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Abstract. Ordered binary decision diagrams (OBDDs) and their variants
are motivated by the need to represent Boolean functions in applications.
Research concerning these applications leads also to problems and results
interesting from theoretical point of view. In this paper, methods from
communication complexity and information theory are combined to prove
that the direct storage access function and the inner product function
have the following property. They have linear m-OBDD size for some
variable ordering 7 and, for most variable orderings 7', all functions which
approximate them on considerably more than half of the inputs, need
exponential 7'-OBDD size. These results have implications for the use of
OBDDs in experiments with genetic programming.

1 INTRODUCTION

Branching programs (BPs) or binary decision diagrams (BDDs), which is just
another name, are representations of Boolean functions f € B,, i.e., f:{0,1}" —
{0,1}. They are compact but not useful for manipulations of Boolean functions,
since operations like satisfiability test, equivalence test or minimization lead to hard
problems. Bryant [6] has introduced m-OBDDs (ordered BDDs), since they can be
manipulated efficiently (see [7] and [19] for surveys on the areas of application).

Definition 1. A permutation 7 on {1,...,n} describes the variable ordering
Tr(1)s- - Tr(n)- A ™-OBDD is a directed acyclic graph G = (V, E) with one source.
Each sink is labelled by a Boolean constant and each inner node by a Boolean
variable. Inner nodes have two outgoing edges one labelled by 0 and the other by
1. If an edge leads from an z;-node to an zj-node, then 7='(¢) has to be smaller
than 7~ 1(j), i.e., the edges have to respect the variable ordering. The m-OBDD
represents a Boolean function f € B, defined in the following way. The input a
activates, for z;-nodes, the outgoing a;-edge. Then f(a) is equal to the label of the
sink reached by the unique activated path starting at the source. The size of G is
measured by the number of its nodes. An OBDD is a 7-OBDD for an arbitrary .

One-way communication complexity (see e.g. [11], [14]) leads to lower bounds for
OBDDs. This method is almost the same as counting the number of subfunctions of
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f if the first variables according to the variable ordering are replaced by constants.
There are functions, for which the OBDD size is very sensitive to the chosen variable
ordering. Moreover, given a m-OBDD for a function f, it is NP-hard to find an
optimal variable ordering for f, see [5], or even to approximate the optimal variable
ordering, see [17].

We will need the following two functions.

Definition 2. i) For n = 2%, the direct storage access function (or multiplexer) on

k + n variables is the function DSA,,(ao, - - .,ax 1, %o, --,Tn 1) = Z||q|, Where ||a]l
is the number whose binary representation is (ag, . ..,a5—1)-

ii) For any even n, the inner product function on n variables is the function
IP (%1, s Xp) = X122 D X3T4 D ... D Tp—1Tp-

Clearly, these two functions have m-OBDD of size O(n) for the ordering of
the varibles used in the definition of the functions. On the other hand, they need
exponential 7-OBDD size for most of the variable orderings (a fraction of 1 —n~¢
for DSA,, and even a fraction of 1 — 27°" for IP,,, see [20]). Another example of a
function with a similar property, so-called disjoint quadratic form, may be obtained
by replacing @ by disjunction in the expression describing IP,,.

These results are stated for error-free representations of f and, up to now, to
the best of our knowledge, nobody has looked at representations of approximations
of f from a theoretical point of view. In this paper, we investigate the influence
of the variable ordering for approximate representations of functions. If not stated
otherwise, by a random input £ we mean an input Z chosen from the uniform
distribution on {0,1}™.

Definition 3. A function g € B, is a c-approzimation of f € By, if Pr(f(%) =
g(%)) > ¢ for a random input & chosen from the uniform distribution.

One of the two constant functions 0 and 1 always is a 1/2-approximation. Hence,
we consider c-approximations for ¢ > 1/2.

We prove the following strengthenings of the previously mentioned lower bounds
on the 7-OBDD complexity of DSA,, and IP,, for a random ordering. For most of
the orderings 7, every function that is a (1/2 + ¢)-approximation of DSA,, or IP,,,
where €, 0 < € < 1/2 is any constant, requires a 7-OBDD of exponential size.
For the exact formulation of the result for DSA,, see Theorem 1. The exact result
for IP,, is remarkably stronger then the formulation above, since it is proved for
better parameters. For the exact formulation see Theorem 2. On the other hand,
the result for DSA,, is of particular interest for genetic programming, since, recently,
DSA,, is frequently used in experiments. The proof combines methods from one-way
communication complexity and information theory.

The problem of approximation is motivated by experiments in genetic
programming using OBDDs, where one searches for a good approximation of
an unknown function given by examples. Our results have consequences for the
situation that the unknown function has a small OBDD for some ordering, but this
ordering is not known. For more details see Section 4.

For completeness, we present also an example of a function that is hard to
approximate for any ordering.

2 THE DIRECT STORAGE ACCESS FUNCTION

First, we state the result informally. There are only a few variable orderings 7
which allow an approximation g, of DSA,, which is essentially better than the
trivial approximations by the constants 0 and 1 (which are 1/2-approximations)
and which, moreover, has a 7-OBDD size growing not exponential.



Theorem 1. Let 0 < § < e. For every large enough n, the following property holds
for a fraction of at least 1 —n=2¢ /™2 of the variable orderings = for DSA,. Each
function which is a (3 +¢ +n= =9/ approzimation of DSA, has a m-OBDD size

which is bounded below by en’.

The proof of this theorem is splitted into Lemmas 1 and 2. Recall that an
ordering 7 for DSA,, is a permutation of n + k variables, where k = logn. In order
to simplify the terminology, we assume that the first n’ =ger [(1 — 2¢)n| variables
according to 7 are given to Alice and the other ones to Bob. First, we derive a
property of random variable orderings 7.

Lemma 1. With probability at least 1 — n=25"/1"2 Alice obtains at most (1 — &)k
address variables, i.e., a-variables.

Proof. The random variable ordering can be produced as follows. We take the k
address variables and randomly choose for them one after another a free position
among the n + k possible positions. Then we continue in the same way with the n
data variables, i.e., the z-variables. During the first k steps of this process, there are
always at most (1 — 2¢)n free positions among the first n’ = | (1 — 2¢)n| positions
and at least n open positions at all. Hence, the probability of each address variable
to be given to Alice, is at most 1 — 2. We can upper bound the probability that
Alice gets more than (1 —¢)k address variables by the probability of at least (1—¢)k
successes in k independent Bernoulli trials with success probability 1 — 2e.

The expected number of successes E[Z] equals (1 — 2¢)k. By Chernoff’s bound,
we obtain

Pr(Z > (1 —¢e)k) =Pr(Z > E[Z] +¢k) < 2"k _ ,—2e?/In2

In the following, we fix a variable ordering = where Alice gets at most (1 — &)k
address variables. She also gets at least (1—2¢)n—k data variables. If Alice’s address
variables are fixed, there are at least n® data variables left which may describe the
output. On the average, at least (1 — 2¢)n® — o(1) of these variables are given to
Alice. In order to enable Bob to compute the output exactly, Alice has to send
him the value of her address variables and those data variables which can describe
the output. If the information given from Alice is much smaller than this, Bob can
compute the value of DSA,, only with probability close to 1/2. The information
given from Alice to Bob is measured by the logarithm of the size of a 7=-OBDD
computing the function DSA,,.

For a rigorous argument, let m be an ordering and let A (resp. B) be the set
of address variables given in 7 to Alice (resp. Bob) and let X (resp. Y) be the set
of data variables given in 7 to Alice (resp. Bob). Clearly, |A U X| = n’ and every
computation in any 7-OBDD reads first (some of) the variables in AU X and then
(some of) the variables in BUY. Let g be a function represented by a =-OBDD G
of size s. Because of the definition of c-approximations, we consider random inputs
(a, b, &, ) where d is a random setting of variables in A, etc. In this situation, the
following holds.

Lemma 2. Pr(DSA,(a,b, #,7) = g(a,b,#,9)) <1— Xl + L (2-21X|Ins)"/.

Before proving Lemma 2, let us demonstrate its application by proving
Theorem 1.

Proof of Theorem 1. Recall that ¥ = logn and let s < e . For every ordering 7,
we have (1-2¢)n—k—1 < | X| < n. Moreover, Lemma 1 implies that with probability



at least 1 — n=2" | we have |A] < (1 —e)k. By substituting these estimates into the
bound from Lemma 2, we obtain that the probability that DSA,, and g have the
same value is at most % +e+ %n_(s_‘s)/z + l%gn—" < % + & +n"(e=9/2_ This implies
the theorem. 0O

For proving Lemma, 2, we need some more notation. Let H(U) be the entropy of
a random variable U and H(U | E) resp. H(U | V') the entropy of U given an event
E or a random variable V' resp. Moreover, let H*(z) = —zlogz — (1 — z) log(1 — )
for z € (0,1).

For each (a,b,y), let

q(a,b,y) = Pr(DSA,(a,b,%,y) = g(a,b,Z,y))

for random assignments Z to the variables in X. The probability, we are interested
in, is the average of all ¢(a,b,y). Let g(a,b) denote the average of q(a, b,y) over all
possible y and, similarly, let g(a) denote the average of ¢(a,b,y) over all possible b
and y. Moreover, for each partial input a, let I, be the set of partial inputs b such
that the variable 24,5 Or 4,5, for simplicity, is given to Alice. Note that H*(z)
is maximal for z = 1/2 and the maximum is equal to 1. Hence, if |I,| > log s, the
next lemma implies that for most of b € I,,, q(a,b) is close to 1/2.

Lemma 3. For every a, we have

Z H*(q(a,b)) > |I,| — logs.
bel,

Proof. Consider the 7-OBDD computing the function g described before Lemma,
2. For any settings a, z, let h(a, x) be the first node, where the computation for a, z
reaches a node testing a variable in BUY or a sink. Note that a computation for
a,b, z,y depends on a,z only via h(a,z). This means, there is a function @ y such
that g(a,b,z,y) = $ y(h(a,z)). Note that the size of the range of h is at most s.

Besides well-known information theoretical inequalities we use the following one
whose proof is postponed to the end of the section.

Claim. Let U and V be random variables taking values in {0,1}. Then H*(Pr(U =
V) ZHUIV).

If (a,b,y) is fixed and b € I,, DSA,, outputs z,;. Using the claim and the fact
that H(U | f(V)) > H(U | V) for each function f, we conclude

H* (q(a7 ba y)) = H* (Pr('i'a,b = ¢b7y (h(a7 j)))
> H(Zap | Do,y(h(a,2))) > H(Zap | Ma, T)).
Now we use the fact H({U+|V) + ... + H{U,|V) > H((U1,...,U;)| V) for a4,
b € I,, and the vector Z, of these random variables. This implies
Z H(i‘a,b | h(aa i')) Z H('i.a|h(a7 5:))
bel,

In the next step we apply the equalities H(U|V) = H(U,V) — H(V) and
H(U, f(U)) = H(U) to obtain

H(Zo|h(a,T)) = H(Zq, h(a, )) — H(h(a,Z)) = H(Za) — H(h(a, T)).

We have H(h(a,Z)) < logs, since there are only s different possibilities for h(a, %).
The random variables &,p, b € I, are independent and take values in {0,1}, i.e.,
&, is uniformly distributed over {0,1}s| and H(%,) = |I,|. This implies

H(ja | h(a7 5:)) 2> |Ia| - IOgS-



Putting all our considerations together, we obtain

ZH q(a,b,y)) > |I,| —logs.
bel,

The function H* is concave. Hence, this inequality implies Lemma 3. O

Proof of Lemma 2. Let A(a,b) = ¢(a,b) — 3. Then we apply the inequality
H*(3+41t) < 1—(2/1In2)t* (estimate Taylor’s expansion using the second derivative)
to obtain

> H*(q(a,b)) =) _ H* ( + A(a, b)) < || = (2/1n2) Y A(a,b)?
bel, belL belL
Together with Lemma 3, we get
1 2
§lns > z A(a,b)
b€l

Using Cauchy’s inequality, we obtain

1/2 1 1/2
ZlA(a,b)|s<|Ia|2A<a,b)2> < (piulms)

bel, bel,

Recall that ¢(a) is the average of all g(a,b). Since b may take 2/l values, we get

a(@) = 57 | X aleb)+ Y aa)

bel, bel,
< om0 <2B|_‘|f |+ZA‘”’>
bel,

<1-27FI7Y(L| — (2/L|In8)'/?) = ¢(|Ll),

where (t) =ger 1 — 271BI=1(¢t — (2t1ns)'/?). The function 1 is concave. Let

ai,...,am, m = 2141 be the possible values of a. Then
1 1 1 4|
= S @) < — Y UL < v (= 3 | = (X124,
1<i<m 1<i<m 1<i<m

The last equality follows, since, by definition, the sum of all |I,,| equals |X]|.
The left-hand side of the above inequality is the average of all g(a) and this
is the average of all Pr(DSA(a,b,%,y) = g(a,b,Z,y)) and, therefore, equal to
Pr(DSA(a, b, %,§) = g(a, b, #,§)). We have proved that this probability is bounded
above by

|X] 1
2 9lA+IBl T 3. olAHIB]

$(X|/24) =1 (2-24X|Ins)"/2.

Since A and B are a partition of the logn address variables, we have 2/4I+1Bl = p
and Lemma 2 follows. O

Proof of the claim. Since U and V take values in {0, 1},

Pr(U=V)= Z Pr(U=a|V =a)Pr(V =a).
ae{0,1}



The concavity of H* implies

H*Pr(U=V)) > > H'PrU=alV=a)Pr(V=a).
ae{0,1}

Since H*(x) = H*(1 — z), we obtain
H'Pr(U=0|V=0a)=H"Pr(U=1|V=0a)=HU|V =0a)

nd
) H*Pr(U=V))> > HU|V=0a)Pr(V=a)=HU|V).
ae{0,1}

Let us add some comments to this result. A random variable ordering for DSA,,
is with a probability of at least n~'°8™ optimal, i.e., all address variables are tested
before each data variable. If we consider cuts as in our proof, Alice gets all address
variables with a probability which is approximately n'°8(1=2¢) Therefore, we need
another approach to improve the result with respect to the fraction of variable
orderings but one cannot obtain a result for an exponentially small fraction. Bob
gets at least 2en data variables. He can output the correct value, if Alice tells him her
address variables and the decisive data variable is among Bob’s variables. Otherwise,
he can guess the right output with probability 1/2 (actually, he may choose always
0 as output). Then his success probability equals 2 + %(1 —2) = % + €. Hence, our
approach cannot lead to substantially better results.

3 THE INNER PRODUCT FUNCTION

In this section, we prove results on the inner product function which are of the same
flavor as the results on the direct storage access function in Section 2. The difference
is that we can prove stronger bounds on the quality of approximation even for a
larger fraction of variable orderings and larger OBDDs.

Theorem 2. Let 0 < § < 1/9. The following property holds for a fraction of at
least 1 — e=49°n of the variable orderings w for IP,,. Each function which is at least
a (3 + 271619973 _approgimation of IP, has a m-OBDD size which is bounded
below by 2°™.

Proof. First, we derive a property of random variable orderings 7. It is convenient
to rename the variables such that IP,(z,y) = 2191 © ... ® Ty 2Yn/2- We give the
first n/2 variables according to 7 to Alice and the other ones to Bob. An index i is
called a singleton if z; is given to Alice and y; to Bob or vice versa.
Lemma 4. With probability at least 1 — e=45"
to at least (1 — §)n/8 singletons.

, a random variable ordering leads

Proof. Let A, resp. A, be the set of z-variables resp. y-variables given to Alice.
Similarly, let B, and By be the corresponding sets of variables given to Bob. Assume,
the random ordering is generated in such a way that the positions of the z-variables
are chosen first. Clearly, we have |4;| + |B;| = n/2. Denote k = |4,| and assume
|Az| > n/4. The other possibility implies |B,| > n/4 and may be handled in a
symmetric way.

Note that |By| = n/2 — |B,| = |A;| = k. The set B, may be constructed by
drawing k balls from an urn with k black balls and n/2—k white balls corresponding
to all possible indices of y-variables. The black balls correspond to indices ocurring



in A, and the white balls correspond to the indices in B,. Clearly, the number of
black balls among the k ones selected for By is the number of indices occurring in
both A, and B,. Hence, the number of drawn black balls is a lower bound for the
number of singletons.

Our chance of getting many black balls is minimal for the minimal value k = n/4.
Then we have a hypergeometric distribution with mean n/8. It is well-known that
the deviation from the mean is larger for the binomial distribution with the same
success probability which is 1/2 in our case. Hence, the probability of getting at
most (1 — §)n/8 singletons is bounded from above by the probability of at most
(1 — d)n/8 successes in n/4 Bernoulli trials with success probability 1/2. Now the
result follows by an application of Chernoff’s bound. O

We only remark that it is even possible to obtain a lower bound of (1 — §)n/4
singletons if we increase the error probability a little bit.

In the following, we try to estimate the probability that IP,(Z) = ¢(Z) on a
random input & = (Z1,...,%n/2,J1,---,¥n/2), Where g is a function represented by
a m-OBDD of size s, assuming, we know the number of singletons determined by
the ordering 7.

Lemma 5. Let m be a wvariable ordering, such that Alice gets among her n/2
variables at least t singletons. Let g be a function represented by a w-OBDD G
of size s. Then, Pr(IP, (%) = g(&)) <  + s/227t/2-1/2,

First we show how this claim implies the theorem. Let ¢t = %(1 — d)n. Assuming
s < 297, we obtain

s1/29-t/2 L 9on/2  9—(1-8)n/16 _ 29— 15 (1-98)n
and the theorem follows from Lemmas 4 and 5. O

Proof of Lemma 5. We consider the communication matrix for IP,, with respect
to the partition of the variables between Alice and Bob, i.e., we have 2"/2 rows
corresponding to the different input vectors for the variables of Alice and similarly
27/2 columns. Each matrix entry is the value of IP,, on the input of the row input
and the column input. If we fix all variables =; and y; where j is not a singleton, we
obtain IPy; or its negation as subfunction. Hence, the communication matrix can
be partitioned to 2! x 2¢-submatrices which are communication matrices for IPs; or
its negation. For each of these submatrices M = (M;;), w.l.o.g. Alice is the owner
of all z-variables and Bob the owner of all y-variables.

It follows by an averaging argument that there is an assignment to the variables
z; and y; where j is not a singleton such that Pr(IP,,(z) = ¢*(z)) > Pr(IP,(Z) =
9(Z)) for the resulting subfunctions IP; and g* of IP,, and g resp. By the above
arguments, we can assume w.l.o.g. that IP; = IPs,. In order to prove the lemma,
it is sufficient to prove

1
Pr(IP} (%) = g* (7)) < 5 + gl/29-t/2-1/2,

Let M* be the communication matrix of g* and let p(M, M*) denote the number
of entries, where M and M™* do not agree. Then

Pr(IP},(7) = g*(#)) = 1 — p(M, M*)/2*".

We will prove that
p(M M*) > 122)5 _ 81/223t/2—1/2
’ -2



which implies the lemma.

Since g* can be represented by a m-OBDD whose size is bounded by s, it follows
from the well-known relations between one-way communication complexity and 7-
OBDD size that the communication matrix of g* has at most s different rows. Let
r1,...,7s contain the different rows of M™*. We partition M* to a small number of
constant submatrices which intuitively implies that M and M™* are quite different.
We permute the rows (i.e., renumber the input vectors of Alice) such that we have
at first a; rows equal to r1, then as rows equal to 2 and so on. The block of a equal
rows can be partitioned for some by to an ay X bg-matrix consisting of zeros only
and an ay, x (2¢ — by)-matrix consisting of ones only. Altogether we have partitioned
M* to at most 2s constant submatrices whose sizes are ay, x by and ay x (2¢ — by),
1<k<s.

Now we consider the corresponding submatrices of M. It is known from Lindsey’s
Lemma (see, e.g., Babai, Frank, and Simon (1986)) that for each subset A of a rows
of M and each subset B of b columns of M it holds that

Y ()M < (2ab)

i€A, jeB

i.e., each not too small submatrix is not constant. It follows that we have to negate
at least 1(ab— (2%ab)!/?) entries of an a x b submatrix of M to obtain a constant
submatrix.

By the conclusion from Lindsey’s Lemma, it follows that

1
p(M,M*) > > 5 (arbr — (2Parby)'/? + ar (2" — bi) — (2'ax(2" — br))'/?)
1<k<s

Hence,

1
MM > Y S(2ar — (Z'a) 2 + (21 - b)),
1<k<s

The sum of all a;, is equal to 2¢ and b,16/2 + (2¢ — by)/2 < 2041)/2 Hence,

1
p(M, M*) > 52215 _ Z 2t—1/2a2/2_
1<k<s

Since z'/2? is concave, we obtain the minimum value of the right hand side for

ar, =2'/sforallk =1,2,...,s. By aroutine calculation, we can derive the proposed
bound on p(M, M*) and hence also the theorem. O

It is now easy to obtain a function which is hard to approximate by 7-OBDDs for
arbitrary variable ordering 7. We define the function shifted inner product ShIP,,
on n/2 x-variables, n/2 y-variables and |logn| z-variables. The z-variables describe
an integer in binary. Then, the function ShIP,(z,y, z) realizes IP,(z%,y), where i
is the value of the binary vector z and z* represents the cyclic shift of the vector of
z-variables by i positions to the right.

It is easy to show that for every ordering of the variables x and y, it is possible to
find a value of z such that the number of singletons is at least n/8. Hence, Lemma 5
implies a lower bound on the size of an approximation of ShIP,, for any variable
ordering.

Corollary 1. The function ShIP, does mot have an (3 + st/2277/16-1/2)
approximation in size less than s for any variable ordering.

Clearly, the approximation in the theorem is very poor, unless s is exponential.



4 THE MOTIVATION FROM AND CONCLUSION FOR
GENETIC PROGRAMMING

Genetic programming was introduced by Koza [12] as a heuristic approach to
construct a program (in the form of an S-expression) computing a function given
by examples. Let us consider genetic programming restricted to Boolean concepts
like Boolean formulas, binary decision diagrams, circuits etc. This restricted form
of genetic programming is closely related to the following type of minimization
problems.

Assume, a model for representing Boolean functions is given. It may be a model
from the list above, but also some weaker model like OBDDs, DNF formulas,
decision trees etc. Moreover, a complexity measure for the given model is specified.
An instance of the minimization problem is described by a set S C {0,1}" of inputs
of a function f of n variables and the values f(x) for all inputs € S. The problem is
to find a function g together with its representation in the given model of complexity
as small as possible and such that g(z) = f(z) for all z in S.

Genetic programming is a very general type of heuristics applicable to this kind
of problems which is expected to allow further progress in this area. Let us point out
that in genetic programming, the usual formulation of the minimization requirement
is that we look for a representation of g of complexity below a bound specified among
the parameters of the run.

In the present paper, we are mostly interested in the situation, where f is a
total function, which is unknown, and we only have the values of f on a set of
inputs S, which is not complete, i.e. S # {0,1}". In this case, the goal is to find a
total function g which agrees with f on examples from S and, moreover, yields a
justifiable prediction of the values of the unknown function f on the inputs not in
S. The pairs (z, f(z)) for all x € S are called training examples and the required
function g is called a generalization of the training examples.

In order to get provable justification, we assume that the examples are chosen
at random, independently and from the same distribution. This allows to use
known results concerning the PAC-learning model, which imply that under certain
assumptions, the generalization problem can be reduced to the minimization
problem. More exactly, it is proved in [3] (see also [4]) that under natural
assumptions, it is possible to specify a complexity bound s and a number m, which
is typically larger than s, so that any function g of complexity at most s, which
agrees with f on m randomly chosen independent examples, is likely to be a good
approximaion of f on all inputs.

In experiments with S-expressions, for a long time, only tree representations
are used. Already Koza [13] has recognized the value of graph representations and
has introduced ADFs (automatically defined functions), i.e., subprograms which
can be used at several places. Droste [8], [9] suggested to use OBDDs and genetic
programming in order to generalize a given set of training examples. In the case of
m-OBDDs for a fixed ordering, subprograms used at several places are automatically
identified and merged by the reduction algorithm. If the unknown function has a
small OBDD representation, then this significantly helps to find the representation.
Successful experiments together with a theoretical background may be found in
[8], [9], [10], [16]. A possibility to adopt an existing learning algorithm for OBDD
using membership and equivalence queries to a heuristic minimization procedure
for incompletely specified Boolean functions is described in [2].

Experiments with minimization for total functions using 7-OBDDs for a fixed
ordering 7 were also performed, see [21], [15].

For the models like Boolean formulas (the Boolean case of S-expressions), neural
networks or even more general circuits, it is hard to compare theoretical results with
experimental ones, since only very partial results are known about the complexity of



these powerful models. On the other hand, OBDDs represent a practically efficient

model for which strong estimates of complexity are known. Hence, they provide a

good opportunity for the comparison between theoretical and experimental results.
Let us recall Occam’s razor theorem from [3].

Theorem 3 ([3]). Let H be a set of functions and f any function on the same
domain. Assume, S is a collection of m examples chosen independently from a
distribution D on the domain. Then, the probability that there exists a function
g € H, which agrees with f on all examples in S, but Pr(g(&) = f(¥)) < 1/2 +¢,
where & is chosen from D, is at most |H| (3 +¢)™.

It is possible to strengthen this theorem using the VC dimension of H, see [4].
However, since we have no nontrivial upper bound on the VC dimension of classes
corresponding to OBDDs, we use the weaker form. This is almost the same as if
we use the formulation using the VC dimension and estimate the VC dimension by
log |H|, which is a general upper bound on the VC dimension of H.

In a typical application of this theorem following [3], the set H is the set of
all functions of complexity at most s in some model. In order to apply Occam’s
razor theorem to OBDDs, we need an upper bound on the number of nonequivalent
OBDDs of a given size s. Droste [9] used a good upper bound on this number based
on a system of recurrence relations. In order to achieve a closed formula for this
upper bound, we use a slightly different model, namely complete OBDDs, which test
every variable in every computation. For complete OBDDs, the following bound is
easy to obtain using the method of counting circuits, see e.g. [18].

Lemma 6. The number of nonequivalent complete w-OBDDs of size s for a given
7 is at most (s +2)2%/s! < (es)®.

Combining Lemma 6 with Theorem 3, it is possible to justify the quality of
the prediction of the unknown function f, obtained by any heuristic minimization
procedure for OBDDs.

Let s be the complexity of the output g of the minimization procedure. We
assume that s is a random variable depending on the random choices made by
the procedure. In this situation, the estimate of the quality of the generalization g
depends on the actual s achieved. Even in this situation, it is possible to achieve a
good level of statistical significance, although the obtained estimate is (very) slightly
worse in comparison to the situation that a bound on s is known in advance.

Definition 4. Let ¢(m,s,d) be defined by the formula

(s +2)In(es) +In %)

1
- 5) = _
2 +e(m,s,d) =exp ( -

Theorem 4. Assume that a heuristic minimization procedure succeeds to find an
OBDD g of size s matching an unknown function f on m independent random
examples chosen from a distribution D. Then, on level § of statistical significance,
we can assume that Pr(g(&) = f(&)) > 3 +&(m, s,8), where & is chosen from D.

Proof. First, let us assume that s is fixed. Moreover, let H be the set of functions
of OBDD complexity at most s. Using Theorem 3, we obtain that the probability
that there is a function g € H, with Pr(g(%) = f(%)) < 1 +&(m, s,0) is at most

(es)° (% + E(m,s,é))m < (e‘j)z.

Using this, we can obtain a bound on the probability that there is a function of the
above property for any s by taking the sum of the bounds above for all considered
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values of s. Since we work with complete OBDDs, it is sufficient to consider s > n.
Clearly, Y02, 8/(es)? < 6. O

It is easy to verify that if § > 0 is a constant and s < am/logm, then
e(m, s,8) > 2-¢(1+00/Inm)) _1 /9 Tt follows that a nontrivial bound requires a < 1.

In order to find a good prediction based on this theorem, it is required that the
heuristic minimization procedure succeeds to find a small OBDD that agrees with all
the training examples. For simplicity, we do not consider the more general situation,
where we allow a difference between the OBDD and some number of the training
examples. Let us call the situation that we find such an OBDD a compression of the
set of training examples, since the size bound required to achieve a good prediction
is almost exactly the bound which guarantees that the number of bits needed to
represent g is less than m.

The results of the previous sections imply that DSA,, and IP, are hard to
approximate by any 7-OBDD for a random #. In the next theorem, we prove,
moreover, that any function f that is hard to approximate in this sense has also the
following property. If we have a set of training examples for function f™, which is
obtained from the function f by an unknown permutation 7 of the variables, then
a reasonable compression of the examples requires also to optimize the ordering
of variables used to represent g. More exactly, if we choose an ordering of the
variables for solving the minimization problem at random before we start the
minimization process and the ordering is not modified during the process, then,
with high probability, almost no compression is possible.

Theorem 5. Let f, s, v, € and a distribution D on {0,1}™ be such that the
following is true: if an ordering © is chosen from the uniform distribution on all
orderings, then with probability at least 1 — v, every m-OBDD h of size at most s
satisfies Pr(f () = h(z)) < L +¢, where & is chosen from the distribution D. Let S
be a set of m independent random examples chosen from D and let © be a random
ordering. Then, with probability 1 — v — (es)?® (% + 6)m, there is mo w-OBDD g of
size at most s that agrees with f on all training ezamples in S.

Proof. Let us call an ordering bad, if it has the property mentioned in the theorem.
A random ordering is bad with probability at least 1 — «. Since the examples are
chosen independently on the ordering, the distribution of the examples does not
change, if we condition according to the ordering. Let us estimate the conditional
probability that the m examples may be expressed using a function g of 7-OBDD
size at most s under the condition that the ordering # is bad. Every m-OBDD
of size at most s matches all the examples with probability at most (% +E)m.
Multiplying this by the number of 7-OBDDs of size at most s yields an upper bound
on the required conditional probability. Hence, the conditional probability that the
examples may not be expressed in complexity at most s is at least 1—(es)® (% + s)m.
It follows that the probability that the ordering is bad and, moreover, the examples
may not be expressed in size at most s is at least (1—+) (1 — (es)® (3 +¢)™). This
implies the theorem. O

This general result may be combined with the results of Sections 2 and 3 to
obtain the following.

Corollary 2. For every large enough n, if we take m = n®Y) examples for DSA,,
from the uniform distribution and choose a random ordering w of the variables, then
with probability at least 1 —n~'/2, there is no m-OBDD of size %m/ logm matching
the given m training examples.
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Proof. Let ¢,¢’ be such that vIn2/2 < e < &’ < 1/2'/19—1/2. Moreover, let § < ¢
be any small positive number and let s = %m/ logm. Using Theorem 1, we obtain
for every large enough n that a random ordering 7 satisfies the following. With
probability at least 1—n—25"/12_there is no (1 +¢')-approximation among functions

of 7-OBDD complexity at most s < e"’. Note that in our situation, (es)® < 2m/10,
Using also Theorem 5, with probability at least 1 — n=2¢"/1n2 _ 9m/10 L+e)" >
1 — n~1/2, there is no 7-OBDD of size at most s matching the given m training
examples for DSA,,. O

Corollary 3. Let 0 < a < 1 be a constant. For every large enough n, if we take
m = n°®, m > n, examples for IP, from the uniform distribution and choose
a random ordering m of the variables, then with probability at least 1 — e~ ("),
there is no m-OBDD of size at most (1 — a)m/logm matching the given m training
examples.

Proof. Let § and € be positive numbers such that § < § and § +¢ < (%)17(1_
Moreover, let s = (1 — a)m/logm. By Theorem 2, for every large enough n, a
random ordering 7 satisfies the following. With probability at least 1 — 6_452",
there is no (% + e)-approximation of IP,, among functions of 7-OBDD complexity
at most s < 297, Note that (es)® < 2(1=®)™_ Together with Theorem 5, we obtain
that with probability at least 1 — e=49"n — 2(1—a)m (3 +e)" =1-e"2M, there is
no m-OBDD of size at most s matching the given m random training examples for
P,. O

On the other hand, for the functions DSA,, and IP,, there are orderings, for
which a good compression is possible. This suggests that including the optimization
of the variable ordering into the minimization procedure often is necessary to get a
good quality of the computed generalization.
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