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Approximating SVP,, to within Almost-Polynomial Factors is
NP-hard

I. Dinur *

Abstract

This paper shows SVPs, and CVPy to be NP-hard to approximate to within any factor
up to nl/1°81987% This improves on the best previous result [ABSS93] that showed quasi-
NP-hardness for smaller factors, namely 2log" ™" n for any constant £ > 0. We show a direct
reduction from SAT to these problems, that combines ideas from [ABSS93] and from [DKS98,
DKRS99], along with some modifications. Qur result is obtained without relying on the PCP
characterization of NP, although some of our techniques are derived from the proof of the
PCP characterization itself [DFK*].

Introduction

Background

A lattice L = L(v1, .., vn), for a basis vy, .., v, € R™ is the additive group generated by the basis
vectors, i.e. the set L = {d a;v; | a; € Z}. Given L, the Shortest Vector Problem (SVP,)
is to find the shortest non-zero vector in L. The length is measured in Euclidean /, norm
(1 < p £ ). The Closest Vector Problem (CVP,) is the non-homogeneous analog, i.e. given
L and a vector y, find a vector in L, closest to y.

These lattice problems have been introduced in the previous century, and have been studied
since. Minkowsky and Dirichlet tried, with little success, to come up with approximation algo-
rithms for these problems. It was much later that the lattice reduction algorithm was presented
by Lenstra, Lenstra and Lovész [ILL82] , achieving a polynomial-time algorithm approximating
the Shortest Lattice Vector to within the exponential factor 27/2, where n is the dimension of
the lattice. Babai [Bab86] applied IIL’s methods to present an algorithm that approximates
CVP to within a similar factor. Schnorr [Sch85] improved on IM.’s technique, reducing the fac-
tor of approximation to (1+¢)™, for any constant € > 0, for both CVP and SVP. These positive
approximation results hold for I, norm for any p > 1 yet are quite weak, achieving only ex-
tremely large (exponential) approximation factors. The shortest vector problem is particularly
important, quoting [ABSS93], because even the above relatively weak approximation algorithms
have been used in a host of applications, including integer programming, solving low-density
subset-sum problems and breaking knapsack based codes [LO85], simultaneous diophantine ap-
proximation and factoring polynomials over the rationals [II1.82], and strongly polynomial-time
algorithms in combinatorial optimization [FT85].

Interest in lattice problems has been recently renewed due to a result of Ajtai [Ajt96], showing
a reduction, from a version of SVP, to the average-case of the same problem. Finding a problem
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whose average case complexity is as hard as the worst-case of some other problem is interesting
from a theoretic perspective. Yet this result also has significant cryptographic applications -
[AD97] showed that NP-hardness for that specific restriction of SVP — although unlikely [GG98]
— would imply an unbreakable cryptosystem, unless P=NP.

Only recently [Ajt97] showed a randomized reduction from the NP-complete problem Subset-
Sum to SVP. This has been improved [CN98], showing approximation hardness for some small
factor (1+-L). Very recently [Mic98] has significantly strengthened Ajtai’s result, showing SVP
hard to approximate to within some constant factor.

The above results all apply to SVP,, for finite p. SVP with the maximum norm [, appears
to be a harder problem. A g-approximation algorithm for SVP, implies a y/ng-approximation
algorithm for SVP,,, since for every vector v, ||v]|e < ||v||]2 < /7 - ||¥||co. Thus hardness for
approximating SVP,, to within a factor 1/ng will imply the hardness for approximating SVP,
to within factor g. Lagarias showed SVP,, to be NP-hard in its exact decision version. Arora
et al. [ABSS93] utilized the PCP characterization of NP to show that both CVP (for /; norm)
and SVP,, are quasi-NP-hard to approximate to within 2(logn)' ™ for any constant € > 0. Their
result implicitly holds for CVP,, as well. Recently, the hardness result for approximating CVP
has been strengthened [DKS98, DKRS99] showing that it is NP-hard to approximate to within
a factor of nl/leglogn (where n is the lattice dimension). In this paper we similarly strengthen
the hardness result for approximating SVP,, and CVP,,.

So far there is still a huge gap between the positive results, showing approximations for
SVP and CVP with exponential factors, and the above hardness results. Nevertheless, some
other results provide a discouraging indication for improving the hardness result beyond a
certain factor. [GG98] showed that approximating both SVP, and CVP; to within 1/n and
approximating SVP,, and CVP to within n/O(logn) is in NP N co-AM. Hence it is unlikely
for any of these problems to be NP-hard.

Our Result

We prove that approximating SVP,, to within a factor of ne/loglogn js NP-hard (where n is the
lattice dimension and ¢ > 0 is some fixed constant). Qur result is also easily adapted to CVPq.

Technique

We obtain our result by modifying (and in some ways, simplifying) the framework of [DKS98,
DKRS99].

Our first attempt was to adapt the reduction [DKS98] from SSAT to CVPy, to SVP,,. The
main obstacle, however, is that the natural lattice corresponding to an SSAT instance consists
of very-short vectors. These vectors did not pose a problem in the case of CVP; since they are
very far from the target vector. We overcome this problem by modifying the structure of the
SSAT instance itself. We define a variant of the SS.AT problem which we call SSAT,,.. We
first show that SSATs is NP-hard to approximate to within the above factors of nc/loglesn
and then reduce SSA7, to SVP,, and to CVP.

We prove SS AT, NP-hard to approximate by modifying the recursive tree-like construction
from [DKS98, DKRS99], so as to eliminate the aforementioned very-short lattice vectors. This
requires some simple observations regarding the embedding-extension and low-degree-functions
(see propositions 1 and 4). The reductions from SSAT,, to SVP,, and CVP,, are slightly more
tricky than the reduction from SSAT to CVP; [DKS98], and utilize an additional idea from
[ABSS93].



Hardness-of-approximation results are naturally divided into those that are obtained via
reduction from PCP, and those that are not. Although the best previous hardness result for
SVP,, [ABSS93] relies on the PCP characterization of NP, our proof does not. We do, however,
utilize some techniques similar to those used in the proof of the PCP characterization of NP
itself. In fact, the [, norm allows a cleaner construction, that avoids some of the technical
complications in [DFK*, DKS98, DKRS99]. Thus, we believe that SVP,, may be the best
candidate (out of all of the lattice problems) for pushing the hardness-of-approximation factor
to within polynomial range.

Structure of the Paper

Section 1 presents a variant of the SSAT problem from [DKS98] called SSAT,,. It then proceeds
with some definitions. Section 2 gives the reduction from SAT to SSA7., whose correctness
is proven in section 3. Finally, in section 4 we describe the (simple) reduction from SSA7 to
SVP,, and to CVP,,, establishing the hardness of approximating SVP,, and CVP,,.

1 Definitions

1.1 SSAT,

In this section we reconsider the SS.AT problem introduced in [DKS98], and define a slightly
modified version of this problem — SSAT,,. Let ¥ = {41, ...,%¥,} be a system of tests (Boolean
functions) over variables V = {v, .., vn}. Denote by R, the set of satisfying assignments for
1; € ¥. We recall the following definitions 1,2 and 3 from [DKS98],

Definition 1 (Super-Assignment to Tests) A super-assignment is a function S mapping
to each 1 € ¥ a value from Z®¥. S () is a vector of integer coefficients, one for each value

r € Ry. Denote by S(¢)[r] the rtP coordinate of S(v).

If S(¢)[r] # ¢, we say that the value r appears in S(¢). A natural assignment (an assignment
in the usual sense) is identified with a super-assignment that assigns each ¢ € ¥ a unit vector
with a 1 in the corresponding coordinate. In this case, exactly one value appears in each S(%).

We next define the projection of a super-assignment to a test onto each of its variables.
Consistency between tests will amount to equality of projections on mutual variables.

Definition 2 (Projection) Let S be a super-assignment to the tests. We define the projection
of S(¥) on a variable = of v, 7,(S(¥)) € Z¥!, in the natural way:

VaeF:  mS@)AE Y s@)r
TER¢,T|,:a

We shall now proceed to define the notion of consistency between tests. If the projections
of two tests on each mutual variable z are equal (in other words, they both give z the same
super-assignment), we say that the super-assignments of the tests are consistent (match).

Definition 3 (Consistency) Let S be a super-assignment to the tests in €. S is consistent if
for every pair of tests v; and 1; with a mutual variable z,

m2(S(¢:)) = (S ()



Given a system ¥ = {41, ..., ¥}, a super-assignment S : ¥ — Z¥ is called not-all-zero if it
is non-trivial on at least one test ¢ € ¥ (i.e. 3¢ € ¥, S(¢)) # 0). This is a weaker requirement
than the non-triviality of SSAT. On the other hand, the norm of a super assignment S is
measured by a ’stronger’ measure,

1511 max (IS (@)]l2)

where ||S(%)||2 is the standard I3 norm. The norm of a natural super-assignment is 1. Finally
we define consistency of a super-assignment as in [DKRS99],

The gap of SSAT7, is formulated in terms of the norm of the minimal super-assignment that
maintains consistency.

Definition 4 (9-SSATs,) An instance of SSAT., with parameter g

I = <\I’ = {’(/11, Y] ’(/1-,-,} y V= {’U]_, ) ’Um} y {R¢1, oy R¢n}>

consists of a set U of tests over a common set V of variables that take values in a field F.
The parameters m and |F| are always bounded by some polynomial in n. Each test ) € ¥ has
associated with it a list R of assignments to its variables, called the satisfying assignments or
the range of the test ¢. The problem is to distinguish between the following two cases,

Yes: There is a consistent natural assignment for ¥.

No: No non-trivial consistent super-assignment is of norm > g.
Theorem 1 (SSAT,, Theorem) SSATs, is NP-hard for g = nl/loglogn,

We conjecture that a stronger statement is true, which would imply that SVP,, NP-hard to
approximate to within a constant power of the dimension.

Conjecture 2 SSAT,, is NP-hard for g = n® for some constant ¢ > 0.

1.2 LDFs, Super-LDFs

Throughout the paper, let 7 denote a finite field 7 = Z, for some prime number p > 1. We
adopt the following definitions from [DKS98].

Definition 5 (low degree function - [r,d]-LDF) A function f : F¢ — F is said to have
degree r if its values are the point evaluation of a polynomial on F?¢ with degree < r in each
variable. In this case we say that f is an [r,d]-LDF, or f € LDF, 4.

Sometimes we omit the parameters and refer simply to an LDF.

Definition 6 (low degree extension) Let m,d be natural numbers, and let H C F such that
|'H|d =m. A vector (ao, ..,am-1) € F™ can be naturally identified with a function A: HE— F
by looking at points in H® as representing numbers in base |H|.

There exists exactly one [|H| —1,d]-LDF A : F® — F that estends A. A is called the |H| — 1
degree extension of A in F.



A (D + 2)-dimensional affine subspace ((D 4 2)-cube for short) C C F¢ is said to be parallel
to the axises if it can be written as C = z + span(e;,, ..., €;p,,), Where z € Fdand e; € F2is
the i-th axis vector, e; = (0, .., 1, ..,0). We write the parameterization of the cube C as follows,

D42
C(2) e + Z zje;; € Fe for Z = (21, .., 2p42) € FP12

i=1
We will need the following (simple) proposition,

Proposition 1 Let f : F¢ — F. Suppose, for every parallel (D + 2)-cube C C F¢ the function
fle : FP+2 & F defined by
Ve € FP*? fle(2) = f(C(=))

is an [r, D + 2]-LDF. Then f is an [r,d]-LDF.

Similar to the definition of super-assignments, we define a super-[r, d]-LDF (or a super-LDF
for short) G € Z'PFr4d t6 be a vector of integer coefficient G[P] per LDF P € LDF, 4. This
definition arises naturally from the fact that the tests in our final construction will range over
LDFs. We further define the norm of a super-LDF to be the l; norm of the corresponding
coefficient vector.

We say that an LDF P € LDF, 4 appears in G iff G[P] # 0. A point z is called ambiguous
for a super-LDF G, if there are two LDFs P;, P; appearing in G such that P;(z) = Pa(z). The
following (simple) property of low-norm super-LDF's is heavily used in this paper.

Proposition 2 (Low Ambiguity) Let G be a super-[r, d]-LDF of norm ||G||2 < g. The frac-
. . . . di

tion of ambiguous points for G is < amb(r, d, g) e (g; ) %.

Proof: The number of non-zero coordinates in a vector whose I, norm is g is < g2. There are

< (g;) pairs of LDF's appearing in G, and each pair agrees on at most % of the points in <. m

The following embedding-extension technique taken from [DFK™] is used in our construction,

Definition 7 (embedding extension) Letb > 2, k > 1 and t be natural numbers. We define

the embedding extension mapping Ej : Ft — F** as follows. E, maps any pointz = (£1,..,&) €

Fttoye F*, y= Ey(z) = (1, .., mek) by
def

By(ér, &) 2 (&, (€)% (€)', , (6)

bk—l

N (D (D (Et)"k_l)

The following (simple) proposition, shows that any LDF on F* can be represented by an LDF
on Ft* with significantly lower degree:

Proposition 3 Let f : F* — F be a [b* — 1,t]-LDF, for integerst > 0,b > 1,k > 1. There is
a[b—1,t-k]-LDF f.p : F** — F such that

Ve € ft : f(’ﬂ) = femt(Eb(m))



For any [b — 1, kt]-LDF f, its ’restriction’ to the manifold f|g, : F* — F is defined as

Ve ¢ F' flg,(z) e (Ep(z))

and is a [b¥ — 1,¢]-LDF (the degree in a variable &; of f|g, is (b—1)(b°+b* +...4+b%"1) = bk —1).

Let G be a super-[b¥ — 1,#]-LDF (i.e. a vector in ZLPFrt). Tts embedding-extension is the
super-[b — 1, tk]-LDF G defined by,

VfeLDFor e G[f] Y Glf|m,]

In a similar manner, the restriction G of a super-[b — 1,tk]-LDF G is a super-[b* — 1,]-LDF

defined by
def =

Vfe LDFbk—Lt Glf] = Glfeat]
The following proposition holds (e.g. by a counting argument),

Proposition 4 Let §1, Go be two .i"uper-[blc — 1,t]-LDFs, and let G1,Gs be their embedding ez-
tensions (with parameter b). G = G, if and only if G = G,.

2 The Construction

We prove that SSAT,, is NP-hard via a reduction from SAT, described herein. We adopt the
whole framework of the construction from [DKRS99], and refer the reader there for a more
detailed exposition.

Let ® = {1, .., pn} be an instance of SAT, viewed as a set of Boolean tests over Boolean
variables Vg = {x1,.., X}, (m = n° for some constant ¢ > 0) such that each test depends on
D = O(1) variables. Cook’s theorem [Coo71] states that it is NP-hard to decide whether there
is an assignment for Vg satisfying all of the tests in ®.

Starting from &, we shall construct an SSA7,, test-system ¥ over variables Vg O V3. Our
new variables Vg will be non-Boolean, ranging over a field F, with |F| = n¢/loglogn  Ap
assignment to Vg will be interpreted as an assignment to Vg by identifying the value 0 € F
with the Boolean value true and any other non-zero value with false.

2.1 Constructing the CR-Forest

Before constructing the tests in ¥, we construct the CR-forest, which is a combinatorial object
holding the underlying structure of ¥. The forest F,(®) will have a tree T, for every test
¢ € ®. Let us (briefly) describe one tree T, in the forest F,(®).

Every tree will be of depth K < loglogn (however, not all of the leaves will be at the bottom
level). Each node v in the tree will have a domain dom, = F¢ of points (dom, = F% in case
v is the root node) associated with it. The offsprings of a non-leaf node v will be labeled each
by a distinct (D + 2)-cube C, of dom, (this part is slightly simpler than in [DKRS99]),

labels(v) s {€C|C isa (D + 2)-cube in dom, } .

The points in the domain dom, of each node v will be mapped to some of ¥’s variables, by
the injection var, : dom, — V. This mapping essentially describes the relation of a node to
its parent, and is defined inductively as follows. For each node v, we denote by V, the set of



"fresh new’ variables mapped from dom, (i.e. none of the nodes defined inductively so far have
points mapped to these variables). Altogether

v e v = Uv.
IIGT‘P

ped

For the root node, var ., : domy,,, — Vg is defined (exactly as in [DKRS99]) by mapping

. d ~ .
Hbo C domy,ot, = F% to V3 and the rest of the points to the rest of Vi1, ef Va C Vo (ie.

the low-degree-extension of V). It is important that var,,., is defined independently of ¢.

For a non-root node v with parent u, the points of the cube C, € labels(u) labeling v
are mapped into the domain dom, by the embedding extension mapping, Ep, : C, — dom,,
defined above in section 1.2 (the parameter b, specified below depends on the specific node v,
rather than just on v’s level as in [DKRS99]). These points are u’s points that are ’passed
on’ to the offspring v. We think of the point y = Ej,(z) € dom, as ’representing’ the point
z € C, C dom,,, and define var, : dom, — Vg as follows,

Definition 8 (var,, for a non-root node v) Let v be a non-root node, let u be v’s parent,
and let C, C dom, be the label attached to v. For each point y € Ep, (C,) C dom, define
var, (y) = var, (E, (y)), i.e. points that ’originated’ from C, are mapped to the previous-level
variables, that their pre-images in C, were mapped to. For each 'new’ point y € dom, \ Ep, (C,)
we define var,(y) to be a distinct variable from V,,.

The parameters used for the embedding extension mappings Ep, aret = D + 2, k = d/t = a.

We set the degree of the root node 7r00t, = |H| = |.7-"|1/10 and 7, and b, (for non-root nodes v)
are defined by the following recursive formulas:
Ir, +1 C, is parallel to the axises
b, =
/ru(D+2)+1 Otherwise
ry = by—1

We stop the recursion and define a node to be a leaf (i.e. define its labels to be empty)
whenever r, < 2(D + 2). A simple calculation (to appear in the complete version) shows that
by, 7, decrease with the level of v until for some level K < loglogn, r, < 2(D + 2) = O(1).
(This may happen to some nodes sooner than others, therefore not all of the leaves are in level

3 Correctness of the Construction

3.1 Completeness

Lemma 3 (completeness) If there is an assignment A : Vg — {true,false} satisfying all

of the tests in ®, then there is a natural assignment Ay : Vo — F satisfying all of the tests in
v,

We extend A in the obvious manner, i.e. by taking its low-degree-extension (see definition 6)
to the variables V3, and then repeatedly taking the embedding extension of the previous-level
variables, until we’ve assigned all of the variables in the system. More formally,



Proof: We construct an assignment Ag : Vg — F by inductively obtaining [r,, d]-LDF's
P, : dom, — F for every node v of every tree in the CR-forest, as follows. We first set (for
every ¢ € ®) Proot, to be the low degree extension (see definition 6) of A (we think of A as
assigning each variable a value in {0,1} C F rather than {true, false}, see discussion in the
beginning of section 2). Assume we’ve defined an [r,, d]-LDF P, consistently for all level-:
nodes, and let v be an offspring of u, labeled by C,. The restriction f = P,|¢, of P, to the
cube C, is an [r, D+ 2]-LDF where » = 7, or r = r,(D + 2) depending on whether C, is parallel
to the axises or not. f can be written as a [¢/r + 1 — 1, a- (D + 2)]-LDF f.p: over the larger
domain F?, as promised by proposition 3 (taking b = /7 + 1). We define P, = foy¢ to be that
[ry, d]-LDF (recall that d = a - (D + 2) and b, = v/r + 1).

Finally, for a variable x € var,, x = var,(z), we set Ag(x) P,(z). The construction
implies that there are no collisions, i.e. x' = var,:(z') = var,(z) = x implies P,(z) = P, (z). m

def

3.2 Soundness

We need to show that a ’no’ instance of SAT is mapped to a 'no’ instance of SSAT,,. We
assume that the constructed SSAT,, instance has a consistent super-assignment of norm < g,
and show that ® — the SAT instance we began with — is satisfiable.

1
Lemma 4 (Soundness) Letg des |F|102. If there ezxists a consistent super-assignment of norm
< g for ¥, then ® is satisfiable.

Let A be a consistent super-assignment for ¥, with ||A||o < g. It induces (by projection) a
super-assignment to the variables
m: Vg — Z7

i.e. for every variable x € Vg, m assigns a vector my(A(¢)) of integer coeflicients, one per value
in F where 1 is some test depending on x. Since A is consistent, m is well defined (independent
of the choice of test ). Alternatively, we view m as a labeling of the points Uvan(q,) dom, by
a 'super-value’ — a formal linear combination of values from F. The label of the point z € dom,
for some v € F,(®), is simply m(var,(z)), and with a slight abuse of notation, is sometimes
denoted m(z). m is used as the “underlying point super-assignment” for the rest of the proof,

and will serve as an anchor by which we test consistency. We denote by ||m||c the norm of m
def

defined by ||m||c = max, ||m(z)||s. Obviously, ||A|le < g implies ||m|o < g.

The central task of our proof is to show that if a tree has a non-trivial leaf, then there is
a non-trivial super-LDF for the domain in the root node that is consistent with m. This is
inductively shown to hold for every node in the tree (and thus for the root),

Lemma 5 Let u € nodes; for some 0 < i < K. There is a legal super-[r,,d|-LDF G, with

1Gull2 < |Im||oo def max, |m(z)||» such that for every ¢ € dom,, m,(G,) = m(z). If there is a

node v in u’s sub-tree for which G, # 0 then Gu # 0.

Proof: We prove the lemma for ¢ < K by induction on K — i. For nodes in level : = K (or

any other leaf) the lemma follows by setting G, def A(ty).
Let 0 < ¢ < K, let u € nodes; be an internal node, and assume (by induction) that for every
offspring v of u there is a legal super-[r,, d]-LDF G, over dom,, with ||G,||2 < ||m||« such that

Ve € dom, m,(Gy)= m(z)



Let G, be the super-[r, D + 2]-LDF that is the restriction of G, to the manifold Ey (C,) as
defined in section 1.2, where r = (b,)* — 1 < r(D + 2) (with equality when C, isn’t parallel to
the axises). We know (see proposition 4) that if G, # 0 then G, # 0 (since r, = b, — 1).

The super-LDF's G, have total degree < (D + 2)2 - r,. The following consistency lemma will
imply the existence of a globally-consistent super-LDF G,,,

Lemma 6 ([DKRS99]) Let u € nodes; for some 0 < i < K. If for every offspring v of u
there is a super-LDF G, over C,, of total degree < v and norm ||G,||5 < s, such that

Pr (WE(CZ,) = m(m)) > 0.99

2€C,

then there is a super-LDF G, over dom, of degree r and norm ||Gy||2 < 2s that obeys

Pr (e, (6.) = G,) > 0.99

. . d .
We apply this lemma taking s = ||m||o and r ks (D + 2)? - r,. Note that in our case the
inductive assumption gives

VC, € labels(u), Pg (ﬂ'm(g,u) = m(m)) =
z€Cy

Thus we obtain a super-LDF G, over dom,, of total-degree r. However, any f appearing in

Gu, is actually an [r,, d]-LDF. This follows by considering the set of cubes parallel to the axises

in which f appears. The super-LDFs G, over these cubes are of degree r, in each variable. The

ambiguity of G, is amb(r, d, 2||m||e) < |.7-'|_%, thus the fraction of cubes parallel to each axis
that may be ambiguous for f is negligible (and in particular, less than half). Proposition 1 thus
implies that f is an [r,, d]-LDF as claimed, and it makes sense to say that G, is a super-[r,, d-
LDF.

The above lemma 6 only implies consistency of G, on most points z € F%¢. Let N =
{z € F4| 1,(G.) # m(z)} be the set of inconsistent points. For the sake of contradiction
assume N # ¢, and let 2o € N. Consider any cube C, € labels(u) that contains zo. We

have m,, (.C’;,) = m(zg) # T, (Gu), so me,(Gu) # g~,,, therefore the super-LDF m¢ (Gy) — G,

(subtraction is defined as subtraction of two vectors in Z|LDF'-D+2|) is non-trivial. Proposi-

tion 2 (low-ambiguity), when applied to m¢, (G,) — G, implies that for almost all points z € C,,
T (Gu) # n,((jv) = m(z), so these points are also in N. A simple geometric argument shows
that the distribution of choosing a (D + 2)-cube C containing z¢, and then choosing a random
point ¢ € C is very close to uniformly choosing a point ¢ €z F%. We saw that a point chosen
in this manner has high probability of being in N, thus N consists of (much more than) half of
the points in F¢. The fraction of (D +2)-cubes that don’t hit a point in N is (by another simple
geometric argument, relying on the fact that N is large enough) very small, and in particular,
less than 0.99. Thus by lemma 6 there is a cube C, for which =g, (g~,,) = 51, with dz, € NN C,
and so 7, (Gy) = ‘rrml((jv) = m(z,), a contradiction to ; € N. Thus N = ¢, or

Ve € F¢ 71,(Gy) = m()

Finally, if G, # 0 for some offsprlng v of u, then (_}'v # 0 because of proposition 4 and since
e, (Gu) = Gy, we deduce G, # 0. By proposition 2 (low-ambiguity) for most points ||m(z)||, =
||gu||2, so obviously [|Gy||z < maxg [[m(z)|[z = [[m]|e- m



In order to complete the soundness proof, we need to find a satisfying assignment for ®.
We obtained, in lemma 5, a super-[r,o0t,, d]-LDF (where .50, = |H|) G, for each root node
root,, such that Vz € domyget, = F%, m(z) = m,(G,). Note that indeed, for every pair of tests
® # ¢', the corresponding super-LDFs must be equal G, = G, (denote them by G). This follows
because they are point-wise equal m,(G,) = m(z) = 7,(G,), and so the difference super-LDF
G, — G, is trivial on every point, and must therefore (again, by proposition 2 — low-ambiguity)
be trivial.

If A is not trivial, then there is at least one test ¢ € ¥ for which A(¢) # 0. Thus, by
lemma b, G = G, # 0 (where 9 corresponds to a leaf in T,). Take an LDF f that appears in

G, and define for every v € Vg, A(v) = f(z) where z € H% is the point mapped to v. Since G
is legal, ® is totally satisfied by \A.

4 From SSAT, to SVP,

In this section we show the reduction from SSAT, to SVP.,, thereby implying SVP,, to be
NP-hard to approximate to within the same factor nl/18187 a5 SS AT, . This reduction follows
the same lines of the reduction in [ABSS93] from Pseudo-Label-Cover to SVP,.

Let ¥ be an instance of SSA7,,, we construct a matrix B whose columns form the basis for
an SVP,, instance. Recall that ¥ = {41,...,%,} is a set of tests over variables V = {vy, .., v},
and we denoted by Ry, the set of satisfying assignments for 9; € ¥.

The matrix B will have a column vy, ,j for every pair of test ) € ¥ and an assignmentr € Ry
for it. There will be one additional special column #. The matrix B will have two kinds of rows,
consistency rows and norm-measuring rows, defined as follows.

Consistency Rows. B will have |F| rows for each threesome (15, ¥;, ) where z is a variable,
and both ¢; and 1; depend on z. Only the columns ¥}y, ; of ¥; and ]y, | of ¥; will have
non-zero values in these rows.

The special column ¢ will have g in each consistency row, and zero in the other rows.

For a pair of tests 9; and 1); that depend on a mutual variable z, let’s concentrate on the
sub-matrix consisting of the columns of these tests, and the |F| rows of the threesome (1;, ¥;, ).
This is a pair of matrices G; of dimension (|F| x |Ry;|) and G of dimension (|F| X |Ry,|).
Let r € Ry, be a satisfying assignment for v; and r' € Ry, be a satisfying assignment for ;.
The r-th column in G; equals g times the unit vector e; where ¢ = r|, (i.e. a vector with zeros
everywhere and a g in the r|,-th coordinate). The r'-th column in G, equals g - (I — e;) where
i = 7|, and 1 is the all-one vector (i.e. g everywhere except a zero in the /|,-th coordinate).

Norm-measuring Rows. There will be a set of Ry rows designated to each test ¢ € ¥,
in which only psi’s columns have non-zero values. The columns of 1, when restricted to these
rows, will be the (|Ry| X |Ry|) Hadamard matrix H (we assume w.l.o.g. that |Ry| is a power
of 2, thus such a matrix exists, see [Bol86, p. 74]). The vector #, as mentioned earlier, will be
zero on these rows.

Proposition 5 (Completeness) If there is a natural assignment to ¥, then there is a non-
zero lattice vector v € L(B) with ||v]|s = 1.
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Figure 1: The matrix B

Proof: Let A be a consistent natural assignment for ¥. We claim that

T=1—) Ty,Aw)
Ypel

is a lattice vector with ||¥][cc = 1. Restricting }_, g ¥]y, 4(y)] to an arbitrary row in the con-
sistency rows (corresponding to a pair of tests 1);,1; with mutual variable z), gives g, because
A(%:)|= = A(¥;)|=- Subtracting this from  gives zero in each consistency-row.

In the norm-measuring rows, since every test ¥ € ¥ is assigned one value by A, ¥ restricted
to 9’s rows equals some column of the Hadamard matrix which is a 1 matrix. Altogether,
|#]|ec = 1 as claimed. |

Proposition 6 (Soundness) If there is a non-zero lattice vector v € L(B) with ||7]|e < g,
then there is a consistent non-trivial super-assignment for ¥, whose norm is less than g.

Proof: Let

T B4 )y T
Pp,r
be a lattice vector with ||]|cc < g. The entries in the consistency rows of every lattice vector,
are integer multiples of g. ||¥]|cc < g implies that v is zero on these rows.
We next show that for every v;,v; € ¥ with mutual variable z, if r|, = 7|, then ¢y, .} =
Cly;,»]- This follows by restricting our attention to the rows of the threesome (i, ¢j,2), and

noticing that any zero linear combination of the vectors {e,-, I- e;, T} must give e; the same
2

coefficient as I — e;, because the vectors {e;}; are linearly independent.

Define a super-assignment to ¥ by setting for each ¢ € ¥ and r € Ry, A(¢)[r] def Cly,]- A s

consistent by the above and not-all-zero because ¥ is non-trivial (if only ¢; was non-zero, then

19]le0 = 9)-
The norm of A is defined as

[Alleo = max ([ A(¥)]2) -

11



The vector ¥ restricted to the norm-measuring rows of ¢ is exactly H.A(y). Now
|—~—HA®)||2 = || A(%)]||2 because —=~ |H is a (|Ry| X |Ry|) orthonormal matrix. Since for

e Tl

every z € R”, 2]l > |[2]l2//m, we obtain [|HA() o > [LA()]2. Hence [Alleo < [vl]ec < g
as claimed. ]

Finally, if ¥ is a SS.A7,, no instance, then the norm of any consistent super-assignment A
must be at least g, and so the norm of the shortest lattice vector in £(B), must also be at least
g. This completes the proof of the reduction.

The reduction to CVP,, is quite obvious, and is omitted.
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