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A Lower Bound for Primality
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Abstract

Recent work by Bernasconi, Damm and Shparlinski proved lower
bounds on the circuit complexity of the square-free numbers, and raised
as an open question if similar (or stronger) lower bounds could be
proved for the set of prime numbers. In this short note, we answer
this question affirmatively, by showing that the set of prime numbers
(represented in the usual binary notation) is not contained in ACO[p]
for any prime p. Similar lower bounds are presented for the set of
square-free numbers, and for the problem of computing the greatest
common divisor of two numbers.

1 Introduction

What is the computational complexity of the set of prime numbers? There
is a large body of work presenting important upper bounds on the complex-

ity of the set of primes (including [AH87, APR83, Mil76, R80, SS77]), but -
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as was pointed out recently in [BDS98a, BDS98b, BS99, Shp98], other than
the work of [Med91, Man92] almost nothing has been published regarding
lower bounds on the complexity of this set. To be sure, in the context of
space-bounded computation, it was shown in [HS68] that at least logarith-
mic space is required, in order to determine if a number is prime. This was
improved in [HB76] to show that the same bound holds even if the num-
ber is presented in unary (and logarithmic space is sufficient in that case).
However, these bounds do not address circuit complexity at all; note for
instance that the unary encoding of prime numbers has trivial circuit com-
plexity. Prior to the current work, it was not even known if primality testing
could be accomplished by constant-depth, polynomial-size circuits of AND
and OR gates. That is, it was not known if PRIMES was in ACC.

In this note, we resolve this question, and in fact give a lower bound for
primality that is essentially as strong as is known for any problem in NP.
More precisely, we show that, for any prime p, PRIMES is not in AC°[p].
Our technique actually yields an exponential lower bound on circuit size for
this class of circuits. In order to simplify the exposition, we present only
the superpolynomial lower bound in this note.

Our proof applies equally well to other number-theoretic problems, such
as SQUARE-FREE and GCD. It follows from the results of [BDS98a, BDS98b,
BS99] that these problems do not belong to ACY. Here we extend their
results to the more powerful complexity classes AC°[p]. After presenting
our definitions and the proofs of our main results, we close the paper with
a discussion of related open problems.

2 Preliminaries

A circuit family is a set {C,, : n € N} where each C,, is an acyclic circuit
with n Boolean inputs z1,...,2, (as well as the constants 0 and 1 allowed
as inputs) and some number of output gates yi,...,y,. {C,} has size s(n)
if each circuit C), has at most s(n) gates; it has depth d(n) if the length of
the longest path from input to output in C,, is at most d(n).

A function f is said to be in AC? if there is a circuit family {C,,} of
size n®(1) and depth O(1) consisting of unbounded fan-in AND and OR and
NOT gates such that for each input z of length n, the output of C,, on input
zis f(z).

It has been known since [Aj83, FSS84] that the parity function is not in
ACP. This led researchers to consider the power of AC® circuits that were



augmented with parity gates, and more generally with Mobp,,, gates.
Definition 1 Let m € N. The Boolean MoD,, function is defined as
Mob,,(z) = { 1 4f Y .2; =0 (mod m)

0 otherwise.

where the input string & consists of the bits n&pn_1...T120.

A function f is said to be in ACY[p] if there is a circuit family {C,} of
size n°1) and depth O(1) consisting of unbounded fan-in AND, OR, Mob,,
and NOT gates such that for each input z of length n, the output of C,, on
input z is f(z).

A language (i.e., a subset of {0,1}*) is said to be in AC? (or AC[p]) if
its characteristic function is in AC? (AC°[p], respectively).

2.1 Some Known Lower Bounds

Our lower bounds follow from the following result of Smolensky [Smo87],
which builds on an earlier result of Razborov [Raz87].

Theorem 1 [Smolensky] Let p be a prime, and let m not be a power of p.
Then MoD,, is not in AC°[p].

(In fact, [Smo87] provides an exponential lower bound on the size of AC°[p]
circuits computing MoD,,.)

It is a curious fact that the proof given in [Smo87| relies heavily on
the fact that the modulus p is prime. Amazingly, it remains unknown if
there is any language in NTIME(2") whose characteristic function cannot
be computed by linear-size, depth three circuits of MoDg gates.

A problem that is very closely related to MoD,,, is the problem of deter-
mining if a number (represented in the usual binary notation) is a multiple
of m. Stated another way:

Definition 2
1 if 3,2:2° =0 (mod m)

0 otherwise.

MuLT,,(z) = {
where the input string ¢ consists of the bits xp@,_1...2120.

The Smolensky lower bound can be used to obtain a lower bound on the
Murt,, function. This argument is presented most easily by making use of
the notion of circuit-based reducibility between problems.



2.2 Reducibility

A language A; is Séco reducible to a language A,, if there is a function f
in ACP such that, for all z, z € A; if and only if f(z) € As.

Aq is SélCO reducible to A,, if Ay is recognized by a family of circuits
of polynomial size and constant depth, consisting of NOT gates, unbounded
fan-in AND and OR gates, and oracle gates for A;. (An oracle gate for A,
takes m inputs 4, ...,z,, and outputs 1 if 1 ...z, is in A5, and outputs
0 otherwise.)

The following proposition is well-known, and provides the motivation for
considering these reducibilities.

Proposition 2 AC°[p| is closed under 3’11‘400 reducibility. That is, if

A<ACB  and B e ACp|
then A € AC[p].

0 0
Note that §ﬁc reducibility is more restrictive than §%C

0
The motivation for studying §ﬁc reducibility stems from the fact that
most computational problems that arise in practice turn out to be complete

reducibility.

for some well-known complexity class under §ﬁco reducibility. Number-
theoretic problems such as the ones considered in this paper run counter to
this trend. Almost no number-theoretic problems are known to be complete
for natural complexity classes.

The following fact is a slight generalization of an observation of Boppana
and Lagarias [BL87].

Theorem 3 Let m € N be odd. Then Mob,, §£CO MvuLrt,,.

Proof: Note that it is important that m be odd. If m = 2, the conclusion
is easily seen to fail.

Since m is odd, there is some integer exponent ¢ > 0 such that 2! =
1 (mod m). Our AC® reduction from Mob,, to MULT,, makes use of this
constant ¢. On input ¢ = z,,...2¢, the reduction builds the string f(z) =
2,001z, 10071 .. 0120t 2. It follows easily from the observation

Z z; = Zmﬂti (mod m)

7

0
that this is the desired Sﬁc reduction. O



Corollary 4 Let p be prime, and let m be an odd number that is not a

power of p. Then Murr,, ¢ AC[p].

3 Main Results

Our theorems concern the following three languages:

Definition 3 PRIMES is the set of all strings = € {0,1}* such that 3, ;2"
is a prime number.

SQUARE-FREE is the set of all strings = € {0,1}* such that 3, ;2" is a
number that is not a multiple of any perfect square greater than 1.

GCD is the set of all triples (z,y,i) such that the i*® bit of the greatest
common divisor of  and y is 1. (This just one of many equivalent ways
of defining a language whose complezity is equivalent to the complezity of
computing the greatest common divisor.)

Theorem 5 Let p be a prime number. Then MULT, Séco PRIMES.

Proof: We will need one fact from number theory, regarding the dis-
tribution of primes. Let w(2",p,!) denote the number of primes ¢ having
binary representation of at most n bits, such that ¢ = [ (mod p), where
1 <1< p-1. It is known (see Theorem 7.5 of Chapter 4 of [P57] for
example) that
2"7,

(2", p, 1) ~ n(p—1)n2 n — 00 (1)
for any fixed prime p. Thus there is a constant ¢ such that for all large n,
for any 1 <1 < p—1, at least 2" /cn of the numbers having at most n bits
that appear in the sequence [,l+ p,l + 2p, ... are prime.

This gives rise to the following probabilistic test to see if an n-bit number
¢ is a multiple of p. Given z, pick a random n-bit number y, and (using
an oracle gate for PRIMES) check if z 4 py is prime. If 2 is a multiple of p,
the oracle gate says “no” with probability 1. If z is not a multiple of p, the
oracle gate says “yes” with probability at least 1/cn.

Now consider a circuit that performs cn® independent trials of this test
in parallel. If z is a multiple of p, all of the tests say “no”, whereas if z is
not a multiple of p, then with probability at least 1 — 1/22", at least one of
the tests will return “yes”. Now, as in the standard argument of [AdI78],
there must be at least one sequence of probabilistic inputs for the circuit



having the property that, for all n-bit inputs z, the OR of the cn?® tests is
equal to “MULT,(z).

0
This can be seen to be an 3{30 reduction from MuLT, to PRIMES, since
addition can be computed in AC®. O

Corollary 6 For any prime p, PRIMES is not in AC°[p].

Proof: Combining Theorems 3, and 5, we see that both MoDs and
0
Mobps are §%C
that MOD3§%CO PRIMES, combined with Smolensky’s bound, shows that
PrimEs¢ AC[p], while the fact that MOD5§%CO PriMESs takes care of the
case p=3.0
A much simpler argument suffices to show that GCD is not in AC°[p].

-reducible to PrRIMEs. For any prime p # 3, the fact

Theorem 7 Let p be prime. Then MULTpngélCOGCD.

Proof: It suffices to observe that a number z is a multiple of p if and only
if the greatest common divisor of z and p is p (which in turn is equivalent
to the greatest common divisor not being 1). O

Corollary 8 For any prime p, GCD is not in AC°[p).

Finally we turn our attention to the square-free numbers.

Theorem 9 Let p be a prime number. Then MULT,, §3r400 SQUARE-FREE.

Proof: Again, we will need a fact from number theory about the distri-
bution square-free numbers in residue classes. More precisely, we need an
analogue of (1) for square-free numbers.

Accordingly we denote by S(n,p,l) the number of square-free numbers
s having binary representation of at most n bits, such that s = I (mod p?),
where 1 <1 < p? — 1. Let Ty(n,p,1) be the number of integers m, 0 < m <
2" — 1 such that

m = [ (mod p?) and m = 0 (mod d*).
By applying the inclusion-exclusion principle we derive that

S(n,p, l) = Z ,u(d)Td(n,p, l)a

1<d<2n/2



where yp(d) is the M&bius function. We recall that p(1) = 1, u(d) = 0if m
is a perfect square and p(d) = (—1)"(9) otherwise, where v(d) is the number
of prime divisors of d > 2. Obviously, Ty4(n,p,!) = 0 if ged(d,p) > 1 and

7

R

Td(napa l) -

otherwise (because if ged(d,p) = 1 the above system of congruences defines
the m (mod p?d?) uniquely). Therefore

n

Spd) = Y wa) (g o)

1<d<2n/?
ged(.p)=1

2" :u‘(d) n/2
= 5 Y o)
1<d<2n/?
gcd(d,p)=1

p d=1 d2

ged(d,p)=1

2" o~ p(d)

p2 d2

2" = :u‘(d) n/2
7 X roe
d=1
ged(d,p)=p

d=1

p2

1 1
= (1 - p_) 2 +0(2"%),

where ((s) is the Riemann zeta-function, see Theorem 4.4 of Chapter 3

of [P57]. Therefore

S(n,p,1) = 7(p)2" + 0(2"?), (2)

1(p) = 7r26p2 (1 - 1%) '

Thus (2) provides the desired analogue of (1).

where




This gives rise to the following probabilistic test to see if an n-bit number
z is a multiple of p?. Given z, pick a random n-bit number y, and (using
an oracle gate for SQUARE-FREE) check if z + p’y is square-free. If z is a
multiple of p?, the oracle gate says “no” with probability 1. If z is not a
multiple of p?, the oracle gate says “yes” with probability v(p) + o(1). The
rest of the argument is entirely analogous to the proof of Theorem 5. O

Corollary 10 For any prime p, SQUARE-FREE is not in ACY[p].

4 Conclusions and Open Problems

It is irksome that our reduction from MoD3 to PRIMES is nonuniform. (That
is, we can provide no efficient procedure to build the ACP circuits that per-
form the reduction; we can show only that they exist, via a probabilistic
argument.) Surely it is obvious that telling if a number if a multiple of 3 is
no harder than telling if a number is composite! Is there a direct, uniform
reduction that captures this intuition?

We have seen that, for any odd prime p, the Mop,, problem is reducible
to the set of primes, written in base two. A similar argument shows that,
for any distinct primes p and ¢, the Mob,, problem is reducible to the set
of primes, written in base ¢. However, the following question requires a

different proof strategy: Is MoD, §%COPRIMES?

The theory of many-one reducibility has been extremely useful in char-
acterizing the complexity of many problems, although it has not turned
out to be very useful for studying number-theoretic problems. For exam-
ple, although we know that Mops is ACY-Turing reducible to PRIMES, we
do not know if it is many-one reducible to PrRIMES. Might it be possible
to prove that there is no many-one reduction from Mops (or PARITY) to

0
PriMEs? This would show that PRIMES is not NP-complete (under SI‘%C
reductions), and in fact would show that it is not complete for any familiar
complexity class. Although in general it is difficult to show that there is no

0
Sﬁc reduction from one problem to another (since, for example, the NP
# NC! question can be phrased this way), it is worth noting that a set A in

NP is presented in [AATIPRI7] such that there is no §I‘%CO reduction from
PARITY to A.
If PRIMES were complete for NP (or for any other reasonable complex-
ACO
<

ity class) under reductions, the isomorphism theorems of [AAR98,



AATPRO7] show that PRIMES would be isomorphic to all of the other com-
plete sets for that class, under isomorphisms computable and invertible by
P-uniform depth-three ACP circuits. In particular, there would be an iso-
morphism of this sort between PRIMES and PRIMES x {0,1}*. Among other
things, this would yield a fairly “dense” set of primes in P, by looking at the
isomorphic image of {2} x {0,1}*. (Observe that it was shown only fairly
recently that there is an infinite set of primes in P [PPS89].) Perhaps the
existence of such an isomorphism would bestow PRIMES with some prop-
erties that it provably does not have. Perhaps such an isomorphism must
involve multiplication (which cannot be computed by ACP circuits). That is,
perhaps it is possible to prove that PRIMES is not complete for any familiar
complexity class. Of course, in the foregoing discussion we are considering
only unconditional proofs. It is well known, thanks to [Mil76], that PRIMES
is in P under the Extended Riemann Hypothesis.

Additional observations and speculations of this sort pertaining to the
factoring problem can be found in [A1198].

We remark that several other natural number theoretic problems can be
AC%-reduced to MuLT,, and hence can be shown not to belong to AC°[p].
For example, let us consider the problem of computing the parity of w(z),
which is the number of distinct prime divisors of € N. We remark that

Murts(z) =0 <= w(z)+1=w(32z) (mod 2).

Thus, this problem does not belong to AC[p] for any prime p # 3. Con-
sidering MuLTs(z) and w(5z), we see that this problem is not in AC[p] for
any prime p.

It would be very interesting to obtain similar results for other number
theoretic problems. For example, it is shown [Shp99] that deciding quadratic
residuosity modulo a large prime ¢ is not in AC°. Note that this question is
equivalent to computing the rightmost bit of the discrete logarithm modulo
g. It would be very desirable to extend this lower bound to the classes

ACO[p].
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