
Arithmetic Complexity, Kleene Closure, and Formal
Power Series

Eric Allender∗ V Arvind† Meena Mahajan‡

March 19, 1999

Abstract

The aim of this paper is to use formal power series techniques to study the structure
of small arithmetic complexity classes such as GapNC1 and GapL. More precisely, we
apply the Kleene closure of languages and the formal power series operations of inver-
sion and root extraction to these complexity classes. We define a counting version of
Kleene closure and show that it is intimately related to inversion and root extraction
within GapNC1 and GapL. We prove that Kleene closure, inversion, and root extrac-
tion are all hard operations in the following sense: There is a language in AC0 for
which inversion and root extraction are GapL-complete, and there is a finite set for
which inversion and root extraction are GapNC1-complete, with respect to appropriate
reducibilities.

The latter result raises the question of classifying finite languages so that their in-
verses fall within interesting subclasses of GapNC1, such as GapAC0. We initiate work
in this direction by classifying the complexity of the Kleene closure of finite languages.
We formulate the problem in terms of finite monoids and relate its complexity to the
internal structure of the monoid.

1 Introduction

The interplay between formal language theory (also automata theory) and computational
complexity has been a fruitful research theme for over a decade. Fundamental ideas from
formal languages and automata theory have enriched complexity theory — in particu-
lar circuit complexity — and provided new insights. For instance, the fine structure of
NC1 [Bar89, BT88, MPT91] essentially follows from the algebraic study of subclasses of
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regular languages [Pin86]. Another example concerns the class LogCFL (the logspace clo-
sure of context-free languages) which is an important subclass of P and has been stud-
ied intensively (both from the perspective of parallel computation and circuit complex-
ity) [Coo85, Lan93, Ven91, BLM93].

Viewing languages as formal power series is an important unifying paradigm in formal
language theory [SS78, Gin75, KS85, Sal90]. It has led to an arithmetization of the theory
and to the unification of disparate-looking proofs in the area. Furthermore, the general
approach has also yielded several new results.

With this success in mind, it is natural to try and apply formal power series techniques in
the study of complexity classes. Since a language (or a function) can be viewed as a formal
power series over an appropriate ring, a complexity class (of languages or functions) is a
set of such formal power series. Li first studied the complexity classes FP, #P and GapP
in the formal power series setting [Li92]. He identified the invertible elements in each of
these complexity classes as the interesting objects (since the other elements are merely finite
variations of these) and studies their various algebraic properties. It turns out in his study
that the invertible elements in GapP form a group, and FP is a subgroup with interesting
properties.

In this paper we are concerned with the study of small arithmetic complexity classes
using formal power series. Our motivation for this study comes from circuit complexity. The
circuit complexity classes we will refer to most often are AC0 (problems having constant-
depth, polynomial-size circuits of unbounded-fan-in AND and OR gates), ACC0 (similar to
AC0, but now Modm gates are also allowed), TC0 (as above, but now MAJORITY gates are
allowed) and NC1 (problems having logarithmic-depth circuits of fan-in two AND and OR
gates). The well-known complexity classes NLOG and LogCFL also can be characterized
in terms of classes of circuits [Ven91, Ven92]. Of particular interest to us here are the
classes of functions that result from “arithmetizing” the classes AC0, NC1, NLOG, and
LogCFL by replacing each AND (OR) gate by a multiplication (addition) gate over the
natural numbers. The resulting classes of functions are denoted by #AC0, #NC1, #L, and
#LogCFL, respectively. (#L also corresponds to counting the number of accepting paths
of an NLOG machine; similar characterizations hold for the other arithmetic classes.) If we
augment these arithmetic circuits by allowing the constant −1, then we obtain the classes
of functions known as GapAC0, GapNC1, GapL, and GapLogCFL. These classes GapAC0,
GapNC1, GapL, and GapLogCFL can also be characterized as the difference of two functions
in #AC0 (or #NC1 or #L or #LogCFL, respectively) [FFK94, ABL98, CMTV96].

Why do we care about these arithmetic circuit classes? One reason is because they
characterize natural and important problems. For instance, computing the determinant of
integer matrices is complete for GapL (see [Tod91, Vin91, MV97]); and GapNC1 was also
shown to have natural complete problems in [CMTV96]. Another reason for interest in these
classes was provided in [AAD97]: #AC0 and GapAC0 were shown to characterize TC0.
(See [All] for a detailed survey on arithmetic circuit classes.) Since we have lower bounds
for GapAC0, but essentially no lower bounds for TC0, it is hoped that perhaps formal power
series techniques might offer a new avenue for proving lower bounds for threshold circuits,
and this might also help us understand the internal structure of GapNC1.

Following Li [Li92], the main formal power series operations we study are inversion and
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root extraction. Li bounded the complexity of these operations by showing that they can
essentially be done in polynomial time. These upper bounds are, unfortunately, not tight
enough in the context of the arithmetic classes we consider.

Our first results pinpoint the complexity of inversion and root extraction. In Sections 4
and 5 we show that these operations are essentially equivalent to computing the determinant.
More precisely, if g is a formal power series we show that g−1 and g1/r (for any integer r > 1)
can be computed in GapLg (in fact, if g ∈ GapL so is g−1). Furthermore, we construct
a formal power series in AC0 for which inversion and root extraction are both hard for
GapL. Thus, for any complexity class properly contained in GapL and containing AC0, the
invertible elements of that class do not form a subgroup of the invertible elements of GapL.

When we similarly examine the power of inversion and root extraction within GapNC1,
it turns out that, in fact, there is a finite language whose inverse (or rth root for an integer
r > 1) is a GapNC1-complete function. On the other hand, inversion and root extraction
for regular languages can be done in GapNC1.

A motivation for this study was to see if formal power series could provide a tool in
understanding the class GapAC0. In contrast to Li’s result [Li92] that FP is a subgroup
of GapP, it turns out that GapAC0 is not a subgroup of GapL. This is a consequence
of our above result: Every subgroup of GapL that is closed downward under any rea-
sonable reducibility (even projections) must actually contain GapNC1, and we know that
GapAC0 6= GapNC1 [AAD97]. Furthermore, there is no proper subgroup of GapL that is
closed downward under AC0-reductions.

In the results of Section 5, the Kleene closure plays a central role. It turns out to be a
useful bridge that links inversion and root extraction to the complexity of computing the
integer determinant (and arithmetic branching programs). In fact, the hardness results in
Section 5 are proved using a counting function associated with the Kleene closure (for a
given language A this function #A∗ counts the number of A-factorizations of a given word
w ∈ A∗). Thus, another contribution of this paper is to make explicit the connection between
Kleene closure and computing determinants.

The main interesting open question arising out of this paper is whether it is possible to
classify finite languages A so that #A∗ falls within subclasses of GapNC1, such as GapAC0,
ACC0, and AC0. At first sight, this may not appear meaningful. However, in Section 6
we formalize one possible setting in which it makes sense to consider subclasses of finite
languages and study the complexity of their Kleene closure.

2 Definitions

Let R = (R,+, ·) be a ring, and let Σ be a finite alphabet.
A formal power series is a mapping g : Σ∗ → R. Following the usual convention [KS85],

we express g as if it were a series, g =
∑
w∈Σ∗ g(w)w although no summation is actually

implied; a formal power series should merely be viewed as an infinite list, associating to each
w the value g(w). The set of all such formal power series is denoted by R << Σ∗ >>.

Let f and g be formal power series in R << Σ∗ >>. Then

f + g =
∑

w∈Σ∗
(f(w) + g(w))w
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f · g =
∑

w∈Σ∗

∑

w=xy

(f(x) · g(y))w

where f(w) + g(w) and f(x) · g(y) are the binary operations in the ring R.
Let C be any complexity class of functions mapping Σ∗ to R. A formal power series

representation of a function f ∈ C is the series
∑
w∈Σ∗ f(w)w. We denote by R << Σ∗ >>(C)

the set of all formal power series g such that g ∈ C. (Let L be any complexity class of
languages over Σ∗. Then we denote by R << Σ∗ >>(L) the set of all formal power series g
such that ∃L ∈ L, g = χL.)

We denote R << Σ∗ >>(GapL) by GL.
In this paper, we consider the rings of integers or rationals only.

3 Some closure properties of GapL

It is useful to define the following connection between the determinant function and classes of
functions C: Det·C denotes the class of functions expressible as the determinant of a matrix
whose entries are computable in C. Formally,

Definition 3.1 Let C be any class of functions from Σ∗ to Z. The class Det·C is the class
of functions f : Σ∗ −→ Z such that (1) there is a logspace many-one reduction h mapping
each w ∈ Σ∗ to a matrix Mw over Σ∗, (2) there is a function g ∈ C that transforms Mw to
the matrix Nw over Z by the application of g to each entry in Mw, and (3) the determinant
of Nw equals f(w).

It is trivial to see that Det·C ⊆ GapLC . The following results improve this bound.

Theorem 3.2 Let B be an n× n matrix, whose entries are each polynomials of degree n in
Z[x], where the coefficients of each polynomial B[i, j](x) are computable in GapL. Then the
coefficients of the polynomial det(B) are computable in GapL.

Proof.
To show that the determinant over integers can be computed in GapL, the determinant

problem is reduced to counting paths in a DAG [Tod91, Vin91, MV97]. To generalize this to
polynomials where the coefficients are non-negative integers given explicitly, we start with
the DAG construction in the {0, 1} case and do an easy two-step modification as follows. The
DAG we start with has all edges labeled with weight 1. In step 1, we split the contribution
of each matrix entry (a polynomial) so that the contributions to different monomials are
maintained in different nodes. The DAG width expands by a factor of n2 + 1 (the number
of monomials in the product polynomials). And each edge e is now labeled either with the
constant 1 or with a coefficient from one of the polynomials B[i, j](x). At this point, the sum
(over all paths p from the source to the ith sink in the graph) of the product of all coefficients
labelling edges on path p, is equal to the coefficient of xi in the determinant polynomial.

In step 2, we replace the coefficients labelling the edges, with subgraphs, because the
coefficients in each B[i, j](x) are not supplied directly, but instead are computable in #L or
GapL. If the coefficient is #L-computable, then we can replace the edge labeled B[i, j](x)
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by the DAG in which the number of source-to-sink paths equals B[i, j](x). However, if
the coefficients are GapL-computable (and thus not necessarily non-negative), then each
corresponding DAG has two sinks, and we must keep track of their contributions separately.
This is achieved by expanding the DAG width by an additional factor of 2. The resulting
DAG has n2 + 1 positive sinks and n2 + 1 negative sinks, and the coefficient of xi in the
determinant polynomial is given by the difference in the number of paths from the source to
the ith positive sink and the number of paths from the source to the ith negative sink.

(An alternate proof is possible, using a theorem of Toda [Tod92] characterizing GapL in
terms of “weakly skew” arithmetic circuits.)

Corollary 3.3 Det·GapL = GapL. i.e. Let B be an n × n matrix, whose entries are each
computable in GapL. Then det(B) is computable in GapL.

We note that to capture the hardness of GapL, determinants of matrices having a special
structure suffice. The special structure we consider is that of extended lower triangular (elt)
matrices, which arose in [Li92] in the context of inverting formal power series. Considering
matrices of this restricted form is useful in proving the results of Sections 4 and 5. A matrix
M is said to be elt if Ai,j = 0 whenever j > i+ 1.

Theorem 3.4 Computing the determinant (or permanent) of elt matrices over the integers
is complete for GapL w.r.t. logspace many-one reductions.

Proof. We prove the theorem for the permanent of elt matrices. The result for determinant
follows from the many-one equivalence of permanent and determinant for elt matrices (this
equivalence is implicit in Lemma 4.7 of [Li92] where only the reduction from permanent to
determinant is claimed).

A standard problem complete for GapL is, given a topologically-sorted directed acyclic
graph G with n+ 1 nodes (with edges of the form i→ j only if i < j, and with n, n+ 1, and
1 as distinguished nodes) compute as output h1(G), which is the difference of the number of
paths from 1 to n and 1 to n+1 in G. Furthermore, we can assume that the graphs have the
restricted form such that all paths from 1 to n are of length 2m and all paths from 1 to n+ 1
are of length 2m+ 1, for some positive integer m. A related function that is #L-complete is
h2(G), which counts the number of paths from 1 to n in a similarly restricted graph.

Given such a digraph G we associate the following elt matrix NG with it:



b1,2 1 0 0 · · · 0
b1,3 b2,3 1 0 · · · 0
b1,4 b2,4 b3,4 1 · · · 0
...

...
...

...
... 0

b1,n b2,n b3,n · · · bn−1,n −1
b1,n+1 b2,n+1 b3,n+1 · · · bn−1,n+1 1




Here, bi,j is equal to 1 if there is an edge from i to vertex j in G. Notice that the row
indices are offset by 1 in the matrix, so that the diagonal entries are of the form bi,i+1. (We
have used here the fact that there are no edges entering 1 and no edges leaving n or n+ 1.)
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Figure 1: A path and the associated decomposition of an elt matrix.

To complete the proof, we claim that the permanent of NG is the number of paths in G
from 1 to n minus the number of paths in G from 1 to n+ 1. By definition, the permanent
of NG is given by:

perm(NG) =
∑

π

∏

i

NG[i, π(i)]

There is a one-to-one correspondence between the nonzero terms
∏
iNG[i, π(i)] in the

expression for perm(NG) (which are cycle covers corresponding to NG) and paths in G from
1 to n or n+ 1. Furthermore, since NG[n− 1, n] = −1, observe that each term in perm(NG)
corresponding to a path from 1 to n+ 1 contributes a −1, whereas each term corresponding
to a path from 1 to n contributes a 1.

Notice that the permanent of the top-left (n − 1) × (n − 1) submatrix of NG is h2(G),
which shows that computing the permanent of nonnegative elt matrices is #L-complete.

See Figure 1 for an illustration for #L-hardness. The path v1 −→ v5 −→ v7 −→ v8 −→
v10 marked in graph G corresponds to the cycle cover (1,2,3,4) (5,6) (7) (8,9) marked in NG.

Finally, notice that the reduction can be easily implemented in logspace.

4 Upper bounds for inversion and root extraction

In order to investigate the algebraic structure offered by formal power series, it is useful as a
first step to consider the matter of multiplicative inverses. A formal power series f over the
integers has a multiplicative inverse if and only if f(ε) ∈ {1,−1}. To simplify the statement
of the results that follow, we will consider for the moment only those f with f(ε) = 1.
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Lemma 4.1 (Lemmas 4.2, 4.6, 4.7 and Theorem 4.8 in [Li92]) Let g be a formal power
series with g(ε) = 1. Then g−1(ε) = 1, and for w 6= ε,

g−1(w) =
∑

w = w1 · · ·wk
|wi| ≥ 1

(−1)kg(w1) · · · g(wk)

That is, g−1(a1 · · · an) is given by the determinant of the following matrix:



−g(a1) −1 0 · · · 0
−g(a1a2) −g(a2) −1 · · · 0
−g(a1a2a3) −g(a2a3) −g(a3) · · · 0
...

...
...

...
...

−g(a1 · · · an) −g(a2 · · · an) −g(a3 · · · an) · · · −g(an)




Referring to Definition 3.1, this means that for any formal power series g, the inverse g−1

is computable in Det·{g}. As an immediate consequence of this and Corollary 3.3, we have
the following proposition.

Proposition 4.2 The set of formal power series GL is closed under inverses.

A closely related operation is computing powers or roots of a formal power series. It is
easy to see that if f ∈ GL, then f r can also be computed in GL. The converse is not so easy;
note that there are g = f r ∈ GL such that f does not even have integer coefficients. Such
an f is not in GL at all. (For example, consider g given by g(ε) = g(a) = 1, and g(w) = 0
otherwise.) We show some upper bounds on the complexity of computing f in such cases.

Lemma 4.3 (Lemma 5.5 in [Li92]) Let f be a formal power series, and let g = f r for
some positive integer r. Then, ∀w ∈ Σ∗,

f(w) =





1 if w = ε
∑

w = x1 · · ·xk ;
xi 6= ε

σr(k)g(x1)g(x2) · · · g(xk) if w 6= ε

where σr(k) is defined as follows: σr(0) = 1, σr(1) = 1/r, and for k > 1,

σr(k) = (−1/r)
∑

k = i1 + · · ·+ ir
0 ≤ ij < k

σr(i1) · · ·σr(ir)

By rearranging terms notice that σr(k), for k ≥ 2, satisfies the following recurrence
relation: ∑

k = i1 + · · ·+ ir
0 ≤ ij ≤ k

σr(i1) · · · σr(ir) = 0

Using generating functions we can easily solve this recurrence to obtain an easy-to-compute
closed-form expression.
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Lemma 4.4 For every r, k > 0, σr(k) =
(

1/r
k

)
.

Putting this together, we have the following expression for f = g1/r when w 6= ε:

f(w) =
∑

w = x1 · · ·xk ;
xi 6= ε

(
1/r

k

)
g(x1)g(x2) · · · g(xk)

It is interesting to note that when r = −1, the above expression coincides with the
expression for inverse (Lemma 4.1).

The closed-form expression for σr(k) derived above is convenient except in one respect:
σr(k) is a rational quantity. We will use a related integral quantity in our computations
Nr(0n, k) = rnn!σr(k), which is clearly computable in GapAC0.

Lemma 4.5 Let f be a formal power series with rational coefficients, and let r be a positive
integer. Define the formal power series h as follows:

∀w ∈ Σ∗, h(w) = r|w|(|w|)!f(w)

If f r ∈ GL, then so is h.

Proof.
Let g = f r. Following the expression in Lemma 4.3, f(w) can be written as the sum

of n summands, where the kth summand collects the contribution from all decompositions
of w into exactly k pieces. That is, for n ≥ 1 and for w = a1a2 · · · an ∈ Σ∗, f(w) =∑n
k=1 σr(k)Ak(w), where

Ak(w) =
∑

w = x1 · · ·xk ;
xi 6= ε

g(x1)g(x2) · · · g(xk)

And so h can be rewritten as h(w) =
∑n
k=1 Nr(0

n, k)Ak(w).
Each Nr(0n, k) is computable in GapL. We show below that each Ak(w) is also com-

putable in GapL. Because GapL is closed under addition and multiplication, it follows that
h(w) is computable in GapL.

Consider the following matrix, where x is an indeterminate:

Bx =




g(a1) −x 0 · · · 0
g(a1a2) g(a2) −x · · · 0
g(a1a2a3) g(a2a3) g(a3) · · · 0
...

...
...

...
...

g(a1 · · · an) g(a2 · · · an) g(a3 · · · an) · · · g(an)




The determinant of this matrix, Det(Bx), is a polynomial of degree n− 1 in x, and it is
easy to see that the coefficient of xn−k in Det(Bx) is precisely Ak(w). From Theorem 3.2,
these coefficients are computable in GapL.
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Theorem 4.6 Let f be any formal power series with integer coefficients. If, for some posi-

tive integer r, g = f r ∈ GL, then the coefficients of f can be computed in FL#L.

Proof. We outline an algorithm for computing f = g1/r:
Let h be the formal power series defined in Lemma 4.5. Define H(.) to be the multiplica-

tive constant here; H(k) = rkk!. Both h(w) and H(|w|) are computable in GapL. (In fact,
H(|w|) is computable in GapAC0.) To compute f(w), we need to divide h(w) by H(|w|) in
a uniform way. It follows from the results of Beame, Cook and Hoover [BCH86] that there is
a uniform NC1 circuit that takes as input 3 n-bit numbers M,x, y, and if M is the product
of the first n2 primes, then the circuit outputs the n-bit number b x

y
c.

Since h and H are GapL functions, there is a polynomial p such that both h(w) and
H(|w|) represented in binary are at most p(|w|) bits long. Let Q(k) denote the product of
the first k2 primes. For uniform division, we require the product Q(p(|w|)), which is easily
seen to be in GapL. To compute f(w), it suffices to evaluate the NC1 circuit for division
mentioned above on inputs Q(p(|w|)), h(w),H(|w|). A uniform NC1 circuit can be evaluated
in DLOG. Consider such an evaluation procedure on the division circuit described above.
Whenever an input bit is required, the DLOG machine finds the appropriate bit (from h or
H or Q) by querying a GapL oracle.

At this point it is natural to ask if there is any complexity class smaller than GapL with
the property given in Proposition 4.2, or with properties analogous to those in Lemma 4.5
or Theorem 4.6. The next section essentially gives a negative answer to these questions.

5 Lower bounds for inversion and root extraction

In order to formalize the hardness of inverse and root extraction in a uniform fashion, we
first define a new counting function on languages.

Definition 5.1 Let A ⊆ Σ∗. We define #A∗ to be the following function:

#A∗(w) =
∑

w = w1 · · ·wk
|wi| ≥ 1

χA(w1) · · ·χA(wk)

Given a language A in a specific complexity class, what is the complexity of the decision
problem A∗ and the function #A∗? We first show hardness results for #A∗ and then derive
corresponding hardness results concerning computing the inverse or extracting the root of a
formal power series.

Theorem 5.2 There is a language A ∈ AC0 such that

(a) #A∗ is hard for #L.

(b) computing g−1, where g is the formal power series χA, is complete for GapL under
logspace many-one reductions (and in fact under AC0 projections).

(c) (for all r > 1) computing the rth root of the formal power series χA is hard for #L
under (P-uniform) NC1 reductions.
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One proof of this theorem follows from results of Flajolet and Steyaert [FS74]. In [FS74],
a language A ∈ LOG is constructed, and its Kleene closure is shown to be complete for
NLOG by reducing a language B to it; B was known to be NLOG-complete from [Sud73]. It
is easy to verify that A is actually in AC0, and that the chain of reductions is “parsimonious”
(i.e., that in the reduction f from a problem B ∈ NLOG to A∗, where B is accepted by an
NLOG machine M , the number of accepting paths of M(x) is the same as the number of
decompositions of f(x) showing that f(x) is in A∗) and is a projection. In order to keep the
paper self-contained we include a different proof, which is more in line with the other proofs
in this paper.
Proof.

(a) We use the construction in the proof of Theorem 3.4. Let h2 be the #L-complete
problem considered there. It suffices to show that there is a language A ∈ AC0, with the
property that there is an easy reduction from h2 to the problem of computing #A∗. More
precisely, we will present a reduction r such that for any x which is the adjacency matrix of
a graph G of the restricted type described in the proof of Theorem 3.4, h2(x) = #A∗(r(x)).

The reduction r we build will take a graph G as input, and output a particular string
enc(NG) that encodes NG.1 This string is a list, in row major form, of the encodings of
each position (i, j) in NG. We will encode each position (i, j) by a string enc(i, j) rather
than merely the bit at that position. This encoding consists of the triple (i; j; b); indicating
that the (i, j) entry of the matrix NG is b. We will encode this in binary, and thus we
need encodings of the symbols {), (, ; , 0, 1}. To be specific, let us encode the binary bits 0
and 1 by 110 and 111, respectively, and we will let 000 and 001 encode the left and right
parentheses, respectively, and 011 will encode the semicolon. All indices i and j will be
represented using t = d log ne bits (with leading zeros), and each of these t bits will be
encoded as above. So for each (i, j), enc(i, j) is a string of length 6t + 18. And enc(NG) is
the string enc(1, 1)enc(1, 2) . . .enc(1, n)enc(2, 1) . . .enc(n.n). Let us call this string r(G). It
is clear that r is computable in uniform AC0 (and in fact r is a projection).

The language A in AC0 is the set of all strings w such that w is a substring of enc(N)
for some matrix N , and w is of one of the following forms:

• w is of the form

enc(1, 1) · · · enc(1, j) · · · enc(1, n)
enc(2, 1) · · · enc(2, j) · · · enc(2, n)
...

...
...

...
...

enc(j, 1) · · · enc(j, j)

where N(j, 1) = 1.

• w is of the form

enc(i, i+ 1) · · · enc(i, j) · · · enc(i, n)
enc(i+ 1, 1) · · · enc(i+ 1, i+ 1) · · · enc(i+ 1, j) · · · enc(i+ 1, n)
...

...
...

...
...

...
...

enc(j, 1) · · · enc(j, i+ 1) · · · enc(j, j)

1Note that the reduction need not check if G has the restricted form.
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where in addition N(j, i+ 1) = 1.

That is, ifw is a substring of an enc(NG) for a graph G satisfying the restrictions described
earlier, then w is in A if it is a piece of enc(NG) that corresponds to one cycle in a cycle cover
(as in Theorem 3.4). The cycle in question is (1, 2, . . . , j) in case 1 and (i + 1, i + 2, . . . , j)
in case 2. It is easy to see that A is in AC0. See Figure 1 for an illustration.

Now recall that
#A∗(w) =

∑

w = w1 · · ·wk
|wi| ≥ 1

χA(w1) · · ·χA(wk)

For any string w of the form r(G), a decomposition of the form w = w1 · · ·wk with wi ∈ A
consists of a decomposition of NG corresponding to a cycle cover having k cycles. It follows
that if w is of the form r(G), then #A∗(w) counts the number of non-zero cycle covers in
NG; #A∗(w) equals perm(NG). From Theorem 3.4, this is equal to h2(G).

(b) That g−1 can be computed in GapL follows from Proposition 4.2. We first show
hardness for #L. In the construction described in part (a), note that all non-zero cycle
covers in NG have an equal number of cycles, in fact precisely 2m. (This was an assumption
made, w.l.o.g., in the proof of Theorem 3.4.) So for any string w of the form r(G), the
following also holds:

#A∗(w) =
∑

w = w1 · · ·wk
|wi| ≥ 1

(−1)kχA(w1) · · ·χA(wk)

So if g is the formal power series χA, then g−1(w) = #A∗(w) for w of the form r(G). #L
hardness now follows from part (a). Using h1 instead of h2 in the construction of part (a)
and arguing as above shows that the corresponding g−1 is GapL-complete.

(c) Let f be a formal power series, and let g = f r for some positive integer r. Letting
g = χA for the language A of part (a) in the expression for root extraction derived in Lemmas
4.3 and 4.4, we get

g(w) =

(
1/r

2m

)
#A∗(w)

To complete the reduction we need integer division and integer multiplication to cancel(
1/r
2m

)
. This can be done as in the proof of Theorem 4.6.

We observe without proof that Theorem 5.2 generalizes to levels of the #L hierarchy. This
hierarchy was defined in [AO96] as follows: define #LH(1) to be #L, and let #LH(i+ 1) be
the class of functions f such that, for some logspace-bounded nondeterministic oracle Turing
machine M , and some function g ∈ #LH(i), f(x) is the number of accepting computations
of M on input x with oracle g.

Theorem 5.3 For each i, there is a language A in L#LH(i) such that #A∗, and conse-
quently, the inversion and root extraction of χA are hard for #LH(i+ 1).

Theorem 5.2 effectively puts an end to any plans to investigate the group-theoretic struc-
ture formal power series corresponding to complexity classes smaller than GapL. Still, given
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the close relationship between subclasses of NC1 and classes of regular sets ([MPT91]), might
it be possible to say something useful about these classes by investigating formal power se-
ries corresponding to regular sets? The characteristic function of any regular set is given
by a “rational” formal power series over the integers. (See, e.g., [SS78, BR84].) Thus the
following result indicates that by considering only regular sets, it might be possible to study
at least the class GapNC1.

Theorem 5.4 Let g be an invertible rational formal power series over the integers. Then
g, g−1 ∈ R << Σ∗ >>(GapNC1).

Proof. The inverse of any invertible rational formal power series is also rational. A funda-
mental theorem about rational series is that the rational formal power series coincide with
the “recognizable” formal power series. The definition of “recognizable” formal power series
makes it immediate that computing the coefficient of a word w in a series can be performed
by multiplying together O(|w|) k-by-k integer matrices, where k depends on the series, but
does not depend on w. (For these and other basic facts about formal power series, please
consult a text such as [SS78, BR84].)

It is observed in [CMTV96] that all functions that can be reduced to iterated multipli-
cation of O(1)-by-O(1) matrices are in GapNC1. This completes the proof.

Remark 1 For the reader who wishes to see a self-contained proof of inversion of regu-
lar sets, a construction based directly on finite-state automata and branching programs is
described in the appendix.

Our main motivation in the use of formal power series within GapNC1 was to see if it
could aid in our understanding of the class GapAC0, which in turn provides an alternative
characterization of threshold circuit classes [AAD97]. Since the formal power series of regular
languages are in GapNC1 (as indicated by Theorem 5.4), the question of interest is whether
subclasses of this class of formal power series give new characterizations of GapAC0 and
other function classes inside GapNC1.

The next theorem, somewhat surprisingly, shows that there are finite languages such
that the inverses of their formal power series are GapNC1-complete. The decision version
of this result is already known: namely, there is a finite language A such that A∗ is NC1-
complete. (Every regular language whose syntactic monoid is unsolvable is NC1-complete
[Bar89], and Schutzenberger [Sch65] and Margolis (see Chapter 5.3 of [Pin86]) exhibit a finite
prefix code A such that the syntactic monoid of A∗ is unsolvable, thus showing that A∗ is
NC1-complete.) However, the above constructions from [Sch65, Pin86] cannot be adapted
to show hardness for counting Kleene closure, since languages which are prefix codes have
unique decompositions in their Kleene closure. In contrast, the proof we describe below
constructs a finite language which is not a prefix code, and the proof does adapt to the
decision version as well.

Theorem 5.5 There is a finite language A such that

(a) computing the inverse of the formal power series χA is hard for GapNC1 under AC0

reductions.
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(b) #A∗ is complete for GapNC1 under AC0 reductions.

(c) (for all r > 1) computing the rth root of the formal power series χA is hard for GapNC1

under (nonuniform) NC1 reductions.

Proof. (a) As is pointed out in [CMTV96][Theorem 3.2], it follows from the construction of
[BOC92] that every function in GapNC1 can be reduced to the problem of finding the (1,1)
entry of the result of multiplying together a sequence of 3-by-3 integer matrices, and this
problem is in turn reducible to taking the difference of two functions in width-six #BP.

We show that there is a finiteA such that computing the inverse of the formal power series
χA is hard for width-six #BP under AC0 projections. This suffices to prove the theorem.

The language A we construct will have alphabet Σ equal to the set of all relations on
{1, 2, 3, 4, 5, 6}2. Each element of Σ can be viewed as a bipartite graph on {1, 2, 3, 4, 5, 6}2,
with two vertical columns of six vertices each, and edges going from the left column to the
right column. Thus a word in Σ∗ represents a width-six graph in a straightforward way. We
are now ready to define the set A. A is the set of all words over Σ∗, such that there exists a
path of length ≤ 21 from 1 in the leftmost column to 1 in the rightmost column, such that
this path does not visit 1 at any intermediate column. (To simplify later discussion, call the
node 1 in the leftmost column s, and call the node 1 in the rightmost column t.)

Clearly A is finite (since it contains no word of length greater than 21).
A hard problem for width-six #BP is the problem of counting the number of paths from

s to t in a word over Σ∗. Given any such word w, we will show how to construct a word r(w),
such that the number of such paths in w is equal to the coefficient of r(w) in the formal
power series χ−1

A .
The first step in computing r(w) is to insert six copies of the relation {(i, i+1(mod 6))|1 ≤

i ≤ 6} in between each two consecutive symbols of w. Note that inserting these six symbols
has no effect on the number of paths between any two vertices, since together they are
equivalent to the identity relation. Call this new word w′.

The next step is to insert the identity relation {(i, i)|1 ≤ i ≤ 6} between each two
symbols of w′. The result is the desired word r(w). Again, note that there is a one-to-one
correspondence between the paths in w and the paths in r(w).

To prove hardness, note first of all that every path from s to t in r(w) can be decomposed
into paths of length at most 21 from 1 in one column to 1 in a later column. (Note that this
corresponds to a decomposition into words in A.) To see this, consider an edge from i to j
in some column in the original word w. In r(w), this edge is replaced by the sequence

i→ j → j → j + 1(mod6) → j + 1(mod6)→ j + 2(mod6)→ j + 2(mod6)→ j + 3(mod6)

→ j + 3(mod6)→ j + 4(mod6)→ j + 4(mod6)→ j + 5(mod6) → j + 5(mod6)→ j → j

Note that node 1 is visited in at least one (actually, two) of the columns above.
If we now consider the sequence of length twenty-eight in r(w) that replaces the two-edge

sequence i→ j → k in w, it is easy to see that the longest possible sequence of edges avoiding
1 in any intermediate position occurs if j = 6 and k = 2, in which case 1 is reached for the
first time after a path of length 21.
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Next, note that any two distinct s-t paths in w give rise to distinct decompositions of
r(w) into words in A. To see this, consider the first two edges (i, j) and (i, j ′) where two
paths differ. The cyclic shift from j in r(w) will reach 1 at a different time than the cyclic
shift from j ′. Thus we obtain two distinct decompositions.

To complete the proof, recall that the formal power series for χ−1
A on an input r(w) is

given by ∑

r(w) = w1 · · ·wk
|wi| ≥ 1

(−1)kχA(w1) · · ·χA(wk)

Since every second symbol of r(w) is the identity relation (and the identity relation is a proper
prefix of no other word in A), every decomposition r(w) = w1 · · ·wk has each |w2i| = 1, and
each w2i is the identity relation. Thus k is even, for each such decomposition, and thus the
coefficient of r(w) in χ−1

A is equal to the number of s-t paths in w.
(b), (c) Since in the width-6 BP’s considered in the above proof we can assume that all

s− t paths are of the same length 2m, we can complete the proof in a manner similar to the
proof of Theorem 5.2.

The proofs in this section indicate the extent to which taking the inverse of a formal
power series is similar to computing the transitive closure, or of taking the Kleene closure of
a language. Let us close this section with an observation in this same spirit, which follows
immediately from part (a) of Theorem 5.2. This may be seen as a slight generalization of a
result in [Mon75], where a result of this form is proved for C= DLOG.

Theorem 5.6 Let C be any class of languages closed under AC0 reducibility and contained
in NLOG. Then C is closed under the Kleene * operation if and only if NLOG = C.

6 The Kleene closure of finite languages

In light of Theorem 5.5, if there is to be any hope of clarifying the relative computational
power of GapAC0, TC0, and GapNC1 by considering the notions of inverses and Kleene
closure, it can only come by considering restrictions on finite sets. In this section we attempt
such a classification for the complexity of A∗ based on the structure of the finite language
A. Our results closely follow the connection between the structure of finite monoids and the
internal structure of NC1 [Bar89, BT88]. We leave open the possibility of a similar study for
the complexity of #A∗.

Definition 6.1 Let (A, ◦) be a finite monoid.2 There is a natural homomorphism v : A∗ 7→
A that maps a word w to its valuation v(w) in the monoid A. Let F be a group contained in
A and r be a positive integer. The language AF,r ⊆ A∗ is defined as AF,r = {w ∈ A∗ | |w| ≤
r, v(w) ∈ F}.

We define the (AF,r)∗ closure problem as the decision problem (AF,r)∗. Firstly, since
(AF,r)∗ is a regular language, notice that the (AF,r)∗ closure problem is always in NC1.

2For ease of notation we denote the monoid product a◦b simply as ab and we also use simply A to denote
the monoid (A, ◦) in this section.
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To give the intuition behind the formal definition we restate the proof idea of Theorem 5.5,
adapted to the decision version, in terms of an (AF,r)∗ closure problem.

Corollary 6.2 Let A be the permutation group S6, let F = {π ∈ S6 | π(1) = 1}, and let
r = 21. Then the (AF,r)∗ closure problem is NC1-complete.

The following result generalizes the above corollary to any nonsolvable monoid and shows
connections between the internal structure of the underlying finite monoid and the complex-
ity of corresponding (AF,r)

∗ closure problems.

Theorem 6.3 (a) Let A be any nonsolvable monoid. Then there exists a group F ⊆ A
and a constant r > 0 such that the (AF,r)∗ closure problem is NC1-complete.

(b) The (AF,r)∗ closure problem is reducible via AC0 projections to the word problem over
the finite monoid A.

(c) If A is a solvable monoid then the (AF,r)∗ closure problem is in ACC0. Furthermore,
if A is an aperiodic monoid then the (AF,r)∗ closure problem is in AC0.

Proof.
(a) Since A is a nonsolvable monoid, A contains a nontrivial nonsolvable group G with
identity e′.3 Since the word problem over G is NC1-complete [Bar89], it suffices to show an
AC0 reduction from the word problem over G to an appropriate AF,r star closure problem.
To be precise, the word problem we consider is

W := {w ∈ G∗ | v(w) = e′}

Let G = {g1, g2, . . . , gm}. Consider the word u =
∏

1≤i≤m g
−1
i gi in A∗. Let w = w1w2 . . . wn

be an instance of W . We map the instance w to the word z = (
∏

1≤i≤n−1 wiu)wn. Notice
that v(z) = v(w). Furthermore, it is not hard to see that by virtue of inserting the word u
between wi and wi+1 for 1 ≤ i ≤ n− 1 we have ensured that the word z can be decomposed
into z = α1α2 . . . αn, where for 1 ≤ i ≤ n − 1 we have |αi| < 4m, wi is included in αi, and
v(αi) = e′. Since v(z) = v(w), it follows that w ∈ W iff z can be decomposed as α1α2 . . . αn,
where each αi is of length at most 4m− 1 and v(αi) = e′ for all i.

Letting F = {e′} and r = 4m − 1 the above argument shows that w 7→ z is an AC0

reduction from the NC1-complete word problem W to the (AF,r)∗ closure problem.
(b) The (AF,r)∗ closure problem is the decision problem (AF,r)∗. Let us fix the following
word problem over the monoid A:

W := {w ∈ A∗ | v(w) ∈ F}

Let w ∈ A∗ be an instance of the problem. We will characterize words in the set (AF,r)∗.
To do so we first define the sets Badr := {x ∈ A=r | v(x′) 6∈ F for all prefixes x′ of x} and

Test := {z ∈ A∗ | z = u1xu2, u1 ∈ W,x ∈ Badr}
3Notice that e′ could be different from the monoid identity e.
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We claim that (AF,r)∗ = Test. In order to see this it suffices to observe that if u and
u′ are two prefixes of w such that v(u) ∈ F and v(u′) ∈ F , and u′ = ux then it holds that
v(x) ∈ F , since F is a group. This guarantees that for each w ∈ (AF,r)∗ we can break up
w = α1α2 . . . αm, where for each 1 ≤ i ≤ m, |αi| ≤ r, and αi is the first prefix of αi . . . αm
such that v(αi) ∈ F . The claim is now easy to see.

To complete the proof, note that to check if z ∈ Test, we can easily design an AC0 circuit
with oracle nodes that query the word problem W .
(c) This is an immediate consequence of part (b) and the results of [Bar89, BT88].

Remark 2 We leave open the question of characterizing the complexity of (AF,r)∗ where
F ⊆ A is an arbitrary subset. It is not clear if the internal structure of the monoid A has
an effect on the complexity of such (AF,r)∗.

7 Concluding remarks

Finally, we have some easy observations on the inversion of formal power series beyond
GapL. In particular, since context-free languages have been extensively studied using formal
power series (see, for example, [KS85]), it may be of interest to know that the inverse of
a context-free language is, in some sense, no more complex than the language itself. The
following theorem makes this precise.

Theorem 7.1

(a) If A ∈ LogUCFL the formal power series χ−1
A is computable in GapLogCFL.

(b) If A ∈ LogCFL the formal power series χ−1
A is computable in GapLogCFL/poly.

The proof of part (a) is immediate once it is observed that the coefficients of the matrix
presented in Lemma 4.1 can be computed in GapLogCFL. Part (b) follows because of the
results of [RA97]. It is not clear how to make the second inclusion uniform, although it is
pointed out in [AR98] that this inclusion does hold in the uniform setting if there are sets in
DSPACE(n) with sufficiently high circuit complexity. It is open if there are corresponding
hardness results.

As mentioned in the introduction, the main open question which this paper raises is to
discover a classification of finite languages A so that the complexity of #A∗ falls in different
interesting subclasses of GapNC1. This might give some insight into the internal structure
of GapNC1 which is still not well understood [CMTV96, All].
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Appendix

Alternative proof of Theorem 5.4
We use the characterization of GapNC1 as GapBP[CMTV96]. That is, it was shown in

[CMTV96] that any function in GapNC1 can be represented as the difference of two functions
that count paths through bounded-width branching programs. Let g = χL for some regular
language L accepted by DFA M = (Q,Σ, δ, q0, F ). From Lemma 4.1,

g−1(w) =
∑

w = w1 · · ·wk
|wi| ≥ 1

[−g(w1)] · · · [−g(wk)]

for w 6= ε. So what is required is to sum, over all decompositions of w into non-ε subwords
in L, the sign of the decomposition, where the sign of a decomposition is roughly the parity
of the number of subwords in the decomposition.

We construct a GapBP model which tracks such decompositions. Assume that Σ = {0, 1}.
The idea is as follows: First consider the branching program of length n+ 2, width |Q|, that
corresponds to M in the obvious way. (The last level is for combining all final states into
one sink.) Now stretch the length of this branching program by a factor of 2 by introducing
dummy levels alternating with those corresponding to M . These dummy levels provide
positions to detect potential subwords in L. At the dummy level, apart from all the identity
transitions, there are also transitions from each final state to the start state. Since each
detected subword contributes−1 to the product along this decomposition, these edges should
carry weight −1. Counting weights of paths in this branching program corresponds precisely
to summing the signs of all valid decompositions. To remove negative edge weights, we
stretch the width of the branching program by a factor of 2, maintaining two copies to
account for parity (as in the proof of Theorem 3.3 in [CMTV96] where it is shown how
iterated products of constant-size integer matrices can be computed in GapBP.).

Formally, the branching program for inputs of size n has length 2n + 2, and width
2|Q|. The nodes of the branching program are labeled (i, k, b), for k ∈ Q, b ∈ {0, 1}, and
0 ≤ i ≤ 2n. At the last level there are two additional sink nodes t+ and t−. The source is the
node (0, q0, 0). For odd i, include the edges 〈(i, k, b), (i+ 1, k, b))〉 for each k, b. Also include
the edges 〈(i, k, b), (i + 1, q0, b̄))〉 for each k ∈ F , for each b. These edges are all labeled 1.
For even i = 2j, include the edges 〈(i, k, b), (i+ 1, k ′, b)〉 where k′ = δ(k, 1); these edges are
all labeled xj. Also include the edges 〈(i, k, b), (i+ 1, k ′, b)〉 where k′ = δ(k, 0); these edges
are all labeled x̄j. Finally, include edges 〈(2n, q0, 0), t+〉 and 〈(2n, q0, 1), t−〉 labeled 1.
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