in Theorem 7.3 are buggy. The main flaw is that the identity e of the group F may not
be the identity of the monoid, and so the claim that w ∈ (AF,r)

∗ ⇐⇒ w 6∈ Test does not
work.

In this corrigendum, we show:

• With a slight change to Definition 7.1, the statement of Theorem 7.3 holds unchanged.
In our opinion, this is the most interesting way to correct the error in the original
paper. We present a complete proof below. For completeness, we also mention another
way to correct the error:

• Leaving Definition 7.1 unchanged, a weaker version of Theorem 7.3 holds (with only
minor adjustments to the proof given in the paper).

First, we present the modified version of Theorem 7.3 that holds using the original version
of Definition 7.1

Theorem 7.3 (Variant) (a) Let A be any finite nonsolvable monoid. Then there exists
a group F ⊆ A and a constant r > 0 such that the (AF,r)

∗ closure problem is NC1-
complete.

(b) Let A be any finite monoid, and let F be a group contained in A, with the same identity
e as the monoid identity. Then the (AF,r)

∗ closure problem is reducible via AC0-Turing
reductions to the word problem over the finite monoid A.

(c) If A is a finite solvable monoid and F is a group in it with the same identity as A,
then the (AF,r)

∗ closure problem is in ACC0. Furthermore, if A is an aperiodic monoid
then the (AF,r)

∗ closure problem is in AC0.

We now proceed to give a modification to Definition 7.1, with the property that that
both Corollary 7.2 and Theorem 7.3 are true, as stated in the original paper.

Definition 7.4 (Modified from Definition 7.1 in the paper) Let A be a finite monoid.
There is a natural homomorphism v : A∗ 7→ A that maps a word w to its valuation v(w) in
the monoid A. Let F be a group contained in A, let e denote the identity of F , and let r be a
positive integer. The language AF,r ⊆ A∗ is defined as AF,r = {w ∈ A∗ | |w| ≤ r, v(ew) ∈ F}.

The original definition required that v(w) be a group element; instead, we now require v(ew)
to be a group element.

The (AF,r)
∗ closure problem is the decision problem (AF,r)

∗. Since AF,r is finite, (AF,r)
∗

is a regular language, and thus the (AF,r)
∗ closure problem is always in NC1.
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With the revised definition, Corollary 7.2 still holds (with the same proof), because the
monoid A = S5 is itself a group, and F is a subgroup.

We now state and prove Theorem 7.3 (using the revised definition of AF,r).

Theorem 7.3 (a) Let A be any nonsolvable monoid. Then there exists a group F ⊆ A
and a constant r > 0 such that the (AF,r)

∗ closure problem is NC1-complete.

(b) The (AF,r)
∗ closure problem is reducible via AC0-Turing reductions to the word problem

over the finite monoid A.

(c) If A is a solvable monoid then the (AF,r)
∗ closure problem is in ACC0. Furthermore,

if A is an aperiodic monoid then the (AF,r)
∗ closure problem is in AC0.

Proof.

(a) Since A is a nonsolvable monoid, A contains a nontrivial nonsolvable group G with
identity e.1 Since the word problem over G is NC1-complete [Bar89], it suffices to
show an AC0 reduction from the word problem over G to an appropriate A∗

F,r closure
problem. To be precise, the word problem we consider is

W := {w ∈ G∗ | v(w) = e}
Let G = {g1, g2, . . . , gm}. Consider the word u =

∏
1≤i≤m g−1

i gi in A∗. Let w =
w1w2 . . . wn be an instance of W . We map the instance w to the word z = (

∏
1≤i≤n−1 wiu)wn.

Notice that v(z) = v(w). Furthermore, it is not hard to see that by virtue of inserting
the word u between wi and wi+1 for 1 ≤ i ≤ n − 1 we have ensured that the word z
can be decomposed into z = α1α2 . . . αn, where for 1 ≤ i ≤ n − 1 we have |αi| < 4m,
wi is included in αi, and v(αi) = e. Since v(z) = v(w), it follows that w ∈ W iff z can
be decomposed as α1α2 . . . αn, where each αi is of length at most 4m−1 and v(αi) = e
for all i. Clearly, v(eαi) = v(e)v(αi) = e as well.

Note: The last sentence above is the only new thing in the proof of part (a).

Letting F = {e} and r = 4m − 1 the above argument shows that w 7→ z is an AC0

reduction from the NC1-complete word problem W to the (AF,r)
∗ closure problem.

(b) We devise a test that characterizes membership in (AF,r)
∗, using the following claim.

Claim 7.4 Let x, y be words in A∗, and suppose v(ex) ∈ F . Then

v(ey) ∈ F ⇐⇒ v(exy) ∈ F

Proof. (⇐:)

v(ey) = v(e)v(y) = ev(y)

= [v(ex)]−1v(ex)v(y) (since v(ex) ∈ F , it has an inverse)

= [v(ex)]−1v(exy), which is in F because v(exy) ∈ F .

1Notice that e could be different from the monoid identity.
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(⇒:)

v(exy) = v(ex)v(y) = v(ex)ev(y) (since v(ex) ∈ F , v(ex) = v(ex)e)

= v(ex)v(e)v(y) = v(ex)v(ey), which is in F because v(ex), v(ey) ∈ F .
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For any w = w1w2 . . . wn with each wi ∈ A, and for 0 ≤ i < j ≤ n, let w[i, j] denote
the subword wi+1 . . . wj. We construct a circuit for (AF,r)

∗ that uses oracle gates for
the following word problem W over the monoid A:

W := {w ∈ A∗ | v(ew) ∈ F}

The circuit will have an oracle gate for w[0, j] for each 1 ≤ j ≤ n. Let the output of
the oracle gate be the bit bj ; thus

For 1 ≤ j ≤ n, bj =

{
1 if v(ew[0, j]) ∈ F
0 otherwise

We set b0 = 1. Now we place circuitry to check that

(a) bn = 1, and

(b) the string b = b0b1 . . . bn does not have r consecutive zeroes.

It is clear that these checks can be performed in AC0. To see why these checks char-
acterize membership in (AF,r)

∗, note that:

If w ∈ (AF,r)
∗, then we can decompose w into short strings w = x1x2 . . . xm such that

each xi has length at most r and each v(exi) is in F . By the claim above, v(ey) ∈ F
for each prefix y of the form x1x2 . . . xj . Thus at each such position, the string b will
have a 1, and these positions are at most r positions apart.

If the 1s in b are never separated by r or more zeroes, then there is a sequence 0 = l0 <
l1 < l2 < . . . < lm = n such that for each j, lj − lj−1 ≤ r, and v(ew[0, lj]) ∈ F . By the
above claim, each v(ew[lj−1, lj]) is also in F . This gives the required decomposition
witnessing w ∈ (AF,r)

∗.

This completes the proof of part (b).

(c) This is an immediate consequence of part (b) and the results of [Bar89, BT88].
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