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Abstract

The LABEL-COVER problem was introduced in [ABSS93] and shown there to be quasi-
NP-hard to approximate to within a factor of 9log’ " n for any constant § > 0. This combina-
torial graph problem has been utilized [ABSS93, GM97, ABMP98] for showing hardness-of-
approximation of numerous problems. We present a direct combinatorial reduction from low
error-probability PCP [DFK*] to LABEL-CoVER. This improves on [ABSS93] in two ways.
First, it improves the previous hardness-of-approximation factor known for LABEL-COVER,

achieving a factor of 218" n where § = 1/ loglog® n for any constant ¢ < 1/2. Furthermore,
we show approximating LABEL-COVER is NP-hard for these large factors, compared to the
quasi NP-hardness, obtained previously.

Our result for LABEL-COVER immediately strengthens the known hardness result for sev-
eral approximation problems as mentioned above, for example the MINIMUM-MONOTONE-
SATISFYING-ASSIGNMENT (MMSA) problem [ABMP98]. Furthermore, we examine a hier-
archy of approximation problems obtained by restricting the depth of the monotone formula
in MMSA. This hierarchy turns out to be equivalent to an AND/OR scheduling hierarchy
suggested in [GM97]. We show some hardness results for certain levels in this hierarchy,
and place LABEL-COVER between levels 3 and 4. This partially answers an open problem
from [GM97] regarding the precise complexity of each level in the hierarchy, and the place
of LABEL-COVER in it.

Introduction

The LABEL-COVER problem, implicit in [LY94], was first formally defined in [ABSS93]. The
input to the LABEL-COVER problem (see definition 1 for a full description) is a bipartite graph
G = (U,V, E), a set of possible labels for each vertex, and a relation for each edge consisting of
admissible pairs of labels for that edge. A labelingis an assignment of a subset of labels to each
vertex. A labeling covers an edge (u, v) if for every label assigned to v there is a label assigned
to u such that together they make an admissible pair according to the above relation. The goal
is to find a minimal labeling that covers all of the edges.

This problem was shown [ABSS93] quasi-NP-hard to approximate to within a factor of
glog'~’n for any constant & > 0 by showing a specific two-prover one-round interactive proof
protocol, which reduces to LABEL-COVER. In [Hoc97] the LABEL-COVER problem is presented
as one of six ’canonical’ problems for proving hardness-of-approximation. Indeed, [ABSS93] re-
duced LABEL-COVER to the CLOSEST-VECTOR problem, the NEAREST CODEWORD problem,
MAX-SATISFY, MIN-UNSATISFY, learning half-spaces in the presence of errors, and a num-
ber of other problems. Their reduction, however, is not from general LABEL-COVER, rather
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relies on a special additional property! of the LABEL-COVER instance that they construct.
While this property is inherently missing in our reduction, we note that the hardness of the
CLOSEST-VECTOR problem has independently been strengthened [DKS98, DKRS99], and from
this follows the hardness for the additional problems mentioned above.

Goldwasser and Motwani [GM97] showed an approximation preserving reduction from LABEL-
CoVER to an AND/OR SCHEDULING problem, thus implying the hardness of approximating to
within the above factors a number of assembly sequencing problems: LINEAR-REMOVE-PART,
REMOVE-PART, SEPARATE-PAIR, FULL-DISASSEMBLY, REMOVE-SET, AND SEPARATE-SET.

Another related problem called MINIMUM-MONOTONE-SATISFYING-ASSIGNMENT (MMSA)
was defined in [ABMP98]. Given a monotone formula ¢ the problem is to find a satisfying
assignment for ¢ with a minimum number of 1’s. This problem was shown [ABMP98] to
reduce to the problem of finding the length of a propositional proof, a problem of considerable
interest in proof-theory. Given some natural proof-system (a specific set of axioms and some
inference rules), and given a tautology ¢, the problem is to find the length of its shortest
proof (measured in steps or symbols). A proof is defined to be a series of tautologies each
being either an instanciation of an axiom or a result of applying an inference rule on previously
obtained tautologies. Approximating this problem was shown [ABMP98] to be as hard as
approximating MMSA (for almost all natural proof-systems). They showed an A-reduction
(i.e. a reduction that preserves hardness-of-approximation ratio to within a constant factor, see
definition in [KST97]) from MMSA to MINIMUM-LENGTH-FREGE-PROOF and to MINIMUM-
LENGTH-RESOLUTION-REFUTATION, where the length is measured either by symbols or by
steps.

A direct reduction from LABEL-COVER to MMSA has been shown in [ABMP98]. Combining
our result with this reduction implies that a stronger PCP characterization of NP — e.g. one with
a polynomially-small error-probability — would immediately give NP-hardness for approximating
MMSA to within n° for some constant ¢ > 0. The question of whether there is a polynomial
approximation (within any polynomial factor) for propositional proof lengths is of great interest
in proof-theory, and a negative reply would imply that a polynomial-time automatic prover does
not exist.

Our Results

We prove that LABEL-COVER is NP-hard to approximate to within o8’ ' n where § =
loglog™n for any ¢ < 1/2. This improves the best previously known results achieving NP-
hardness rather than quasi-NP-hardness, and obtaining a larger factor for which hardness-
of-approximation is proven. Our result also immediately strengthens the results of [GM97,
ABMP98] and shows that the following problems are NP-hard to approximate to within a fac-
tor of 21°8' /B " n for any ¢ < 1/2: MMSA, MINIMUM-LENGTH-FREGE-PROOF, MINIMUM-
LENGTH-RESOLUTION-REFUTATION, AND/OR SCHEDULING, LINEAR-REMOVE-PART, REMOVE-
PART, SEPARATE-PAIR, FULL-DISASSEMBLY, REMOVE-SET, and SEPARATE-SET.

A Formula-Depth Hierarchy

In addition, we show that the MMSA problem can be viewed as a generalization of the LABEL-
CoVvER problem. We examine a hierarchy of approximation problems formed by restricting
the depth of the monotone formula in the MMSA problem. This hierarchy is equivalent to a

'namely that after fixing an edge, the relation is a partial function



hierarchy of AND/OR scheduling pointed out in [GM97]. A monotone formula is said to be of
depth ¢ if it has ¢ — 1 alternations between AND and OR. A depth-i formula is called II; (%;)
if the first level of alternation is an AND (OR). It is easy to see that the complexity of MMSA
restricted to ¥;,; formulas is equivalent the complexity of MMSA restricted to II; formulas,
denoted MMSA;.

Each MMSA; is at least as hard to approximate as MMSA;_;. MMSA, is trivially solvable
in polynomial time. MMSA,, is already quite harder, and actually a simple approximation-
preserving reduction from SET-CoOVER to MMSA, was shown in [ABMP98], implying that
MMSA, is NP-hard to approximate to within logarithmic factors [RS97]. In fact, the two
problems can be easily shown to be equivalent, thus the same greedy algorithm for SeT-
CoVER [Joh74, Lov75] approximates MMSA, to within a factor of Inn. We know of no previous
hardness result for MMSA3. A reduction from LABEL-COVER to MMSA, was shown indepen-
dently in [ABMP98] and [GM97].

We show how to translate MMSAj3 to LABEL-COVER, altogether placing LABEL-COVER some-
where between levels 3 and 4 in the hierarchy. This partially answers an open question from
[GM97] of whether or not LABEL-COVER is equivalent to level 4 in the hierarchy. Furthermore,
we examine the (previously unknown) hardness of MMSA3 and via a reduction from PCP to
MMSAj; show that it is NP hard to approximate to within the above large factors. This imme-
diately follows through for MMSA; (for every ¢ > 3) and for LABEL-COVER. Our reductions all
involve a polynomial sized blow-up, thus the hardness-of-approximation ratios are polynomially
related. For the asymptotic approximation ratios discussed here, this polynomial blow-up is
irrelevant.

If we denote the relation reducible with a polynomially related approzimation-ratio by < we
can write:

PCP <« MMSA3; < LABEL-COVER € MMSA,; < ... € MMSA;

We summarize the above in the following table:

‘ Formula Depth ‘ Approximation Algorithm ‘ NP-Hardness Factor ‘

MMSA, 1 -
MMSA, Inn Q(logn)
MMSA >3 n glog'~n

Technique

We show a direct reduction to LABEL-COVER from low error-probability PCP with parameters
D and e. Namely, we begin with a system of local-tests (Boolean functions) each depending on
D variables ranging over {1...1/e}. The PCP theorem states that it is NP-hard to distinguish
between the ’yes’ case where the whole system is satisfiable, and the ’'no’ case where every
assignment satisfies no more than an ¢ fraction of the local-tests. The focus of [DFK*] was
on D = O(1), and thus only an error-probability of ¢ = 9-log' ™’ n for any constant § > 0
was claimed. This alone strengthens the hardness of LABEL-COVER from quasi-NP-hardness
to NP-hardness, but with the same hardness-factor as before. For our purposes however, the
best result is obtained by choosing D = loglog®n for any ¢ < 1/2 and ¢ = 9-log' M/ P)n,
These parameters give the result claimed above. Notice that our direct reduction immediately
implies that a stronger PCP characterization of NP — e.g. one with a polynomially-small



error-probability and constant depend as conjectured in [BGLR93] — would immediately give
NP-hardness for approximating LABEL-COVER to within n¢ for some constant ¢ > 0.

Structure of the Paper

Our main result for LABEL-COVER is proven in section 1. The hardness result for MMSAj is
proven in section 2, via a reduction from PCP. We then show, in section 3 a reduction from
MMSA; to LABEL-COVER thus placing LABEL-COVER between levels 3 and 4 in the hierarchy.
This re-establishes the hardness result for LABEL-COVER already shown in section 1. We choose
not to omit section 1 since it shows a direct simple proof for the hardness of LABEL-COVER.

1 Label Cover

The LABEL-COVER problem is defined as follows.

Definition 1 (LABEL-CoVER (LC,)) The input to the LABEL-COVER problem is a bipartite
graph G = (V1, Vs, E) (where E C V1 x V), and a set of possible labels B, and By for vertices
V1 and V3 respectively. Also included in the input is a relation I1 C E X By X By that consists of
admissible pairs of labels for each edge. A labeling of the graph is a pair of functions (P1, Pa)
where P; : V; — 2Bi for i = 1,2; in other words, (P1, P2) assigns a set of labels — to each vertex of
the graph. The l,-cost of the labeling is the L, norm of the vector (|Py(v})|, ..., |P:1(v})]) € ZM!
(where Vi = {vi,...,v7}). A labeling is said to cover an edge e = (vy,vs) if both Pi(v1) and
Pa(v2) are non-empty, and for every label by € Py(va) there exists a by € P1(v1) such that
(e,b1,b3) € II. A total-cover of G is a labeling that covers every edge. The problem LC, is to
find a total-cover with minimal l,-cost (1 < p < o0).

In this section we show a direct reduction from PCP to LABEL-CoVER with [, norm, 1 <

p < 0o, such that the approximation factor is preserved.

Let us denote g.(n) def glog ™. Our reduction will imply that LABEL-COVER is

NP-hard to approximate to within factor g.(n) for any ¢ < 1/2. Our starting point is the PCP
theorem from [DFK*],

1—1/loglog®n

Theorem 1 (PCP Theorem [DFK™]) Let ¥ = {41, ...,¥,} be a system of local-tests over
variables V = {z1, .., 2} such that each local-test depends on D = loglog®n variables (for any

c < 1/2), and each variable ranges over a field F where |F| = 0(2(1°g”)1_1/O(D)). It is NP-hard
to distinguish between the following two cases:

Yes: There is an assignment to the variables such that all v, ..., ¥, are satisfied.

No: No assignment can satisfy more than |27| fraction of the 1;’s.

We will show LABEL-COVER to be NP-hard to approximate to within a factor of g, where
g = gc(n) is fixed for some arbitrary ¢ < 1/2. Choose some ¢ < ¢’ < 1/2, let F be a field with
|F| = O(ge(n)), and let ¥ = {4)1,...,%n} be a PCP instance as in the above theorem.

We construct from ¥ a graph G = (U,V, E) with U def

every appearance of a variable in ¥ and V def {v1, .., v,} having a vertex for every test ¢ € W.

{u1,...,un.p} having a vertex for



We denote U(z) C U the set of vertices corresponding to a variable z. Every test is connected
by an edge to every appearance of each of its variables. The edges will be

% {(u,v;) | ¢; depends on a variable z and v € U(z)}

The possible set of labels for U is B; = F the range of the variables, and for V is By def FP
the set of possible assignments to the tests. The relation II will consist of all ((u, v;), r, ) where
the restriction of ' € FP to the variable z for which u € U(z) gives r:

17 %/ ((w,v5),7]e,7) |1 < j <m, u€ Uz), ¥; depends on z, r satisfies 1; }

Proposition 1 (Soundness) If there is a satisfying assignment for ¥, then there is a total-
cover for G with l,-cost 1, and ly-cost n - D.

def

Proof: Let A : V — F be a satisfying assignment for ¥. Define P;(v;) = {A(z;)} and
Pa(d;) des (A(zi,), .., A(zip)) | ; depends on ;,,..,2;, }. Obviously, this is a total-cover of
lo cost 1 and l;-cost n - D. [ ]

Proposition 2 (Completeness,,) If there is a total-cover for G with l,-cost g, then there is

1
an assignment A satisfying 1/g° fraction of . Hence if g < |F|?D, then ¥ is satisfiable.

(note that this indeed holds for the g = g.(n) chosen above).
Proof: Let (P1,P2) be a labeling for G that is a total-cover with [,-cost g, i.e.

max(|P1(v)]) = ¢

We define a random assignment for the variables V' by choosing for every variable z; a value
uniformly at random from P;(u) where v € U(=;) is arbitrary, say the vertex in U(z;) with
minimal index. Every label in P;(v;) must satisfy 1);, otherwise it cannot be covered by the
definition of II. A test 1; is satisfied with probability |Ps(v;)|/gP > 1/gP since each value
r € Pa(v;) corresponds to an assignment that satisfies 1; and such that r|,; € P;(u) for every
vertex u € U(z;) and variable z; appearing in 1;. We deduce the existence of an assignment
that satisfies at least 1/g” = —1— fraction of the tests in ¥. ]

J7

Proposition 3 (Completeness;) If there is a total-cover for G with l;-cost g-nD, then there

1
is an assignment A salisfying > % . W fraction of ¥. Hence if g < |7:2|12)D, then ¥ 1is
satisfiable.
(note that this indeed holds for the g = g.(n) chosen above).

def

Proof: Let (P1,Pa) be a total-cover with I; cost g - nD. For every variable z, define A(z) =
Nucv(z) P1(u) C F. Denoting by ¥, C ¥ the set of tests that depend on the variable z;, it
follows that

Dol [A(2)| < ) |Pi(w)| =g -nD
i=1 uelU
Consider the procedure of choosing a test ¢ €g ¥ uniformly at random and then choosing

a variable ¢ €g v uniformly at random. The probability of choosing z is %. The above



equation is equivalent to E(|A(z)|) < g where E(|A(z)|) denotes the expectation of |A(z)| for
z is chosen by the above procedure.
We call a variable z for which |A(z)| > 2D - g, a bad variable. The Markov inequality yields

PrIPi(e)| > o E(A@)] <

which means that (substituting a des 2D) the probability of hitting a bad variable is less than
1
ﬁ.

— > Pr [z is bad]
2D YPEV,, €Y

= Pr‘I’ [ contains a bad variable] - pr [z is bad | ¢ contains a bad variable]
€ z€

1
> P tai bad variable] - —
> b [ contains a bad variable| D
Multiplying by D, we deduce that at least half of the tests ) €g ¥ contain no bad variable.

Finally, we apply the ’weak notion of satisfiability’ paradigm as follows. Define a random
def

assignment A for ¥ by choosing, for every variable z, a random value a € A(z), Agr(z) = a.
For a test 9; and a value r € P;(d;), the probability that each variable z € v; was assigned
a=r|,is H¢€¢i|A(1—a_-)| (recall that r satisfies 9; so this is a lower bound on the probability that
; is satisfied by Ag). For tests that contain no bad variable, this probability is > W.
1

Hence if g < |]:2|12)D there is an assignment that satisfies at least

1 1 B 1

2 (2D-g9)° 2.7
fraction of the tests, which implies that ¥ is satisfiable. [ |

Remark. It is easy to see that the above carries over for any [, norm, 1 < p < oo.

2 Reducing PCP to MMSA;

The Minimum-Monotone-Satisfying-Assignment (MMSA) problem is defined as follows,

Definition 2 (MMSA) Given a monotone formula @(z1, .., zr) over the basis {A,V}, find a
satisfying assignment A : {1, .., 2z} — {0, 1}, ¢(A(z1), .., A(zr)) = TRUE minimizing Z?:l A(z;).

MMSA; is the restriction of MMSA to formulas of depth-i. For example, MMSAj is the problem
of finding a minimal-weight assignment for a formula written as an AND of ORs of ANDs.
In this section we show a direct reduction from PCP to MMSAj;, that preserves the approx-

. . d . 17 .
imation factor. Let us denote g.(n) of glog ™. Qur reduction will imply that MMSA3
is NP-hard to approximate to within factor g.(n) for any ¢ < 1/2. As before, our starting point

is theorem 1 (PCP).

1—-1/loglog®n

Fix ¢ = g.(n) for some arbitrary ¢ < 1/2, and fix ¢ < ¢’ < 1/2 arbitrarily. Take F to
be a field with || = O(go(n)), and D = O(loglog® n). Let ¥ be a PCP instance as in



theorem 1. For a test ¥ € ¥ and a variable z € V, we write ¢ € 1 when % depends on z, and
denote ¥, = {¢Y € ¥|z € v}. We also denote the set of satisfying assignments for ¢ € ¥ by
Ry C FD.

We construct the monotone formula ® over the literals B as follows.

B |J {Blz*,d]|p€¥,, acF}
z€V

This set has one literal B[z¥, a] for every variable z € V, and test ¥ € ¥, in which it appears,
and value for it a € F (altogether |B| = nD - |F|). The pair of variable ¢ and assignment a for

it will be represented by the conjunction L[z, a des Nyew, B[z¥,a)]. We set

2B)Z AN V A Lzl

PYeY rERy =€y

This is a depth-3 formula, since the conjunction of conjunctions is still a conjunction.

Proposition 4 (Completeness) If ¥ is satisfiable, then there is a satisfying assignment for
®, whose weight is n - D.

Proof: Let A : V — F be a satisfying assignment for ¥. Define an assignment A’ : B —
{true, false} for the literals of ® by setting A'(B[z¥,a]) = true iff A(z) = a. This is a
weight-nD assignment, and obviously satisfies ®. [

Proposition 5 (Soundness) If there is a weight-gnD satisfying assignment for ®, then there
is an assignment satisfying 1/2(2Dg)P fraction of V.

Proof: Let Ap : B — {true,false} be a weight-gnD satisfying assignment for . For each

variable z € V, let A(z) def {a € F| As(L[z,a]) = true}. Since Ag satisfies  and since every
variable z appears in some test z € ¢, A(z) # ¢. It follows that

> |%:| |A(x)| < g-nD
zeV
Consider the procedure of choosing a test 1 €z ¥ uniformly at random and then choosing a
variable # €g % uniformly at random. The probability of choosing z is EB' The above equation
is thus equivalent to E(|A(z)|) < g where E(|A(z)|) denotes the expectation of |A(z)| with z
chosen by the above procedure.

We call a variable z for which |A(z)| > 2D - g, a bad variable. The Markov inequality yields

Prl|A(2)| > 2D - B(A(2)))] < 55

which means that the probability of hitting a bad variable is less than %.

— > P is bad
2D 2 et ey @8 badl

= grq’ [ contains a bad variable] - l:éfp [z is bad | ¢ contains a bad variable]

1
> P tai bad iable] - —
> ) ;'I: [ contains a bad variable| D



Multiplying by D, we deduce that at least half of the tests ¥ €g ¥ contain no bad variable.
Finally, we apply the ’weak notion of satisfiability’ paradigm as follows. Define a random
assignment A for ¥ by choosing, for every variable z, a random value a € A(z), A(z) =
For each test 1/ € ¥ there is at least one value r € Ry with A, As(L[z,7|s]) = true since
Ag satisfies ®. The probability that each variable z € 1 was assigned a = r|, € A(z) is
Hz€¢|A(1—z)|' For tests that contain no bad variable, this probability is > W. Hence there is

an assignment that satisfies at least
1

(2D - g)P
fraction of the tests. [
We saw in proposition 4 that if ¥ were a PCP ’yes’ instance then there is a weight-nD
satisfying assignment for ®. On the other hand, if ¥ was a PCP ’no’ instance (i.e. any
assignment satisfies no more than 2/ |F| fraction of the tests), then there cannot be even a
weight-gn D satisfying assignment for ®. Otherwise proposition 5 would imply that there is an
assignment satisfying 1/2 - (2Dg)P > 1/g?P > 2/ |F| fraction of the tests (the last inequality
follows mainly because ¢’ > ¢).

1
2

3 Reducing MMSA; to LABEL-COVER

In this section we show a reduction from MMSAj3; to LABEL-CoOVER. This shows that MMSA;
is no-harder than LABEL-COVER, and (together with the reduction from [ABMP98]) places
LABEL-COVER between level 3 and 4 in the '"MMSA-hierarchy’. It also re-establishes the result
in section 1 showing NP-hardness for approximating LABEL-COVER to within the above factor.

An instance of MMSAj is a formula
def I J K
= AV A Bijw
i=1 j=1 k=1

where the B; ;1 are literals from the set {x1,..,x1} for some L < I-J-K. We construct a graph
G = (V1, V,, E) with vertices V3 def {v1,..,vr} for the literals, and V5 def hd {d?,..,dy} for

w=1
W copies of the I disjunctions (where W is chosen large enough, e.g. W = L). The edges in E
connect every literal to the disjunctions in which it appears,
def .
E = ('Ul:d:'u) | 37, k, Bi,j,k = Xl}

The sets of possible labels are B, def {0,1,...,W} and B, def {1,...,J - W}. The relation II

is defined by setting for every edge e = (v, d¥) and label jw € By an element (e, w, jw) € II if
the literal x; appears in the j*® conjunction of the #*® disjunction (i.e. dk, B;jr = x1). If not,
we set (e, 0, jw) € II.

Proposition 6 (Completeness) If there is a satisfying assignment for ® with weight t, then
there is a total-cover for G with ly-cost L+t-W = (t+1) - W.

Proof: Let A be a weight-t satisfying assignment for ®. Define a cover as follows, for every
vy € V7 set
{0,1,..,W} A(x;) = true
def
Pi(v) =
{0} otherwise



For every d}’ € V3 let Py(d}’) des {jow} where jqo is the smallest index for which AK_, A(B; o 5) =
true (such an index jo exists because A satisfies ). Obviously P;, P2 are non-empty, and the
l; cost of the labeling is exactly L+t -W.

Let us show that the labeling (P1,P2) is a total cover. Let e = (v;,dY) be an arbitrary
edge, and let jw € Py(dy’). By definition of Py, j is such that A(B;;x) = true for all 1 <
k < K. In addition, the edge e exists because x; appears in the i*! disjunction (call these
appearances B;j k., .., Bijpkn, B > 0). If 5 € {j1,..,jr} we use (e,w,jw) € II to cover
e, since A(B; j=;, k.) = true and so Pi(v;) = {0,1,..,W} and in particular w € Py(v;). If
7 € {j1,..,ir} (i-e. x; doesn’t appear in the j** conjunction of the i" disjunction) we can cover
e by (e, 0,jw) € II, since 0 € Py (v;) for every vertex v; € V3. [ ]

Proposition 7 (Soundness) If there is a total-cover for G with l;-cost g -tW , then there is a
satisfying assignment for ® with weight gt.

Proof: Let (P1,P2) be a total cover with I; cost gt - W. Since Vv € V7 P;(v) C {0,1,.., W},
and 3, v, |P1(v)| = gt-W, there must be at least one wg > 0 for which [{v| wo € P1(v) }| < gt.
We claim that the (weight-gt) assignment A defined by assigning x; the value true if and only
if wo € P1(vi1), satisfies ®:

A label b € Py(d;®) # ¢ must be an integer multiple of wg, otherwise it cannot be covered.
We will show that for every i, the j" conjunction (where j = b/wp) is satisfied. For this
purpose we need to show that the literal x;, represented by B; ; is assigned the value true for
every k, or wg € Pi(vy,). This is immediate since there is no other way of covering the edges

er =f (vi,,d;°), and (P1,P3) is a total-cover.
|

Summing up propositions 6 and 7, we see that if the original formula ® had a satisfying
assignment of weight ¢, then the LABEL-COVER instance has a total-cover whose [;-cost is
W(t+1). If, on the other hand, every satisfying assignment for ® has weight > g¢, then every
total-cover has l;-cost > g - tW. Thus choosing g = g.(n) and by the result in the previous
section we deduce that it is NP-hard to approximate LABEL-COVER to within a factor of
% >g/2= Q(210g1_1/D ™) where D = loglog®n for any ¢ < 1/2.

The proof for other I, norms follows directly.

4 Discussion and Open Questions

The MMSA Hierarchy

We considered a hierarchy of approximation problems, equivalent to that in [GM97]. We showed
a new hardness-of-approximation result for it (starting from the third level). Are higher levels
in this hierarchy even harder to approximate, perhaps to within some polynomial n® factor?
Such a result would immediately strengthen the known hardness results for the aforementioned
problems in [GM97, ABMP98].

We know that LABEL-COVER resides between levels 3 and 4 in this hierarchy. However, the
factor for which it is NP-hard to approximate LABEL-COVER is the same as for MMSA; for
1 > 3. Is this an indication that the hierarchy collapses, or is there really a difference in the
hardness of hierarchy levels for ¢ > 37



A Depend-2 PCP Characterization of NP

In [ABSS93] LABEL-COVER was used to prove the hardness of the CLOSEST-VECTOR problem
along with several other problems. However, they used a slightly modified version of LABEL-
COVER, in which after fixing an edge, the relation Il C E X B; X B is a partial function. Our
result inherently cannot be extended to this version, the main obstacle being that there is no
known PCP characterization of NP with ezactly two provers (i.e. a PCP test-system where
each tests accesses exactly two variables, called depend-2-PCP). Compare this to the known
low error-probability PCP characterization of NP [RS97, DFK*] where each test depends on a
constant (> 2) number of variables. Whether or not such a characterization exists remains an
open question. Note that it is highly unlikely that this problem is in P since such an interactive
proof protocol for N P exists [LS91, FL92, Raz98], with a quasi-polynomial blow-up.

For proving the hardness of approximating the CLOSEST-VECTOR problem, this obstacle
was bypassed [DKS98] by showing NP-hardness for a different problem called SSAT. SSAT
could then be used instead of depend-2-PCP for proving NP-hardness for approximating the
CLOSEST-VECTOR problem (and other problems) to within large factors. The main difference
between LABEL-COVER and SSAT is that SSAT deals with integer linear combinations i.e.
allowing 'negative-weights’, while LABEL-COVER deals with subsetsi.e. allowing only ’'positive-
weights’. SSAT and LABEL-COVER make up two ways of overcoming the lack of a depend-2
PCP characterization of NP.
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