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Abstract

The aim of this paper is to use formal power series techniques to study the structure
of small arithmetic complexity classes such as GapNC! and GapL. More precisely, we
apply the formal power series operations of inversion and root extraction to these
complexity classes. We define a counting version of Kleene closure and show that it
is intimately related to inversion and root extraction within GapNC! and GapL. We
prove that Kleene closure, inversion, and root extraction are all hard operations in the
following sense: There is a language in ACY for which inversion and root extraction
are GapL-complete and Kleene closure is NLOG-complete, and there is a finite set
for which inversion and root extraction are GapNC!-complete and Kleene closure is
NC!-complete, with respect to appropriate reducibilities.

The latter result raises the question of classifying finite languages so that their in-
verses fall within interesting subclasses of GapNC!, such as GapAC®. We initiate work
in this direction by classifying the complexity of the Kleene closure of finite languages.
We formulate the problem in terms of finite monoids and relate its complexity to the
internal structure of the monoid.

1 Introduction

The interplay between formal language theory (also automata theory) and computational
complexity has been a fruitful research theme for over a decade. Fundamental ideas from
formal languages and automata theory have enriched complexity theory — in particu-
lar circuit complexity — and provided new insights. For instance, the fine structure of
NC! [Bar89, BT88, MPT91] essentially follows from the algebraic study of subclasses of
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regular languages [Pin86]. Another example concerns the class LogCFL (the logspace clo-
sure of context-free languages) which is an important subclass of P and has been stud-
ied intensively (both from the perspective of parallel computation and circuit complex-
ity) [Coo85, Lan96, Ven91, BLM93].

Viewing languages as formal power series is an important unifying paradigm in formal
language theory [SS78, Gin75, KS85, Sal90]. It has led to an arithmetization of the theory
and to the unification of disparate-looking proofs in the area. Furthermore, the general
approach has also yielded several new results.

With this success in mind, it is natural to try to apply formal power series techniques in
the study of complexity classes. Since a language (or a function) can be viewed as a formal
power series over an appropriate ring, a complexity class (of languages or functions) is a
set of such formal power series. Li first studied the complexity classes FP, #P and GapP
in the formal power series setting [Li92]. He identifies the invertible elements in each of
these complexity classes as the interesting objects (since the other elements are merely finite
variations of these) and studies their various algebraic properties. It turns out in his study
that the invertible elements in GapP form a group, and FP is a subgroup with interesting
properties.

In this paper we are concerned with the study of small arithmetic complexity classes
using formal power series. Our motivation for this study comes from circuit complexity. The
circuit complexity classes we will refer to most often are AC® (problems having constant-
depth, polynomial-size circuits of unbounded-fan-in AND and OR gates), ACC? (similar to
AC?, but now Mod,, gates are also allowed), TC? (as above, but now MAJORITY gates are
allowed) and NC! (problems having logarithmic-depth circuits of fan-in two AND and OR
gates). The well-known complexity classes NLOG and LogCFL also can be characterized
in terms of classes of circuits [Ven91, Ven92]. Of particular interest to us here are the
classes of functions that result from “arithmetizing” the classes AC°, NC!, NLOG, and
LogCFL by replacing each AND (OR) gate by a multiplication (addition) gate over the
natural numbers. The resulting classes of functions are denoted by #AC?, #NC!, #L, and
#LogCFL, respectively. (#L also corresponds to counting the number of accepting paths
of an NLOG machine; similar characterizations hold for the other arithmetic classes.) If we
augment these arithmetic circuits by allowing the constant —1, then we obtain the classes
of functions known as GapAC®, GapNC!, GapL, and GapLogCFL. These classes GapAC?,
GapNC!, GapL, and GapLogCFL can also be characterized as the difference of two functions
in #AC° (or #NC! or #L or #LogCFL, respectively) [FFK94, ABL98, CMTV98|.

We will also consider arithmetic complexity classes defined by branching programs. A
constant-width branching program is a layered directed acyclic graph, with a constant num-
ber of vertices at each layer, and the problems of interest are (a) to count the number of
source-to-sink paths, and (b) to decide if one exists. Such problems bear close relations to
NC! and its counting versions (see [Bar89, CMTV98]), while the versions where the branch-
ing programs are allowed to have arbitrary width bear similar relations to NLOG, #L and
GapL (see [Ven92, Tod91]).

Why do we care about these arithmetic circuit classes? One reason is because they
characterize natural and important problems. For instance, computing the determinant of
integer matrices is complete for GapL (see [Tod91, Vin91b, MV97]); and GapNC! was also



shown to have natural complete problems in [CMTV98]. Another reason for interest in these
classes was provided in [AAD00]: #AC® and GapAC® were shown to characterize TCP.
(See [A1197] for a detailed survey on arithmetic circuit classes. For more complete treatment,
we refer the reader to the textbook [Vol99].) Since we have lower bounds for GapAC?, but
essentially no lower bounds for TC?, it is hoped that perhaps formal power series techniques
might offer a new avenue for proving lower bounds for threshold circuits, and this might also
help us understand the internal structure of GapNC!.

Following Li [Li92], the main formal power series operations we study are inversion and
root extraction. Li bounded the complexity of these operations by showing that they can
essentially be done in polynomial time. Unfortunately these upper bounds are not tight
enough in the context of the arithmetic classes we consider.

In the remainder of this section, we sketch the outline of the rest of the paper. Section
2 presents the basic definitions and notation for formal power series.

In Section 3 we prove a useful closure property of GapL. (We note that this has subse-
quently found application in other work [HT02, Wat99].)

Section 4 shows that computing the determinant and permanent of matrices having a
very restricted format is complete for the complexity classes we consider.

In Sections 5 and 6 we prove our main results; we pinpoint the complexity of inversion
and root extraction, and show that these operations are essentially equivalent to computing
the determinant. More precisely, if g is a formal power series we show that ¢ ! and ¢'/"
(for any integer r > 1) can be computed in GapL?. In fact, if ¢ € GapL so is g !; thus
GapL forms a subgroup of GapP. Furthermore, we construct a formal power series in AC®
for which inversion and root extraction are both hard for GapL. Thus, for any complexity
class properly contained in GapL and closed downward under AC? reductions, the invertible
elements of that class do not form a subgroup of the invertible elements of GapL.

When we similarly examine the power of inversion and root extraction within GapNC!,
it turns out that, in fact, there is a finite language whose inverse (or 7 root for an integer
r > 1) is a GapNC!-complete function. On the other hand, inversion and root extraction
for finite sets (and in fact for all regular languages) can be done in GapNC!.

A motivation for this study was to see if formal power series could provide a tool in
understanding the class GapAC®. In contrast to Li’s result [Li92] that FP is a subgroup
of GapP, it turns out that GapAC® is not a subgroup of GapL. This is a consequence of
our above result: Every subgroup of GapL that is closed downward under any reasonable
reducibility (even projections) must actually contain GapNC!, and we know that GapAC® #
GapNC' [AADOO).

In the results of Section 6, the Kleene closure operation plays a central role. It turns out
to be a useful bridge that links inversion and root extraction to the complexity of computing
the integer determinant (and arithmetic branching programs). In fact, the hardness results
in Section 6 are proved using a counting function associated with the Kleene closure (for a
given language A this function #A* counts the number of A-factorizations of a given word
w € A*). Thus, another contribution of this paper is to make explicit the connection between
Kleene closure and computing determinants.

An interesting open question arising out of this paper is whether it is possible to classify
finite languages A so that #A* falls within subclasses of GapNC!, such as GapAC®, ACC?,



and AC?. At first sight, this may not appear meaningful. However, in Section 7 we formalize
one possible setting in which it makes sense to consider subclasses of finite languages and
study the complexity of their Kleene closure.

2 Definitions

Let R = (R, +, ") be a ring, and let X be a finite alphabet. In this paper, the only rings R
we consider are the integers (Z) and the rationals (Q).

A formal power series is a mapping g : ¥* — R. Following the usual convention [KS85],
we express g as if it were a series, g = ), . g(w)w although no summation is actually
implied; a formal power series should merely be viewed as an infinite list, associating to each
w the value g(w). The set of all such formal power series is denoted by R << ¥* >>.

The operations 4+ and - of the ring R are extended to R << ¥* >> as follows. Let f and
g be formal power series in R << ¥* >>. Then

f+a="> (f(w)+g(w)w

weX*

Frg=>> (fl)-g(y)w.

wWET* w=ry

Let C be any complexity class of functions mapping ¥* to R. A formal power series
representation of a function f € C is the series Y, . f(w)w. We denote by R << ¥* >>(C)
the set of all formal power series g such that g € C. It is also useful to have notation denoting
formal power series corresponding to language classes, as opposed to function classes; let £
be any complexity class of languages over ¥*. Then we denote by R << ¥* >>(L) the set of
all formal power series g such that 3L € £, g = x¢.

We denote Z << %* >>(GapL) by GL.

3 A useful closure property of GapL

It is useful to define the following connection between the determinant function and classes of
functions C: Det-C denotes the class of functions expressible as the determinant of a matrix
whose entries are computable in C. Formally,

Definition 3.1 Let C be any class of functions from ¥* to Z. The class Det-C is the class of
functions f : X* — Z such that (1) there is a logspace many-one reduction h mapping each
w € X* to a square matriz My, over ¥.*, (2) there is a function g € C that transforms M, to
the matriz Ny, over Z by the application of g to each entry in M,, and (3) the determinant

of Ny equals f(w).
Clearly, Det-C C GapLC. The following results improve this bound for C = GapL.

Theorem 3.2 Let B be an n X n matriz, whose entries are each polynomials of degree n in
Z[x], where the coefficients of each polynomial Bli, j|(x) are computable in GapL. Then the
coefficients of the polynomial det(B) are computable in GapL.
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Proof.

Our proof is obtained by modifying either the reduction of [Ber84] or of [MV97], in which
the problem of computing the determinant is reduced to the problem of counting paths in
a DAG (i.e., a directed acyclic graph). To be specific, we will use as our starting point the
reduction presented in [MV97]. As observed in 2.2 of [MV97], this reduction has the following
property. Given a matrix M over a ring R, the reduction produces a weighted DAG G with
source s and sinks %1, t5, such that the determinant of M is equal to the difference a; — ao,
where q; is the sum, over all paths p from s to ¢;, of the product of the weights of the edges
on the path p.

We must deal with the particular case where the ring R is the ring of integer polynomials.
The first step in our modification is to is to make n? + 1 copies v; of each vertex v of the
DAG G, and add edges to maintain the property that for all vertices v of the original dag,
if the sum over all paths from s to v is the polynomial Zp d,x?, then in the modified DAG
G' the sum over all paths from s to v, will be d,. This is easily accomplished, by replacing
edges from v to w labeled with a polynomial Zq c,x? in the original graph G' by edges
labeled ¢, from v, to wp4, in the modified graph G’. At this point, the coefficient of " in
the determinant polynomial is the difference, of the sums (over all paths p from s to t;,,
respectively ¢, ,) of the product of all coefficients labeling edges on path p.

In the statement of the lemma, however, the coefficients labeling the edges are not given
explicitly, but are computable in GapL. As a simpler case, consider first the situation where
the coefficients are computable in #L. In this case, we can replace an edge of G’ labeled with
the coefficient of z¥ in BJ[i, j](x) by the corresponding DAG in which the number of source-
to-sink paths equals this coefficient (and identifying its source and sink with the endpoints
of the edge in G'). It is easily seen that the construction is correct in this case.

In the more general case where the coefficients are GapL-computable (and thus not
necessarily non-negative), each DAG H, corresponding to a coefficient labeling edge e has
two sinks, and we must keep track of their contributions separately. This is achieved by
making two copies v, and v,_ of each vertex v, of our modified DAG G’, with the property
that the sum over all paths from s to v, in G’ will be equal to the difference in the number of
paths from s to v,y and v,_ in this new graph. Again, this is easily accomplished by making
two copies of H,, and connecting their sources and sinks as shown in Figure 1.

(An alternate proof is possible, using a theorem of Toda [Tod92] characterizing GapL in
terms of “weakly skew” arithmetic circuits.)

The following corollary will be useful to us, and has also found application elsewhere
[HT02, Wat99].

Corollary 3.3 Det-GapL = GapL. i.e. Let B be an n X n matriz, whose entries are each
computable in GapL. Then det(B) is computable in GapL.

Corollary 3.4 Det-GapLogCFL = GapLogCFL.

Proof. This follows by an essentially-identical proof. The difference is that the graph H,
(representing an edge e in the digraph G') is not built explicitly, but instead is represented
by (1) a start vertex s and (2) the two end vertices v, and v,_, along with (3) the word
w, such that the value labeling edge e in G’ is the GapLogCFL function g applied to w,.
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Figure 1: A path and the associated decomposition of an elt matrix.

It is shown in [Vin9la] that every function in #LogCFL can be represented as the number
of accepting computations of a nondeterministic logspace-bounded auxiliary pushdown au-
tomaton, and it is easy to see that a similar characterization holds for GapLogCFL. Now
consider a nondeterministic logspace-bounded auxiliary pushdown automaton that follows a
path through the graph G’. In this traversal, instead of following a path through each DAG
H,, it guesses a computation on input w,, continuing from vertex v, if it finds an accepting
computation on w,, and continuing from v,_ otherwise. It is straightforward to show that
this proves membership in GapLogCFL. [

4 Some useful complete problems

We note that to capture the hardness of GapL, determinants of matrices having a special
structure suffice. The special structure we consider is that of extended lower triangular (elt)
matrices, which arose in [Li92] in the context of inverting formal power series. Considering
matrices of this restricted form is useful in proving the results of Sections 5 and 6. A matrix
M is said to be elt if A; ; =0 whenever j >+ 1.

Theorem 4.1 Computing the determinant (or permanent) of elt matrices over the inte-
gers is complete for GapL w.r.t. logspace many-one reductions. Computing the permanent
of elt matrices over the nonnegative integers is complete for #L w.r.t. logspace many-one
reductions.

Proof.



An elt matrix and a permanent term The corresponding graph and cycle cover

Figure 2: A term of the permanent of an elt matrix.

Recall that the permanent of a matrix M is given by:
perm(M) = 3" [T Ml (i)

where the sum is taken over all permutations 7m on the indices. If we consider M to be
the adjacency matrix of a weighted digraph, GG, then each nonzero term in this expression
corresponds to a cycle cover: a collection of edges forming disjoint cycles such that each
vertex lies on a cycle. Cycle covers in elt matrices have a particularly simple form. Each
cycle in such a cover is either a self-loop, or it consists of adjacent rows corresponding to

a cycle of the form ¢, 4+ 1,...,7 + j,4. For example, Figure 2 shows a decomposition of a
zero-one elt matrix into blocks corresponding to cycles of a cycle cover in the corresponding
digraph.

It is easy to see that the permanent of elt matrices over the nonnegative integers is in
#L: since the cycle covers have such simple form, an NLOG machine can guess such a cycle
cover 7, and generate | [, M[i, 7(¢)] accepting paths for each such 7.

Similar observations were made in the proof of Lemma 4.7 of [Li92], where it is shown
that the permanent can be reduced to the determinant for elt matrices (and it is implicit in
[Li92] that computing the determinant and permanent of elt matrices are equivalent under
many-one reductions). Thus the results of [Li92] show that these problems are in GapL.

It remains only to show that the permanent of integer elt matrices is hard for GapL, and
the permanent of nonnegative integer matrices is hard for #L.

A standard problem complete for GapL is, given a topologically-sorted directed acyclic
graph G with n+ 1 nodes (with edges of the form 7 — j only if 4 < j, and with n,n+ 1, and
1 as distinguished nodes), compute as output h;(G), which is the difference in the number
of paths from 1 to » and the number of paths from 1 ton + 1 in G.

hi(G) = #pathsg(1 ~ n) — #pathsg(1 ~ (n+ 1))

Without loss of generality, we can assume that no edge leaves vertex n, and that all paths
from 1 to n or to n + 1 are of length 2m — 1, for some positive integer m. A related function
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that is #L-complete is hy(G), which counts the number of paths from 1 to n in a similarly
restricted graph.

Toda [Tod91] showed how to express hi(G) as the determinant of a related matrix.
However that matrix is not elt, so we need a somewhat different construction which we
describe below.

Given such a digraph G we associate an elt matrix Ng with it as follows: Let B be the
adjacency matrix of G. Note that B will have zeroes on and below the diagonal, given the
structure of G. Modify B by putting 1s on the diagonal, negating the (n,n) entry, and
setting the (n,n + 1) entry to 1, to get matrix C. Note that C is the adjacency matrix of
a graph G’ obtained by adding self-loops at all vertices of G and adding an edge from n to
n + 1. These new edges have weight 1, except for the self-loop at n which has weight —1.
1 ~ (n + 1) paths in G’ are in bijection with paths in G from 1 to n or n + 1, with the
following property:

1. A1~ (n+1) path pin G’ is of even length iff it uses the n — n + 1 edge in G’ iff it
corresponds to a 1 ~» n path of G.

2. A1~ (n+1) path p in G’ is of odd length iff it does not use the n — n + 1 edge in
G iff it corresponds to a 1 ~» (n + 1) path of G.

Let D be the transpose of matrix C. Ng is obtained by deleting the first row and the
last column of D. Ng looks like this:

[ b1o 1 0 0 .- 0 ]
bi3 ba 3 1 o --- 0
b1 4 ba 4 b3 4 r .- 0
bin-1 bap—1 bzp_1 -+ 1 0
bin  ban b3y o by, 1

| bing1 boni1 b3ngr 0 bnoipgr 1

Note that the reduction from G to Ng can be easily implemented in logspace.

We now show that the permanent of Ng is equal to hi(G). The key observation is that
paths in G from 1 to n or m + 1 are in 1-1 correspondence with terms [[, Ng[é, m(é)] of
perm(Ng). Why? Let n be such a path in G, and let p be the corresponding path in G'.
Let S be the following set of edges of G':

S={079) (i) € p} UL(,9) | i & p}-

In the graph G’, for each vertex i # n + 1, either a path successor or the self-loop at i
is picked. Similarly, for each vertex j # 1, either a path predecessor or the self-loop at j is
picked. So if we delete row 1 and column n + 1 of D, we have covered each row and each
column exactly once, and we get a term of perm(Ng). If n is a path to n in G, then p uses
the weight 1 edge n — n + 1 of G', otherwise p uses the weight —1 self-loop at n in G'.
So the corresponding term of perm(Ng) is positive for paths to n and negative for paths to
n+ 1.
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and a path in it (N, s the matrix within the box)

and the corresponding cycle cover

Figure 3: A 1 ~» n path and the decomposition in the associated elt matrix.

0 0 @ 0 0 0 0|0
1 0 0 0o @ o0 0 00
o @ o 0o 1 1 0 010
o 0o 0 o 1 0o @ oo

Another path in G The corresponding cycle cover

Figure 4: A 1~ (n+ 1) path and the decomposition in the associated elt matrix.

Note further that the length of p is exactly the number of cycles in the corresponding
cycle cover of perm(Ng); this fact will be useful in proving Theorem 6.2.

The reverse mapping, from terms of perm(Ng) to paths in G, can be similarly argued.
This completes the proof of hardness for GapL.

See Figure 3 for an illustration. The vy — w5 — v; — wvg marked in graph G
corresponds to the even length path v; — v5 — v; — v —> vg in G’ and to the cycle
cover (1,2,3,4) (5,6) (7) (8) marked in Ng.

Similarly, in Figure 4, the odd length path vy — vy — v — vy marked in graph G
corresponds to the same path in G' and to the cycle cover (1) (2,3,4,5) (6,7,8) marked in
Ng¢.

Notice that the permanent of the top-left (n — 1) x (n — 1) submatrix of Ng is ha(G),
which shows that computing the permanent of nonnegative elt matrices is #L-complete.



5 Upper bounds for inversion and root extraction

In order to investigate the algebraic structure offered by formal power series, it is useful as
a first step to consider the matter of multiplicative inverses. A formal power series f over
the integers has a multiplicative inverse if and only if f(e) € {1, -1}, where € denotes the
empty string. If f(e) = —1, then it is easy to verify that f~! = —(—f)~!, so without loss of
generality we will consider only those f with f(e) = 1.

Lemma 5.1 (Lemmas 4.2, 4.6, 4.7 and Theorem 4.8 in [Li92]) Let g be a formal power
series with g(€) = 1. Then g~(¢) = 1, and for w # e,

g w) = Y (=1)fglw) - -glwy)
B

That is, g~ (ay - - - a,) is given by the determinant of the following matriz:

—g(ay) 1 0 e 0
—g(a1az) —9(a2) —1 e 0
—g(aiaza3) —g(azas) —g(as) 0 0
—g(ar--an-1) —glas---an1) —gag---an_1) - —1

| —g(ar---an)  —glaz--an)  —glag---an) oo —glan) |

Referring to Definition 3.1, this means that for any formal power series g, the inverse g~*
is computable in Det-{g}. As an immediate consequence of this and Corollary 3.3, we have
the following proposition.

Proposition 5.2 The set of formal power series GL s closed under inverses.
Thus GL is a subgroup of GapP. Similarly, GapLogCFL is also a group.

Proposition 5.3 The set of formal power series Z << ¥* >>(GapLogCFL) is closed under
1muverses.

A closely related operation is computing powers or roots of a formal power series. It is
easy to see that if f € GL, then f" can also be computed in GL. The converse is not so easy;
note that there are g = f" € GL such that f does not even have integer coefficients. Such
an f is not in G£ at all. (For example, consider g given by g(€¢) = g(a) = 1, and g(w) =0
otherwise.) We show some upper bounds on the complexity of computing f in such cases.

Lemma 5.4 (Lemma 5.5 in [Li92]) Let f be a formal power series, and let g = f" for
some positive integer v. Then, Yw € X¥,

1 ifw=c¢e
flw) = > 0, (k)g(21)g(ws) - g(ax) if w# e
w :mfl¢e Tks
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where o,.(k) is defined as follows: 0.(0) =1, o,(1) = 1/r, and for k > 1,

or(k) = (=1/r) Z or(11) - - - o (i)

By rearranging terms, notice that for k& > 2, o,(k) satisfies the following recurrence

relation:
> o (i1) - 0,(i,) = 0

k=it i
0<i; <k
Using generating functions we can easily solve this recurrence to obtain an easy-to-compute
closed-form expression.

Lemma 5.5 For every r,k >0, o.(k) = (1,/:).

Putting this together, we have the following expression for f = ¢'/” when w # e:

tw= X (1)t oo
W =1 Tg;
T, £ €

It is interesting to note that when r = —1, the above expression coincides with the
expression for inverse (Lemma 5.1).

The closed-form expression for o,(k) derived above is convenient except in one respect:
o-(k) is a rational quantity. We will use a related integral quantity in our computations:
N, (0", k) = r™nlo,(k), which is clearly computable in GapAC® for k < n.

Lemma 5.6 Let f be a formal power series with rational coefficients (i.e., f € Q << ¥* >>),
and let r be a positive integer. Define the formal power series h as follows:

Vw € 3, h(w) = r")(|w|)Lf (w)
If fr € GL, then so is h.

Proof.
Let ¢ = f". Following the expression in Lemma 5.4, f(w) can be written as the sum
of n summands, where the kth summand collects the contribution from all decompositions

of w into exactly k pieces. That is, for n > 1 and for w = ajas---a, € ¥*, f(w) =
Y ne1 0r (k) A (w), where

Aw)= D gl@)g(@) - glzp).
W= 3y T
T £ €
Hence, h can be rewritten as h(w) = Y_,_; N, (0", k) Ap(w).

Each N, (0™ k) is computable in GapL. We show below that each Aj(w) is also com-
putable in GapL. By the basic closure properties of GapL (see [AO96]), it follows that h(w)
is computable in GapL.

Consider the following matrix, where z is an indeterminate:
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[ g(a1) - 0 0 ]
g(aiaz) g(az) - 0
B, = | 9(aiazas)  g(azas) g(as) 0
i 'g(a1---an) :9((12"‘Gn) :9(013"'Cln) .g(an) |

The determinant of this matrix, Det(B,), is a polynomial of degree n — 1 in . We claim
that the coefficient of z"7* in Det(B,) is precisely Aj(w). This follows by considering the
cycle covers of this elt matrix, as in the proof of Theorem 4.1. The non-zero terms containing
(—z)"* correspond to permutations with sign (—1)"7*, and they are easily seen to sum to
Ag(w). By Theorem 3.2, these coefficients are computable in GapL. |

Theorem 5.7 Let f be any formal power series with integer coefficients. If, for some posi-
tive integer r, g = f7 € GL, then the coefficients of f can be computed in FL#L,

Proof. We outline an algorithm for computing f = ¢'/":

Let h be the formal power series defined in Lemma 5.6. Define H(.) to be the mul-
tiplicative constant here; H(k) = r*k!. Both h(w) and H(|w|) are computable in GapL.
(In fact, H(Jw|) is computable in GapAC®.) To compute f(w), we need to divide h(w) by
H(|w]). Since it has recently been shown that division can be computed in logspace [CDLO01]
and even in uniform TC® [Hes01] (see also [All01, HABO2| for alternative expositions), the
theorem follows.

At this point it is natural to ask if there is any complexity class smaller than GapL with
the property given in Proposition 5.2, or with properties analogous to those in Lemma 5.6
or Theorem 5.7. The next section essentially gives a negative answer to these questions.

6 Lower bounds for inversion and root extraction

In order to formalize the hardness of inverse and root extraction in a uniform fashion, we
first define a new counting function on languages.

Definition 6.1 Let A C X*. We define #A* to be the following function:

#A (W)= D xalwr)- xa(ws)

lwi| > 1

Given a language A in a specific complexity class, what is the complexity of the decision
problem A* and the function #A*? We first show hardness results for #A* and then derive
corresponding hardness results concerning computing the inverse or extracting the root of a
formal power series.

Theorem 6.2 (a) There is a language A € AC® such that #A* is complete for #L under
logspace many-one reductions (even AC® projections).
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(b) There is a language B € AC® such that computing g=*, where g is the formal power
series x B, is complete for GapL under logspace many-one reductions (and in fact under
AC? projections).

(c) For the language A € ACY of part (a), computing the rth root of the formal power
series xa (for all v > 1) is hard for #L under logspace-Turing reductions.

One proof of part (a) of this theorem essentially follows from results of Flajolet and
Steyaert [FS74]. In [FS74], a language A € DLOG is constructed, and A* is shown to be
complete for NLOG. In [Lan96] it is pointed out that this language A is actually in ACP.
It is easy to verify that that the chain of reductions showing that A* is NLOG-complete is
“parsimonious” (i.e., that in the reduction f from a problem B € NLOG to A*, where B is
accepted by an NLOG machine M, the number of accepting paths of M (z) is the same as the
number of decompositions of f(x) showing that f(x) is in A*), and it is also easy to verify
that A* is complete under AC® projections. (These are the same as first-order projections.
See, for e.g., [Imm87, ABI97, Ste93, Ste95] for background and definitions on projections.)

However, we include a different proof here, both to keep the paper self-contained, and
also because the outline of this proof serves to prepare the ground for some subsequent proofs
in this paper.

Proof.

(a) It is obvious that, for any language A in DLOG, #A* is in #L. (In fact, it is clear
that this holds also for any A in ULOG, and by [RA97, ARZ99] this is likely to hold for all
A in NLOG, too.) Thus it suffices to show #L-hardness.

We use the construction in the proof of Theorem 4.1. Let hy be the #L-complete problem
considered there. It suffices to show that there is a language A € AC?, with the property
that there is an easy reduction from hs to the problem of computing #A*. More precisely,
we will present a reduction r such that for any x which is the adjacency matrix of a graph
G of the restricted type described in the proof of Theorem 4.1, ho(z) = #A*(r(z)).

Consider the matrix Ng from the proof of Theorem 4.1. It has exactly one negative entry,
in position [n — 1,n| (corresponding to the [n,n] entry of the matrix C defined there). We
now consider the Boolean matrix Mg obtained by setting this entry also to +1.

The reduction r we build will take a graph G as input, and will output a particular string
enc(Myg) that encodes the matrix Mg described above.! This string is a list, in row major
form, of the encodings of each position (7, j) in Mg. We will encode each position (,j) by
a string enc(s, j) rather than merely the bit at that position. This encoding consists of the
triple (¢; 7;b); indicating that the (4, j) entry of the matrix Mg is b. We will encode this in
binary, and thus we need encodings of the symbols {), (,;,0,1}. To be specific, let us encode
the binary bits 0 and 1 by 110 and 111, respectively, and we will let 000 and 001 encode the
left and right parentheses, respectively, and 011 will encode the semicolon. All indices 7 and
j will be represented using ¢t = [logn]| bits (with leading zeros), and each of these ¢ bits will
be encoded as above. So for each (i, j), enc(z,j) is a string of length 6t + 18, and enc(Mg)
is the string enc(1, 1)enc(1,2)...enc(1,n)enc(2,1)...enc(n,n). Let us call this string 7(G).
It is clear that 7 is computable in uniform AC? (and in fact r is a projection).

INote that the reduction need not check if G has the restricted form.
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The language A in AC? is the set of all strings w such that w is a substring of enc(N)
for some matrix N, where w satisfies the following properties

(1) w is of the form

enc(1,1) --- enc(l,j) --- enc(l,n)

enc(2,1) --- enc(2,7) --- enc(2,n)

enc(j,1) -+ enc(j, )

where N(j,1) =1, OR
(2) w is of the form
enc(i,i+ 1) < enc(i, g) -+ enc(i,n)

enc(i+1,1) --- enc(i+1,i+1) --- enc(i+1,5) --- enc(i+1,n)
enc(j,1) <o enc(g, i+ 1) < enc(], 7)

where in addition N(j,i+ 1) =1, AND ALSO.
(3) The only word w € A containing enc(n,n) as a substring is

enc(n —1,n)
enc(n,1) --- enc(n,n)

That is, if w is a substring of enc(Mg) for a graph G satisfying the restrictions described
earlier, then w is in A if it is a piece of enc(M¢) that corresponds to one cycle in a cycle
cover (as in Theorem 4.1), where we impose the additional condition we only allow cycle
covers containing a self-loop on node n + 1. (Pieces of the matrix corresponding to a cycle
cover are shown by the dashed lines in Figure 2.) Cycles in the cycle cover have the form
(1,2,...,7) in case (1) and (¢ + 1,4+ 2,...,7) in case (2) above. It is easy to see that A is
in ACO.

Now recall that

#A(w) = Y xalwr) - xa(wy)
w = w1 - wy
lwi| > 1
For any string w of the form r(G), a decomposition of the form w = w; - - - wy, with w; € A
consists of a decomposition of Mg corresponding to a cycle cover having £ cycles. It follows
that if w is of the form r(G), then #A*(w) counts the number of non-zero cycle covers in
Mg that include the self-loop on n as a cycle. Thus, #A*(w) equals perm(N(;), where N is
the top-left (n — 1) x (n — 1) submatrix of Ng. From the proof of Theorem 4.1, this is equal
to h2 (G)

(b) We obtain language B by removing the stipulation (3) in the definition of A in
part (a). Let g be the formal power series xp. That g~! can be computed in GapL follows
from Proposition 5.2. It remains to show that ¢! is hard for GapL; we show this by reducing
hi to g1. Recall that
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hi(G) = #pathsg(1 ~ n) — #pathsg(1 ~ (n + 1))
= #even pathsg (1~ (n+ 1)) — #odd pathsg (1~ (n+ 1))
= (#cycle covers of Mg with even number of cycles)
— (#cycle covers of Mg with odd number of cycles).

(The last equality follows from the proof of Theorem 4.1.)
Consider the same mapping r defined in part (a). For any w of the form r(G) we have,

grw)y = DY (=)fxs(w) - xs(ws)
R,

The properties of the encoding imply that the set of decompositions w = wj - - wy such
that Hle xs(w;) = 1 is in bijective correspondence with all cycle covers of G. Furthermore,
notice that k = 2m for each cycle cover corresponding to a path from 1 ton and & = 2m —1
for each cycle cover corresponding to a path from 1 to n+ 1. Thus, the sum defining ¢g=*(w)
is h1(G) as desired.

(c) Let g be the formal power series x 4 for the language A defined in part (a), and let f be
the formal power series ¢'/" for some positive integer 7. To compute f, apply the expression
for root extraction derived in Lemmas 5.4 and 5.5, and note that the only decompositions
of w = r(G) have an even number of pieces. Thus the expression simplifies to the following:

1) = (7))

Now, using the fact that division and iterated integer multiplication are computable in
uniform TC? [Hes01], it follows that a TCP circuit with a single oracle gate? for f can compute
the #L-hard function #A*(w). (Equivalently, a logspace machine making a single query to
the functional oracle for f can compute the #L-hard function #A*(w).) This completes the
proof. |

We observe without proof that Theorem 6.2 generalizes to levels of the #L hierarchy. This
hierarchy was defined in [AO96] as follows: define #LH(1) to be #L, and let #LH(i + 1) be
the class of functions f such that, for some logspace-bounded nondeterministic oracle Turing
machine M, and some function g € #LH(i), f(z) is the number of accepting computations
of M on input z with oracle g.

Theorem 6.3 For each i, there is a language A in L#LH(i) such that #A*, and conse-
quently, the inversion and root extraction of xa are hard for #LH(i + 1).

Theorem 6.2 effectively puts an end to any plans to investigate the group-theoretic struc-
ture of formal power series corresponding to complexity classes smaller than GapL. Still,
given the close relationship between subclasses of NC! and classes of regular sets ([MPT91]),

2We assume that f is accessed as a functional oracle, but it does not matter very much how the oracle
answers are presented. For a query string w, the oracle can be assumed to return pair of integers (p, q),q # 0
defining the rational p/q = f(w), or the oracle can return a binary string representing f(w) to polynomially-
many bits of accuracy.
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might it be possible to say something useful about these classes by investigating formal power
series corresponding to regular sets? The characteristic function of any regular set is given
by a “rational” formal power series over the integers. (See, e.g., [SS78, BR84].) Thus the
following result indicates that by considering only regular sets, it might be possible to study
at least the class GapNC!.

First, we need to recall the relationship between GapNC! and branching programs. As
defined in [CMTV98|, the class #BP is the class of functions that can be expressed as the
number of accepting paths in branching programs of width O(1) and polynomial length.
Although it is not known if #BP is equal to #NC?, it is known that GapNC! is equal to the
difference of two #BP functions. For a proof, and for more formal definitions, please consult
[CMTV9s].

Theorem 6.4 Let A be any reqular set and let g be the formal power series x4. Then
(a) g € Z << ¥* >(NC).
(b) g7' € Z << T* >(GapNC!).
(c) #A* € #BP.

Proof. (a) Follows from the fact that NC! includes all regular sets.

(b) The inverse of any invertible rational formal power series is also rational. A funda-
mental theorem about rational series is that the rational formal power series coincide with
the “recognizable” formal power series. The definition of “recognizable” formal power series
makes it immediate that computing the coefficient of a word w in a series can be performed
by multiplying together O(|w|) k-by-k integer matrices, where k depends on the series, but
does not depend on w. (For these and other basic facts about formal power series, please
consult a text such as [SS78, BR84].)

It is observed in [CMTV98] that all functions that can be reduced to iterated multipli-
cation of O(1)-by-O(1) matrices are in GapNC!. This completes the proof.

(A direct constructive proof follows from a minor modification of the proof below.)

(c) Let A be accepted by the DFA M = (Q, X, 0, qo, F'). We need to compute the number
of ways in which the input w can be decomposed into non-empty pieces each of which is in
A. We construct a #BP model which tracks such decompositions. Assume that ¥ = {0, 1}.
The idea is as follows: First consider the branching program of length n, width |@Q|, that
corresponds to M in the obvious way. Now stretch the length of this branching program
by a factor of 2 by introducing dummy levels alternating with those corresponding to M.
These dummy levels provide positions to detect potential subwords in A. At the dummy
level, apart from all the identity transitions, there are also transitions from each final state
to the start state. Each path in this branching program corresponds uniquely to a distinct
valid decomposition of w.

Formally, the branching program for inputs of size n has length 2n, and width |Q|. The
nodes of the branching program are labeled (i,k), for k € @, 0 < i < 2n. The source
is the node (0,qp). The sink is the node (2n,qy). For 1 < j < n, include the edges
((25 — 1,k),(24,k))) for each k € Q. Also include the edges ((25 — 1,k), (24, o))) for each
k € F. For 0 < j < n, ifz; = 1 then include the edges ((27, k), (2j+1, k")) where k' = 0(k,1);
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otherwise include the edges ((24, k), (25 + 1, k")) where k" = §(k,0). It is straightforward to
verify that this branching program has the desired number of accepting paths. |

Our main motivation in the use of formal power series within GapNC! was to see if it
could aid in our understanding of the class GapAC?, which in turn provides an alternative
characterization of threshold circuit classes [AADOO]. Since the formal power series of regular
languages are in GapNC! (as indicated by Theorem 6.4), the question of interest is whether
subclasses of this class of formal power series give new characterizations of GapAC® and
other function classes inside GapNC!.

The next theorem, somewhat surprisingly, shows that there are finite languages such
that the inverses of their formal power series are GapNC!-complete. The decision version
of this result is already known: namely, there is a finite language A such that A* is NC!-
complete. (Every regular language whose syntactic monoid is unsolvable is NC!-complete
[Bar89], and Schutzenberger [Sch65] and Margolis (see Chapter 5.3 of [Pin86]) exhibit a finite
prefix code A such that the syntactic monoid of A* is unsolvable, thus showing that A* is
NC!-complete.) However, the above constructions from [Sch65, Pin86] cannot be adapted to
show hardness for counting Kleene closure, since languages that are prefix codes have unique
decompositions in their Kleene closure. In contrast, the proof we describe below constructs
a finite language which is not a prefix code, and the proof does adapt to the decision version
as well.

Theorem 6.5 There is a finite language A such that

(a) computing the inverse of the formal power series xa is complete for GapNC! under
AC? projections.

(b) #A* is complete for GapNC' under AC° reductions which make ezactly one oracle
access.

(c) for each s > 1, computing the sth root of the formal power series x 4 is hard for GapNC!
under TC? reductions using exactly one oracle access.

Proof. (a) By Theorem 6.4 computing the inverse of the formal power series x 4 is in GapNC!
for any finite language A. Thus, we only need to show hardness.

We use the fact that GapNC! coincides with GapBP[CMTV98|. A complete problem for
GapBP and hence for GapNC! is to compute the difference of two functions in width-six
#BP. That is, for each function f in GapNC!, we can build a family of width-6 BPs B,,,
each with a source vertex s and two sink vertices ¢ and ¢', such that

Vn,Vz : |z|n, f(x) = #pathsp, (s~ t) — #pathsg, (s~ t')

Without loss of generality, we assume that s is the first vertex at layer 1 of the BP, and
vertices ¢t and ¢’ are the vertices numbered 1 and 2 at the last layer of the BP. We can also
assume that all source-to-sink paths in the BP are of exactly the same length, say m.

We show that there is a finite A such that computing the inverse of the formal power
series x4 is hard for GapBP. The language A we construct will have alphabet ¥ equal to
the set of all relations on {1,2,---,6}2. Each element of ¥ can be viewed as a bipartite
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graph on {1,2,---,6}2 with two vertical columns of 6 vertices each, and edges going from
the left column to the right column. Thus a word in ¥* represents a width-6 graph in a
straightforward way. We are now ready to define the set A. A is the set of all words over
Y*, such that there exists a path of length < 21 from 1 in the leftmost column to 1 in the
rightmost column, such that this path does not visit 1 at any intermediate column. Clearly,
A is finite as it contains no word of length greater than 21.

Next, we describe an AC? projection 7, such that for any w € ¥*, we have

XZI (r(w)) = #paths, (s ~ t) — #paths, (s ~ t')
This will prove the hardness result.

(1) The first step in computing r(w) is to insert 6 copies of the relation {(z, i+1(mod 6))|1 <
i < 6} in between each two consecutive symbols of w. Note that inserting these 6 sym-
bols has no effect on the number of paths between any two vertices, since together they
are equivalent to the identity relation. Call this new word w'.

(2) The next step is to insert the identity relation id = {(7,4)|1 < i < 6} between each
two symbols of w’ to get w".

(3) Finally, the symbol a defining the relation {(i,4)|i # 2,1 < ¢ < 6} U {(2,1)} is
appended at the end of the string w”.

Consider an edge from i to j in some column (not the last) in the original word w. In
r(w), this edge is replaced by the following sequence of length 14:

i—j—j—j+1(mod6) — j+ 1(mod6) - - - — j + 5(mod6) — j + 5(mod6) — j — j

Note that node 1 is visited in at least one (actually, two) of the columns above.

Now for each edge ¢ — j, the corresponding sequence of 14 edges in r(w) visits 1 twice
if j # 1 and four times if 7 = 1. Also, if we consider the sequence of length twenty-eight in
r(w) that replaces the two-edge sequence i — j — k in w, it is easy to see that the longest
possible subsequence of edges from a 1 to a 1, avoiding 1 in any intermediate position, occurs
if 7 =6 and k = 2 and is of length 21.

We now consider the decompositions of 7(w) into words in A corresponding to the different
s~ t and s ~ t’ paths in w.

Recall that the formal power series for x,' on an input r(w) is given by

Y. (CDxalwn) - xa(w)

r(w) = wy -+ - wy,
lwi| > 1

We claim that there is a bijective correspondence between s-t and s-t' paths in w and
the decompositions 7(w) = w; ---wy, such that [JF_, xa(w;) = 1. More precisely, the s-t
paths in w are in bijective correspondence with decompositions r(w) = wj - - - wy such that
[T, xa(w;) = 1, where w, = a (equivalently |wg| = 1). On the other hand, the s-#
paths in w are in bijective correspondence with decompositions r(w) = wj - - - wy such that
Hle Xa(w;) =1, where wy, # « (equivalently |wy| > 1).
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A path inw: 1—3—~1

The corresponding 13344556611223311
path in r(w): \ L1 L
Another path in w: 1—2—=2

The corresponding 12233445566112221
path in r(w):

Figure 5: From width-6 BPs to #A*.

To see this, first notice that, by construction, each decomposition with w, = a defines a
unique s-t path in w. Conversely, two distinct s-t paths in w give rise to distinct decompo-
sitions of r(w) into words in A. (Why? Consider the first two edges (4, j) and (i, j') where
two paths differ. The cyclic shift from j in 7(w) will reach 1 at a different time than the
cyclic shift from j'. Thus we obtain two distinct decompositions.)

For the case wy # «, observe that « is the last letter of wy. Let w, = wja. For wy
to be in A, it must have a path from 1 in the leftmost column to 1 in o without any 1 in
intermediate positions. This is possible only if w), has a path from 1 in the leftmost column
to the 2 in its rightmost column. Now, it is easy to see that decompositions with w; # «
are in bijective correspondence with s-t' paths in w.

Finally, we claim that & = 2m if wy = a and £k = 2m — 1 otherwise. To see this,
note that |r(w)| is even with the last symbol as « and every intermediate symbol in even
position as id. First, consider r(w) = wy - - - wy, such that Hle xa(w;) = 1, where w = a.
Since id is neither a proper prefix nor a proper suffix of any word in A, it follows that
|ws;| = 1, and each wq; = id, for all ¢ such that 2i < k. By construction, the substrings ws; ;
correspond to the m edges of the underlying s-t path. Thus k£ = 2m. Next, for wy # «a,
notice that wy corresponds to the last edge of the s-t’ path underlying the decomposition.
Hence, k =2m — 1.

It now follows that the coefficient of r(w) in the formal power series for x,' is the
difference in the number of s-t paths and number of s-t' paths in w.

Figure 5 illustrates how a s ~» ¢ path (s ~ t' path) in w is mapped to a s ~ t path
in r(w) and how this path allows r(w) to be decomposed into an even (odd, respectively)
number of pieces.

(b) From Theorem 6.4(c) it follows that # A* can be computed in #NC*.

To show hardness under AC° reductions, we show how an AC? circuit with oracle gates
for #A* can compute #pathsg, (s ~ t) — #pathsg, (s ~ t').

The circuit first computes from w two strings very similar to r(w). Let us call them
r1(w) and ro(w). r1(w) is obtained from r(w) by appending id at the end of w” instead of a.
Note that k is even for every decomposition 7(w) = wy - - - wy, such that [, x(w;) = 1, and
hence, as argued in part (a) above, these decompositions are in bijective correspondence with
s-t paths. Similarly, ro(w) is obtained from r(w) by appending the cyclic shift (i + 1 — )
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at the end of w” instead of a. Now k is odd for every decomposition r(w) = wy - - - wy such
that Hle Xa(w;) = 1, and hence these decompositions are in bijective correspondence with
s-t’ paths.

Thus we have

f(w) = #pathsp, (s ~ t) — #pathsp, (s ~ t') = #A*(r1(w)) — #A* (ra(w))

which can be computed by an AC? circuit with two oracle gates.

This construction can be further modified to yield an ACP circuit with a single ora-
cle gate computing this quantity. Since B, is of constant width and polynomially long,
#pathsp, (s ~ t') can be represented using only polynomially many bits, say m bits. We
can, using standard techniques, convert B, to another width-6 branching program B (whose
length is 2m more than that of B,) with source sg, sink ¢y, such that

#pathsp(so ~ to) = 2™#pathsg, (s ~ t) + #pathsg, (s ~ t').

Now applying the construction r; to this branching program, we can compute all the bits
of #pathsp, (s ~ t) and #pathsg, (s ~ t') in a single oracle call and then compute the
required difference.

(c) For the reduction r; of part (b), similar to the proof of part (c) in Theorem 6.2, we
get, for any s > 1

) = (31 #actrtw)

2m

The new results of [Hes01] show that division (and hence iterated integer multiplication)
is computable in uniform TCC?. Thus there is a uniform TCP circuit which has exactly one
oracle gate accessing the bits of x/*(r(w)) and which computes #A*(r(w)). This completes
the proof.

The proofs in this section indicate the extent to which taking the inverse of a formal
power series is similar to computing the transitive closure, or of taking the Kleene closure of
a language. Let us close this section with an observation in this same spirit, which follows
immediately from part (a) of Theorem 6.2. This may be seen as a slight generalization of a
result in [Mon75], where a result of this form is proved for C= DLOG.

Theorem 6.6 Let C be any class of languages closed under AC® reducibility and contained
in NLOG. Then C is closed under the Kleene * operation if and only if NLOG = C.

7 The Kleene closure of finite languages

In light of Theorem 6.5, if there is to be any hope of clarifying the relative computational
power of GapAC®, TC? and GapNC! by considering the notions of inverses and Kleene
closure, it can only come by considering restrictions on finite sets. In this section we attempt
such a classification for the complexity of A* based on the structure of the finite language
A. Our results closely follow the connection between the structure of finite monoids and the
internal structure of NC!' [Bar89, BT88]. We leave open the possibility of a similar study for
the complexity of #A*.
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Definition 7.1 Let (A,0) be a finite monoid.®> There is a natural homomorphism v : A* —
A that maps a word w to its valuation v(w) in the monoid A. Let F be a group contained in
A and r be a positive integer. The language Ap, C A* is defined as Ap, = {w € A* | |w| <
r,v(w) € F}.

We define the (Ag,)* closure problem as the decision problem (Ag,)*. Firstly, since
(Ar,)* is a regular language, notice that the (Ag,)* closure problem is always in NC*.

To give the intuition behind the formal definition, consider Barrington’s construction[Bar89|
of branching programs for NC!. There, width-5 graphs are considered, where the edges at
each layer form a permutation. Acceptance and rejection correspond, respectively, to the
permutation product across layers evaluating to identity or to some other fixed permutation.
Implementing the proof idea of Theorem 6.5 on these branching programs, we can state
membership in any NC! language as an (Ag,)* closure problem.

Corollary 7.2 Let A be the permutation group Ss, let F' = {m € S5 | (1) = 1}, and let
r =17. Then the (Ap,)* closure problem is NC-complete.

The following result generalizes the above corollary to any nonsolvable monoid and shows
connections between the internal structure of the underlying finite monoid and the complex-
ity of corresponding (A, )* closure problems.

Theorem 7.3 (a) Let A be any nonsolvable monoid. Then there exists a group F C A
and a constant r > 0 such that the (Ag,)* closure problem is NC'-complete.

(b) The (A, )* closure problem is reducible via AC®-Turing reductions to the word problem
over the finite monoid A.

(¢) If A is a solvable monoid then the (Ap,)* closure problem is in ACC®. Furthermore,
if A is an aperiodic monoid then the (Ag,)* closure problem is in ACC.

Proof.

(a) Since A is a nonsolvable monoid, A contains a nontrivial nonsolvable group G with
identity e’.* Since the word problem over G is NC!-complete [Bar89], it suffices to show an
ACP reduction from the word problem over G to an appropriate A%, closure problem. To
be precise, the word problem we consider is

W:={we G |v(w)=¢}

Let G = {¢1. 92, ..., 9m}. Consider the word v = [[,...,. g;tg; in A*. Let w = wyws ... w,
be an instance of W. We map the instance w to the word z = ([[,.;., ; wiu)w,. Notice
that v(z) = v(w). Furthermore, it is not hard to see that by virtue of inserting the word u
between w; and w;y; for 1 <7 < n — 1 we have ensured that the word z can be decomposed
into z = ajay ... ay,, where for 1 <4 < n — 1 we have |o;| < 4m, w; is included in «;, and

3For ease of notation we denote the monoid product aob simply as ab and we also use simply A to denote
the monoid (A4, o) in this section.
4Notice that e’ could be different from the monoid identity e.
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v(a;) = €'. Since v(z) = v(w), it follows that w € W iff z can be decomposed as ajas . .. ay,
where each «; is of length at most 4m — 1 and v(a;) = €’ for all 3.

Letting F' = {¢'} and 7 = 4m — 1 the above argument shows that w ~ z is an AC°
reduction from the NC*-complete word problem W to the (A, )* closure problem.
(b) The (Afp,)* closure problem is the decision problem (Ag,)*. Let us fix the following
word problem over the monoid A:

W :={we A" |v(w) € F}

We will characterize words in the set (Ar,)*. To do so we first define the sets Bad, :=
{r € A7 |v(a') ¢ F for all prefixes z’ of z} and

Test :={z € A" | z = uyzuz,u; € W,z € Bad,}

We claim that (Ap,)* = Test. In order to see this it suffices to observe that if » and
u' are two prefixes of w such that v(u) € F and v(v') € F, and v’ = ux then it holds that
v(z) € F, since F is a group. This guarantees that for each w € (Ap,)* we can break up
W= Q103 . ..y, where for each 1 < i < m, |o;| < r, and «; is the first prefiz of ;. ..o,
such that v(a;) € F. The claim is now easy to see.

To complete the proof, note that to check if z € Test, we can easily design an ACP circuit
with oracle nodes that query the word problem W.
(c) This is an immediate consequence of part (b) and the results of [Bar89, BT88]. |

Remark 1 We leave open the question of characterizing the complexity of (Ap,)* where
F C A is an arbitrary subset. It is not clear if the internal structure of the monoid A has
an effect on the complezity of such (Ap,)*.

8 Concluding remarks

Our main contribution is to show that the study of formal power series in computational
complexity, as introduced by [Li92], can be used to explore aspects of the complexity classes
GapL and GapNC!.

Although tight connections exist between #A* and the arithmetic circuit classes #NC?
and #L, it is not at all clear that this connection exists for larger arithmetic classes. In
particular, it might seem natural to conjecture that there is a set A in LogDCFL such that
A* is complete for LogCFL and #A* is complete for #LogCFL. Neither is known to be true,
and in fact it would be quite surprising if this were shown to be true. For instance, it is
observed in [LH97, Lan88| that applying the Kleene * operation to deterministic context-free
languages characterizes NLOG™PCFX which is contained in LogCFL but is not known to
coincide with it.

It is worth mentioning one additional easy observation about the inversion of formal
power series beyond GapL. Since context-free languages have been extensively studied using
formal power series (see, for example, [KS85]), it may be of interest to know that the inverse
of a context-free language is, in some sense, no more complex than the language itself. The
following theorem makes this precise.
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Theorem 8.1
(a) If A € LogUCFL the formal power series x ' is computable in GapLogCFL.

(b) If A € LogCFL the formal power series x 4" is computable in GapLogCFL /poly.

The proof of part (a) is immediate once it is observed that the coefficients of the matrix
presented in Lemma 5.1 can be computed in GapLogCFL. Part (b) follows because of the
results of [RA97]. It is not clear how to make the second inclusion uniform, although it is
pointed out in [AR98] that this inclusion does hold in the uniform setting if there are sets in
DSPACE(n) with sufficiently high circuit complexity. It is open if there are corresponding
hardness results.

As mentioned in the introduction, an interesting open question which this paper raises
is to discover a classification of finite languages A so that the complexity of #A* falls in
different interesting subclasses of GapNC!. This might give some insight into the internal
structure of GapNC! which is still not well understood [CMTV98, All97].
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