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Abstract

Recent work by Bernasconi, Damm and Shparlinski showed that the
set of square-free numbers is not in AC0, and raised as an open question
if similar (or stronger) lower bounds could be proved for the set of prime
numbers. In this note, we show that the Boolean majority function
is AC0-Turing reducible to the set of prime numbers (represented in
binary). From known lower bounds on Maj (due to Razborov and
Smolensky) we conclude that primality can not be tested in AC0[p]
for any prime p. Similar results are obtained for the set of square-
free numbers, and for the problem of computing the greatest common
divisor of two numbers.
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1 Introduction

What is the computational complexity of the set of prime numbers? There
is a large body of work presenting important upper bounds on the complex-
ity of the set of primes (including [AH87, APR83, Mil76, R80, SS77]), but –
as was pointed out recently in [BDS98a, BDS98b, BS99, Shp98], other than
the work of [Med91, Man92] almost nothing has been published regarding
lower bounds on the complexity of this set. In the context of space-bounded
computation, it was shown in [HS68] that at least logarithmic space is re-
quired, in order to determine if a number is prime. This was improved in
[HB76] to show that the same bound holds even if the number is presented
in unary (and logarithmic space is sufficient in that case). However, these
bounds do not address circuit complexity at all; note for instance that the
unary encoding of prime numbers has trivial circuit complexity. Prior to
the current work, it was not known whether primality testing was in AC0,
i.e., could be accomplished by constant-depth, polynomial-size circuits of
AND,OR, and NOT gates.1

Recall that if F is a family of Boolean functions AC0[F ] is the class
of functions computable by constant-depth polynomial-size circuits using
AND,OR, and NOT gates and gates that compute functions from F . Recall
that the Boolean majority function Maj is defined to be 1 if and only if
at least half of the input bits are 1 and the circuit class TC0 is defined to
be AC0[Maj]. Also for a natural number k, the Boolean function Modk is
defined to be 1 precisely if k divides the sum of the input bits and the circuit
class AC0[k] is defined to be AC0[Modk].

Our results concern three number-theoretic functions. In each case, the
input is an integer or sequence of integers given in binary.

• Primes is the set of prime integers.

• Square-Free is the set of integers x that are not divisible by any
perfect square greater than 1.

• GCD is the set of triples (x, y, i) of integers such that the ith bit of
the greatest common divisor of x and y is 1.

In this note, we prove:

1Independently, it was shown in [LV99] that primality testing is not in AC0, under
some unproved number-theoretic assumptions.
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Theorem 1 TC0 is contained in each of the classes AC0[Primes],
AC0[GCD] and AC0[Square-Free].

It is well-known that for any k, Modk ∈ TC0 and thus our results imply
that Modk belongs to each of the classes AC0[Primes], AC0[GCD] and
AC0[Square-Free]. A fundamental result of Smolensky [Smo87] (building
on earlier work of Razborov [Raz87]) says that if p and q are distinct primes,
and {Cn : n ∈ N} is a sequence of bounded depth circuits using AND, OR,
NOT and Modp gates such that Cn computes Modq(x) on inputs of size n,
then the size of Cn is exponential in nδ for some constant δ > 0.

From this we conclude:

Corollary 2 For any prime p, any circuit family of bounded depth of AND,
OR, NOT and Modp gates that computes Primes, GCD, or Square-Free
for n bit inputs has size exponential in nδ for some δ > 0. In particular these
three languages are not in AC0[p].

For the case of Square-Free and GCD our results strengthen and sim-
plify those of [BDS98a, BDS98b, BS99] who showed that these two languages
are not in AC0.

2 Preliminaries

2.1 Languages, functions and circuits

For a string x ∈ {0, 1}∗, |x| denotes the length of x. Since we are dealing
with number-theoretic functions and our strings often represent integers,
it is convenient to index our strings so that x = xn−1 . . . x1x0 so that the
integer represented by x is

∑
i xi2

i.
A Boolean function family f is a sequence {fn : n ∈ N} of Boolean func-

tions where for some function l(n) = lf(n) that is bounded by a polynomial
in n, fn maps {0, 1}l(n) to {0, 1}. (The typical case is l(n) = n, but it is
often convenient to allow other functions). We follow the common abuse of
notation that f can denote both the family of functions or a single func-
tion fn in the class. We make the usual association between languages over
{0, 1}∗ and function families.

A circuit family C is a set {Cn : n ∈ N} where each Cn is an acyclic circuit
with l(n) = lC(n) Boolean inputs xl(n)−1, . . . , x0 (where l(n) is bounded by
some polynomial function of n), and some number, rC(n), of outputs. {Cn}
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has size s(n) if each circuit Cn has at most s(n) gates; it has depth d(n) if
the length of the longest path from input to output in Cn is at most d(n).

A function (family) f is said to be in AC0 if there is a circuit family {Cn}
of size nO(1) and depth O(1) consisting of unbounded fan-in AND and OR
and NOT gates such that for each n, Cn computes fn on inputs of length
lf(n).

We note the following well-known facts:

Proposition 3 The following functions can be computed by bounded depth
circuits of size polynomial in n:

1. Any function with at most logn input bits and poly(n) output bits.

2. The difference of two integers of at most poly(n) bits.

3. The product of a logn bit integer and an n bit integer.

2.2 Reducibility

A language A1 is ≤AC0

m reducible to a language A2, written A1≤AC0

m A2,
if there is a function f in AC0 such that, for all x, x ∈ A1 if and only if
f(x) ∈ A2.

A1 is ≤AC0

T reducible to A2, written A1≤AC0

T A2 if A1 is recognized by a
family of circuits of polynomial size and constant depth, consisting of NOT
gates, unbounded fan-in AND and OR gates, and oracle gates for A2. (An
oracle gate for A2 takes m inputs x1, . . . , xm and outputs 1 if x1 . . .xm is in
A2, and outputs 0 otherwise.) We write AC0[L] for the class of languages A

satisfying A≤AC0

T L. It is well-known that ≤AC0

T is a transitive relation on
languages.

Note that ≤AC0

m reducibility is a special case of ≤AC0

T reducibility.

3 Proof of the Main theorem

For the proof of our main result, we introduce one more number-theoretic
function.

Definition 1 For natural number j, let pj denote the jth largest odd prime.
The function mult takes two integer arguments x and j where j is between
1 and |x|, and mult(x, j) = Modpj(x), i.e., it is 1 if x is a multiple of pj
and is 0 otherwise.
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Using Chinese remaindering and an observation of Boppana and Lagarias
we will show:

Lemma 4 Maj≤AC0

T mult

Our main lemma is:

Lemma 5

1. mult≤AC0

T GCD.

2. mult≤AC0

T Primes.

3. mult≤AC0

T Square-Free

Theorem 1 follows immediately by combining the two lemmas and the

transitivity of ≤AC0

T reducibility.

3.1 Proof of Lemma 4

This lemma is mostly a routine application of Chinese remaindering.
Fix n sufficiently large. We want to build a circuit to compute Maj(x)

for n bit strings x = (xn−1, . . . , x0) using the mult function. By definition,
Maj(x) =

∨n
t=dn/2e Sumt(x), where Sumt(x) = 1 if x has exactly t 1’s. Thus

it suffices for us to show how to compute Sumt(x) for fixed t ≤ n.
For integer s and natural number m, write s(mod m) for the unique

integer r between 0 and m− 1 such that s− r is divisible by m. For natural
number j and integer r satisfying 0 ≤ r < pj define Mj,r(x) to be 1 if∑

i xi(mod pj) = r.
Let k = dlogne. By the prime number theorem, pk ∼ logn log logn ≤ n

(for n sufficiently large). For integer t and natural number j, let tj =
t( mod pj). The Chinese remainder theorem implies that since p1 · · ·pk ≥ n,∑n

i=1 xi = t if and only if
∑n

i=1 xi(modpj) = tj for j ≤ k. That is,

Sumt(x) =
k∧

j=1

Mj,tj (x).

Thus it suffices to show that if j and r are integers satisfying 1 ≤ j ≤ n
and 0 ≤ r < pj then Mj,r(x) can be computed (for n-bit strings x) by a
polynomial-size O(1)-depth circuit that uses mult gates. This is a slight
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generalization of an observation of Boppana and Lagarias [BL87]. Since pj
is odd, there is some integer exponent uj > 0 such that 2uj ≡ 1 (mod pj).
For x = xn−1 . . . x0, let fj(x) = xn0uj−1xn−10uj−1 . . .0uj−1x10uj−1x0. The
integer represented in binary by fj(x) is

fj(x) =
∑

i

2uj ixi.

Since ∑

i

xi ≡
∑

i

xi2
uji (mod pj)

we have that Mj,r(x) = mult(fj(x) − r, j). This completes the proof of
Lemma 4.

3.2 Proof of Lemma 5

We want to reduce the computation of mult(x, j) (where by definition we
need consider only the case where j ≤ |x|) to each of the three given func-
tions. We first note that by Proposition 3(1), we can build a bounded depth
circuit of size poly(n) that on input j outputs pj .

The reduction of mult to GCD is trivial, since it suffices to compute
GCD(x, pj, i) for all integers i ≤ n to determine whether x is a multiple of
pj .

To reduce mult to Primes we need a fact regarding the distribution of
primes. For natural numbers m and l, let π(2n, m, l) denote the number of
primes q ≤ 2n such that q ≡ l (mod m). It is known that for n sufficiently
large, if p is prime and 1 ≤ l < p ≤ n, then:

π(2n, p, l)∼ 2n

n(p− 1) ln 2
. (1)

This is easily deduced from Theorems 1 and 2 of [P35] (see also Theorem 7.4
and comments at the beginning of Section 8 of Chapter 4 of [P57].) Thus
there is a constant c such that for all large n, for any 1 ≤ l ≤ p− 1, at least
2n/cn of the numbers having at most n bits that appear in the sequence
l, l+ p, l+ 2p, . . . are prime.

This gives rise to the following probabilistic test to see if an n-bit number
x is a multiple of prime p ≤ n. Given x, choose a random n-bit integer y
and a random sign ε ∈ {−1, 1}, and compute x + εpy. (Note that, with
probability at least O(n−1), x + εpy is a positive n-bit number.) The test
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accepts if and only if x+ εpy is prime (which we test using a Primes gate)
and is not equal to p or −p. If x is a multiple of p the test will always reject.
If x is not a multiple of p, then equation (1) implies that the test will accept
with probability at least O(n−2).

Now consider a circuit that performs n4 independent trials of this test in
parallel and takes the OR of the trials. If x is a multiple of pj , all of the tests
reject, whereas if x is not a multiple of pj , then with probability at least
1 − 1/2ω(n), at least one of the tests will accept. Now, as in the standard
argument of [Adl78], there must be at least one sequence of probabilistic
inputs for the circuit having the property that, for all n-bit inputs x, the
OR of the n4 tests is equal to ¬mult(x, j).

This can be seen to be an ≤AC0

T reduction from mult to Primes, since
by Proposition 3 (parts 2 and 3), x + εpy can be computed by bounded
depth circuits of size poly(n).

To reduce mult to Square-Free, we need an analogue of (1) for square-
free numbers. Accordingly for natural number n, prime p and integer l
satisfying 1 ≤ l ≤ p − 1, let S(n, p, l) denote the number of square-free
numbers s satisfying 0 ≤ s ≤ 2n−1, such that s ≡ l (mod p2). To estimate
S(n, p, l), for natural number d, let Td(n, p, l) be the number of integers s,
0 ≤ s ≤ 2n − 1 such that

s ≡ l (mod p2) and s ≡ 0 (mod d2).

By applying the inclusion-exclusion principle we derive that

S(n, p, l) =
∑

1≤d≤2n/2

µ(d)Td(n, p, l),

where µ(d) is the Möbius function, which is defined to be 0 if d is not square
free, and otherwise is (−1)ν(d), where ν(d) is the number of prime divisors
of d. Obviously, Td(n, p, l) = 0 if p divides d and

∣∣∣∣Td(n, p, l)−
2n

p2d2

∣∣∣∣ ≤ 1

otherwise (because if gcd(d, p) = 1 the above system of congruences defines
each such s (mod p2d2) uniquely). Therefore

S(n, p, l) =
∑

1≤d≤2n/2

gcd(d,p)=1

µ(d)

(
2n

p2d2
+O(1)

)
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=




2n

p2

∑

1≤d≤2n/2

gcd(d,p)=1

µ(d)

d2


+ O(2n/2)

=
2n

p2

∞∑

d=1
gcd(d,p)=1

µ(d)

d2
+O(2n/2),

since we can upper bound the difference of the two sums in the last two
expressions by

∑
d>2n/2

1
d2 = O(2n/2). Now, we have:

∞∑

d=1
gcd(d,p)=1

µ(d)

d2
=

∞∑

d=1

µ(d)

d2
−
∞∑

c=1

µ(cp)

(pc)2

=
∞∑

d=1

µ(d)

d2
− 1

p2

∞∑

c=1
gcd(c,p)=1

−µ(c)

c2
,

which implies:

∞∑

d=1
gcd(d,p)=1

µ(d)

d2
=

p2

p2 − 1

∞∑

d=1

µ(d)

d2
.

Now, it is known (see Theorem 4.4 of [P57]) that for s > 1,

∞∑

d=1

µ(d)

ds
=

1

ζ(s)
,

where ζ(s) =
∑∞

n=1 n
−s is the Riemann ζ-function. Since ζ(2) = π2/6, we

conclude:
S(n, p, l) = γ(p)2n +O(2n/2), (2)

where

γ(p) =
6

π2(p2 − 1)
.

Thus (2) provides the desired analogue of (1).
Now, to determine mult(x, j) it is enough to check that xpj is not di-

visible by p2
j . Pick a random n-bit number y and ε ∈ {−1, 1} and (using an

oracle gate for Square-Free) check if pjx + εp2
jy is square-free. If x is a

multiple of pj , the oracle gate always rejects. If x is not a multiple of pj , the
oracle gate accepts with probability γ(p) + o(1). The rest of the argument
is analogous to the case of Primes.
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4 Conclusions and Open Problems

The reduction of mult(x, j) to Primes of the last section is nonuniform
even for fixed j. That is, we can provide no efficient procedure to build the
AC0 circuits that perform the reduction; we can show only that they exist,
via a probabilistic argument. Surely it is obvious that telling if a number if
a multiple of 3 is no harder than telling if a number is composite! Is there
a direct, uniform reduction that captures this intuition?

We have seen that, for a fixed odd prime p, the Modp problem is re-
ducible to the set of primes, written in base two. A similar argument shows
that, for any distinct primes p and q, the Modp problem is reducible to the
set of primes, written in base q. However, the following question requires a

different proof strategy: Is Mod2≤AC0

T Primes?
The theory of many-one reducibility has been extremely useful in char-

acterizing the complexity of many problems, although it has not turned
out to be very useful for studying number-theoretic problems. For exam-
ple, although we know that Mod3 is AC0-Turing reducible to Primes, we
do not know if it is many-one reducible to Primes. Might it be possible
to prove that there is no many-one reduction from Mod3 (or PARITY) to

Primes? This would show that Primes is not NP-complete (under ≤AC0

m

reductions), and in fact would show that it is not complete for any familiar
complexity class. Although in general it is difficult to show that there is no

≤AC0

m reduction from one problem to another (since, for example, the NP
6= NC1 question can be phrased this way), it is worth noting that a set A in

NP is presented in [AAIPR97] such that there is no ≤AC0

m reduction from
PARITY to A.

If Primes were complete for NP (or for any other reasonable complex-

ity class) under ≤AC0

m reductions, the isomorphism theorems of [AAR98,
AAIPR97] show that Primes would be isomorphic to all of the other com-
plete sets for that class, under isomorphisms computable and invertible by
P-uniform depth-three AC0 circuits. In particular, there would be an iso-
morphism of this sort between Primes and Primes×{0, 1}∗. Among other
things, this would yield a fairly “dense” set of primes in P, by looking at the
isomorphic image of {2} × {0, 1}∗. (Observe that it was shown only fairly
recently that there is an infinite set of primes in P [PPS89].) Perhaps the
existence of such an isomorphism would bestow Primes with some prop-
erties that it provably does not have. Perhaps such an isomorphism must
involve multiplication (which cannot be computed by AC0 circuits). That is,
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perhaps it is possible to prove that Primes is not complete for any familiar
complexity class. Of course, in the foregoing discussion we are considering
only unconditional proofs. It is well known, thanks to [Mil76], that Primes
is in P under the Extended Riemann Hypothesis.

Additional observations and speculations of this sort pertaining to the
factoring problem can be found in [All98].

We remark that mult can be AC0-reduced to other natural number-
theoretic problems and thus these problems are also hard for TC0. For
example, consider the problem of computing the parity of ω(x), which is the
number of distinct prime divisors of x ∈ N. For any prime p:

Modp(x) = 0 ⇐⇒ ω(x) + 1 ≡ ω(px) (mod 2).

Thus mult (and Maj) is ≤AC0

T reducible to the parity of ω.
It would be very interesting to obtain similar results for other number-

theoretic problems. For example, it is shown [Shp99] that deciding quadratic
residuosity modulo a large prime q is not in AC0. Note that this question is
equivalent to computing the rightmost bit of the discrete logarithm modulo
q. It would be very desirable to extend this lower bound to the classes
AC0[p] and/or TC0.

Acknowledgment. This paper was essentially written during a visit
by the third author to Rutgers University, whose hospitality is gratefully
acknowledged.
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