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Abstract

We present improved algorithms for testing monotonicity of functions. Namely, given the
ability to query an unknown function f : Σn 7→ Ξ, where Σ and Ξ are finite ordered sets,
the test always accepts a monotone f , and rejects f with high probability if it is ε-far from
being monotone (i.e., every monotone function differs from f on more than an ε fraction of the
domain). For any ε > 0, the query and time complexities of the test are O((n/ε) · log |Σ| · log |Ξ|).
The previous best known bound was Õ((n2/ε) · |Σ|2 · |Ξ|).

We also present an alternative test for the boolean range Ξ = {0, 1} whose complexity is
independent of alphabet size |Σ|. This test has query complexity O((n/ε) log2(n/ε)) and time
complexity O((n/ε) log3(n/ε)).
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1 Introduction

Property Testing (cf., [13, 9]) is a general formulation of computational tasks in which one is to
determine whether a given object has a predetermined property or is “far” from any object having
the property. Thus, property testing captures a natural notion of approximation, where the measure
approximated is the object’s “distance” to having the property. Typically one aims at performing
this task within complexity smaller than the size of the object, while employing a randomized
algorithm and given oracle access to a natural encoding of the object (as a function). Thus, we are
talking of determining with high probability whether a function, to which we have oracle access,
belongs to some class or is “far” from this class (i.e., one needs to modify the function value at
many places so to obtain a function in the class).

Much work in this area was devoted to testing algebraic properties of functions such as linearity
(e.g., [5, 1, 4, 3]) and low-degree properties (e.g., [5, 7, 13, 12, 2]). Recently, some attention was given
to testing combinatorial properties of functions; firstly, for functions representing graphs [9, 10, 11],
and more recently for functions per se [6, 8]. The most natural combinatorial property of functions
is monotonicity, and indeed [8] focuses on testing monotonicity. The basic problem studied there
is the following. Given a distance parameter ε and oracle access to a function f : {0, 1}n 7→ {0, 1},
determine whether f is monotone or is “ε-far” from being monotone. Monotonicity is defined in the
natural manner: One considers the standard partial order ≺ on binary strings (i.e., x1x2 · · · xn ≺
y1y2 · · · yn iff xi ≤ yi for every i and xi < yi for some i), and f is said to be monotone if f(x) ≤ f(y)
for every x ≺ y. The definition extends naturally to functions defined on the standard partial order
of strings over an arbitrary alphabet, Σ, and having an arbitrary range Ξ. That is,

Definition 1 (monotone functions and testing): Let Σ and Ξ be sets with total order ≤Σ and
≤Ξ, respectively. We consider the partial order, ≺, defined on equal-length strings over Σ by
x1x2 · · · xn ≺ y1y2 · · · yn iff xi≤Σyi for every i and xi 6= yi for some i.

• A function f : Σn 7→ Ξ is monotone if f(x)≤Ξf(y) holds for every x ≺ y.

• A relative distance of f : Σn 7→ Ξ from the class of monotone functions, εM(f), is the minimum

over all monotone functions g : Σn 7→ Ξ of dist(f, g)
def
= |{x ∈ Σn : f(x) 6= g(x)}| / |Σ|n.

• A function f : Σn 7→ Ξ is ε-far from monotone if εM(f) ≥ ε.

• A probabilistic oracle machine M is said to be a tester of monotonicity if

Pr[M f (ε, n) = 1] ≥ 2

3
for any monotone function f , (1)

Pr[M f (ε, n) = 0] ≥ 2

3
for f which is ε-far from monotone. (2)

Note that all notions are defined w.r.t. Σ and Ξ, and so at times we prefer terms which explicitly
mention this dependence.

The main result of [8] is a tester of monotonicity for the case Σ = Ξ = {0, 1} having query and time
complexities of the form poly(n)/ε. Specifically, the analysis of the query complexity in [8] yields
a bound of Õ(n2/ε), and it was also shown that Ω(n/ε) is a lower bound on the query complexity
of their algorithm. For general Σ and Ξ, the bounds obtained in [8] were proportional to |Σ|2 · |Ξ|.
Here we improve both the algorithm and the analysis in [8] to obtain the following.
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Theorem 1 (main result): There exists a tester of monotonicity with query and time complexity

q(ε, n)
def
= O

(
n · (log |Σ|) · (log |Ξ|)

ε

)
.

The tester works by selecting independently q(ε, n)/2 pairs of n-long strings over Σ, and comparing
the two f -values obtained for the elements of each pair.1

Thus, the global feature of being monotone or far from it, is determined by a sequence of many
independent random local checks. Each local check consists of selecting a pair, (x, y), so that
(w.l.o.g) x ≺ y, according to some fixed distribution and checking whether f(x)≤Ξf(y). If we
ever find a pair for which this does not hold (i.e., local violation of monotonicity), then we reject.
Otherwise we accept. Thus, we never reject a monotone function, and the challenge is to analyze
the dependence of rejection probability on the distance of the given function from being monotone.

The only thing left unspecified in the above description of the testing algorithm is the distri-
bution by which the pairs are selected. In case Σ = {0, 1} there seems to be a very natural choice.

Uniformly select i ∈ [n]
def
= {1, ..., n}, independently and uniformly select z1, . . . , zi−1, zi+1, . . . , zn ∈

{0, 1}, and set x = z1 · · · zi−10zi+1 · · · zn and y = z1 · · · zi−11zi+1 · · · zn. Our improvement over [8],
in this case (where Σ = Ξ = {0, 1}), comes from a better (and in fact tight for Ξ = {0, 1}) analysis
of this test: Let δM(f) denote the fraction of pairs (x, y) as above for which f(x) > f(y). We show
that δM(f) ≥ εM(f)/n improving on the bound δM(f) ≥ εM(f)/n2 log(1/εM(f)) in [8] (whereas
by [8] there exist functions f for which δM(f) = 2εM(f)/n).

In case of non-binary Σ = {1, . . . , d} there seem to be several natural possibilities: Even if we
restrict ourselves (as above) to select only pairs of strings which differ on a single coordinate i,
there is still the question of how to select the corresponding pair of symbols. We study several
natural possibilities of randomly selecting pairs (k, `) ∈ Σ× Σ.

1. Distribution p0: Select uniformly a pair (k, k + 1) with k ∈ {1, . . . , d− 1}.

2. Distribution p1: Select uniformly a pair (k, `) from a particular subset of size O(d log d) of
the set of all pairs.

3. Distribution p2: Select uniformly a pair (k, `) with k < `.

A key result of this work is the reduction of the analysis of testing algorithms as above for any
n and Σ, and for Ξ = {0, 1}, to their behavior in the special case of n = 1 (where we simply select
pairs (k, `) according to one of the above distributions and check the order between f(k) and f(`)).
Using this reduction we derive the following theorem.

Theorem 2 (Monotonicity Testing of Boolean functions): There exist efficiently samplable dis-
tributions on pairs (x, y) ∈ Σn × Σn with x ≺ y so that for every function f : Σn 7→ {0, 1} the
following holds:

1. If (x, y) is drawn according to one distribution (derived from p1) then

Pr[f(x) > f(y)] = Ω

(
εM(f)

n · (log |Σ|)

)
.

1Since the algorithm is comparison-based, its complexity depends only on the size of the image of the function.
Thus, one may replace Ξ in the above bound by Ξf = {f(x) : x ∈ Σn}. In particular, log |Ξf | ≤ n · log |Σ|, so our
bound is never worse than O(n2 · (log |Σ|)2/ε).
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2. If (x, y) is drawn according to another distribution (derived from p2) then

Pr[f(x) > f(y)] = Ω

(
εM(f)2

n2

)
.

We note that the first item of the theorem can also be derived by applying our reduction and using
an alternative distribution on pairs in Σ2 which was previously suggested in [6], and analyzed for
the case n = 1. The second item leads to an algorithm having complexity O(n2/ε2).

The reader may be tempted to say that since our algorithm is comparison-based, the analysis
should also hold for non-boolean functions. However, this is false. For example, by Item (2) above,
boolean functions over Σ may be tested for monotonicity within complexity independent of |Σ|. In
contrast, a lower bound in [6] asserts that arbitrary functions over Σ (e.g., with Ξ = Σ) cannot
be tested for monotonicity within complexity independent of |Σ| (but rather require complexity
Ω(log |Σ|) for some fixed distance parameter ε > 0). Thus, a natural question arises: Under what
conditions and at what cost can results regarding testing of monotonicity of boolean functions be
transformed to results for testing monotonicity of arbitrary functions? Our most general result is
the following.

Theorem 3 (Monotonicity Testing – Range Reduction): Consider the task of testing monotonic-
ity of functions defined over any partially ordered set S (with p.o. ≺S). Suppose that for some
distribution on pairs (x, y) ∈ S × S with x ≺S y and for every function f : S 7→ {0, 1}

Pr[f(x) > f(y)] ≥ εM(f)

C
,

where C depends on S only. Then, for every Ξ and every function f : S 7→ Ξ for pairs selected
according to the same distribution

Pr[f(x) > f(y)] ≥ εM(f)

C · log2 |Ξ|
.

Theorem 1 follows by combining Part 1 of Theorem 2 and Theorem 3 with C = O(n · log |Σ|).

An Alternative Algorithm for Boolean Functions. This algorithm, suggested by Noga
Alon, works by picking i ∈ {1, . . . , n} uniformly, and then querying f on several strings that differ
only on the ith coordinate. The analysis of this algorithm also reduces to the n = 1 case, proving
the following theorem.

Theorem 4 (Alternative tester for Boolean functions): There exists a tester of monotonicity for
Boolean functions with query complexity

O
(n
ε

log2
(n
ε

))

and time complexity

O
(n
ε

log3
(n
ε

))
.
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Organization:

We start with some preliminaries in Section 2. In Section 3 we show how the analysis of our
algorithm in the boolean-range case for arbitrary n and Σ, reduces to the case n = 1. The
algorithms for the case n = 1 (each corresponding to a different distribution on pairs in Σ×Σ), are
provided in Subsection 3.3, and the proof of Theorem 2, in Subsection 3.4. In Section 4 we prove
a general reduction from an arbitrary range to the boolean range, and derive Theorem 3. Finally,
in Section 5 we present a different kind of algorithm and prove Theorem 4.

2 Preliminaries

Let Σ and Ξ be sets with total order ≤Σ and ≤Ξ, respectively. We consider the partial order, ≺,
defined on equal-length strings over Σ as in the introduction, and shorthand ≤Ξ by ≤.

For any pair of functions f, g : Σn 7→ Ξ, we define the distance between f and g, denoted
dist(f, g), to be the fraction of instances x ∈ Σn on which f(x) 6= g(x). As in the introduction, we
let εM(f) denote the minimum distance between f and any monotone function g : Σn 7→ Ξ. Let us
formally define an algorithmic schema playing a dominant role 2 in this paper. The schema uses
an arbitrary probability distribution p : Σ×Σ 7→ [0, 1]. Without loss of generality, we assume that
the support of p is restricted to pairs (k, `) with k < `. The function t referred to below, depends
on p.

Algorithmic schema: Given parameters ε, n,Σ,Ξ, and oracle access to an arbitrary function
f :Σn 7→Ξ, repeat the following steps up to t(ε, n, |Σ|, |Ξ|) times:

1. Uniformly select dimension i ∈ [n], prefix α ∈ Σi−1, and suffix β ∈ Σn−i.

2. Select (k, `) according to p. Let x = α k β, y = α ` β.

3. If f(x) > f(y) (i.e., (x, y) witnesses that f is not monotone), then reject.

If all iterations were completed without rejecting then accept.

We focus on the analysis of a single iteration of the above test. Such an iteration is fully specified
by the distribution, denoted Dn

p : Σn × Σn 7→ [0, 1], by which pairs (x, y) are selected. That is,

Dn
p (x, y) = p(k,`)

n·|Σ|n−1 if x = α k β and y = α ` β, for some α, β, and Dn
p (x, y) = 0 otherwise. Observe

that Dn
p (x, y) > 0 only if x ≺ y. Let Detect(f,Dn

p ) be the probability that a pair (x, y) selected
according to Dn

p witnesses that f is not monotone; that is,

Detect(f,Dn
p )

def
= Pr(x,y)∼Dnp [f(x) > f(y)] (3)

(where the above definition can of course be applied to any distribution D on pairs x ≺ y). Our
goal is to find distributions Dn

p (determined by the distributions p) for which Detect(f,Dn
p ) is

“well” lower-bounded as a function of εM(f). If Dn
p is such that Detect(f,Dn

p ) ≥ δ(ε, n, |Σ|, |Ξ|)
for any f :Σn 7→Ξ with εM(f) ≥ ε, then setting t(ε, n, |Σ|, |Ξ|) = Θ(1/δ(ε, n, |Σ|, |Ξ|)) yields a tester
for monotonicity.

The partial order graph: It will be convenient to view the partial order over Σn as a directed
(acyclic) graph, denoted GnΣ. The vertices of GnΣ are the strings in Σn and directed edges correspond

2This schema describes a general comparison-based algorithm in which pairs of points in Σn are chosen indepen-
dently. In section 5 we deal with a different type of algorithms and another algorithmic schema is defined.
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to comparable pairs (i.e. (x, y) is an edge iff x ≺ y). An edge (x, y) is said to be violated by f if
f(x) > f(y). We denote by Viol(f) the set of violated edges of f . We remark that most of the
definitions in this section naturally extend to any partially ordered set S in place of Σn.

3 Dimension Reduction for Boolean Functions

In this section we restrict our attention to boolean functions f : Σn 7→ {0, 1}. Without loss
of generality assume Σ = {1 . . . d}, so |Σ| = d. In what follows we reduce the analysis of the
performance of our algorithmic schema for any n and Σ (and Ξ = {0, 1}) to its performance for
the case n = 1 (the “line”). In Subsection 3.3 we describe and analyze several algorithms for the
line. Recall that by our algorithmic schema any such algorithm is determined by a probability
distribution p on pairs (k, `) ∈ Σ × Σ. We conclude this section by combining the reduction with
these algorithms to derive Theorem 2.

3.1 A Sorting Operator

We begin with a few definitions. For i ∈ [n], any choice of α ∈ Σi−1 and β ∈ Σn−i defines a
line fi,α,β of f in direction i (or an i-line of f) by setting fi,α,β(x) = f(α, x, β), for x ∈ Σ. Thus
fi,α,β : Σ 7→ {0, 1} is a one-dimensional boolean function. For any i ∈ [n], we say that a function
f is monotone in dimension i, if for every α ∈ Σi−1, β ∈ Σn−i the line fi,α,β is a monotone one-
dimensional function. For a set of indices T ⊆ [n], we say that f is monotone in dimensions T , if for
every i ∈ T , the function f is monotone in dimension i. In what follows we describe sort operators
which can transform any boolean function over Σn into a monotone function (as we prove below).

Definition 2 For every i ∈ [n], the function Si[f ] : Σn 7→ {0, 1} is defined as follows: For ev-
ery α ∈ Σi−1 and every β ∈ Σn−i, we let Si[f ](α 1β),. . ., Si[f ](α dβ) be assigned the values of
f(α 1β), . . . , f(α dβ), in sorted order. In other words, Si acts on f by sorting its i-lines.

For any i ∈ [n] let

εiM(f)
def
= Eα,β(εM(fi,α,β)),

where the expectation is taken uniformly over α ∈ Σi, β ∈ Σn−i. Namely, εiM(f) is the average
(relative) distance of an i-line of f from being monotone.

In the next lemma we show that by sorting in one dimension we do not increase the average
distance from being monotone in any other dimension.

Lemma 5 For every f : Σn 7→ {0, 1} and j ∈ [n], we have:

1. If f is monotone in dimensions T ⊆ [n] then Sj[f ] is monotone in dimensions T ∪ {j};

2. For every i ∈ [n] \ {j},
εiM(Sj(f)) ≤ εiM(f).

Proof: The important observation is that in order to prove both items we may consider the
function f restricted at all dimensions but the two in question. Furthermore, proofs of both items
boil down to asserting claims about sorting zero-one matrices.

Item 1. Let i be some index in T , and assume without loss of generality that i < j. We fix
any α ∈ Σi−1, β ∈ Σj−i−1 and γ ∈ Σn−j, and consider the function f ′ : Σ2 7→ {0, 1} defined by
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f ′(στ)
def
= f(ασ β τ γ). Clearly, f ′ is monotone in its first dimension (as f is monotone in dimension

i). We need to show that so is S2[f ′] (as by definition of S2 we have that S2[f ′] is monotone in
dimension 2). Our claim thus amounts to saying that if one sorts the rows of a d-by-d zero-one
matrix which is column-sorted then the columns remain sorted (the matrix we consider has its
(σ, τ)-entry equal to f ′(σ τ)).

Let M denote a (d-by-d zero-one) matrix in which each column is sorted. We observe that the
number of 1’s in the rows of M is monotonically non-decreasing (as each column contributes a unit
to the 1-count of row k only if it contributes a unit to the 1-count of row k + 1). That is, if we let
ok denote the number of 1’s in the kth row then ok ≤ ok+1 for k = 1, ..., d− 1. Now suppose we sort
each row of M resulting in a matrix M ′. Then the kth row of M ′ is 0d−ok1ok , and it follows that
the columns of M ′ remain sorted (as the k + 1st row of M ′ is 0d−ok+11ok+1 and ok ≤ ok+1).

Item 2. Fixing i, j, α, β, γ and defining f ′ as above, here we need to show that εM(S2(f ′)) ≤ εM(f ′).
This claim amounts to showing that if we sort the rows of a zero-one d × d matrix M , then the
sum (or average) of the distances to monotone of the columns cannot increase.

The first observation is that it suffices to prove the above for a d × 2 matrix. This is true
because we can sort the rows of M by first sorting the d subrows of length two that correspond to
the first two columns, and then sort the d subrows that correspond the columns 2 and 3, and so
on. Thus we only need to show that in each such step the sum of the distances to monotone of the
two columns in question does not increase.

Let the columns before sorting be A and B, and after sorting A′ and B′. Let C be the monotone
column (vector) closest to A, and let D be the monotone column closest to B. We will define
monotone columns C ′ and D′ such that dist(A′, C ′)+dist(B′, D′) ≤ dist(A,C)+dist(B,D) so that
εM(A′) + εM(B′) ≤ εM(A) + εM(B).

Let k be the first index on which C switches from 0 to 1, and let ` be the corresponding index
in D.

Consider two cases. The first is ` ≤ k. Then we may set C ′ = C and D′ = D. To verify this
observe that for any j < `, if A[j] = 1 and B[j] = 0, in which case j was counted in the distance
between A and C (but not in the distance between B and D), then now A′[j] = 0 and B′[j] = 1,
so that j is counted in the distance between B ′ and D (but not in the distance between A′ and
C). All other configurations (00, 01, and 11) don’t change and so contribute as before. Similarly,
for j ≥ k, if A[j] = 1 and B[j] = 0, then we count this in the distance between B and D, and after
sorting, in the distance between A′ and C. Finally (for this case), a 10 in ` ≤ j < k is counted in
both distances before sorting, while after sorting there is no contribution.

The second case is k < `. Now we set C ′ = D and D′ = C (so that the boundaries between
0’s and 1’s ”switch sides”). Similarly to the above, for indices j < k and j ≥ ` the sum of the
contributions remains the same. For k ≤ j < `, we see the following. If we had a 00 then it
contributed only to the distance between A and C, and now it contributes to the distance between
B′ and D′ = C. A 11 contributed to dist(B,D) and now to dist(A′, C ′ = D). A 01 contributed to
both and now contributes to neither, and a 10 contributed to neither, and after being sorted to 01
also contributed to neither.

3.2 Dimension Reduction

With Lemma 5 at our disposal, we are ready to state and prove that the analysis of the algorithmic
schema (for any n) reduces to its analysis for the special case n = 1. Let A denote one iteration
of the algorithmic schema, p be any distribution on pairs (k, `) ∈ Σ× Σ such that k < `, and Dn

p
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be the corresponding distribution induced on edges of Gn
Σ. The dimension reduction lemma upper

bounds εM(f) and lower bounds Detect(f,Dn
p ) by the corresponding quantities for n = 1.

Lemma 6 (Dimension Reduction for Boolean Range) Let f : Σn 7→ {0, 1}. Then the set of
lines

{
fi,α,β : Σ 7→ {0, 1} : i ∈ [n], α ∈ {0, 1}i−1, β ∈ {0, 1}n−i

}
of f satisfies the following prop-

erties (all expectations below are taken uniformly over i ∈ [n], α ∈ {0, 1}i−1 and β ∈ {0, 1}n−i):

1. Detect(f,Dn
p ) = Ei,α,β(Detect(fi,α,β, p)).

2. εM(f) ≤ 2n · Ei,α,β(εM(fi,α,β)).

We prove the lemma momentarily, but first consider its implication on the relatively simple case
of Σ = {0, 1}. First observe that in this case there is only one possible distribution p – the one
assigning all weight to the pair (0, 1). Also, for any f ′ : {0, 1} 7→ {0, 1}, Algorithm A rejects with
probability exactly 2εM(f ′). Thus, the lemma implies that in the binary (domain and range) case,
for any f : {0, 1}n 7→ {0, 1},

Ei,α,β(Detect(fi,α,β, p)) = Ei,α,β(2 · εM(fi,α,β))

=
2

n
·
∑

i

Eα,β(εM(fi,α,β))

≥ 1

n
· εM(f)

and we obtain a testing algorithm whose complexity is O(n/ε). Note that the algorithm is very
simple – it uniformly picks an edge whose endpoints differ in exactly one coordinate. Let us now
prove the lemma.

Proof: The first item of the lemma follows immediately from the definition of Detect(f,Dn
p ).

We go on to the second item. For i = 1, . . . , n+ 1, we define fi
def
= Si−1 · · ·S1[f ]. Thus, f1 ≡ f ,

and we have that fn+1 is monotone. It follows that

εM(f) ≤ dist(f, fn+1) ≤
n∑

i=1

dist(fi, fi+1). (4)

Next, for i = 1 . . . n, α ∈ {0, 1}i−1 and β ∈ {0, 1}n−i, define the function gi,α,β : Σ 7→ {0, 1}, by
gi,α,β(x) = fi(αxβ), for x ∈ Σ. Observe that the functions {gi,α,β} are the set of lines of fi in the
i’th direction.

Throughout the proof,
∑

α,β refers to summing over all (α, β)’s in Σi−1×Σn−i, and Eα,β refers

to expectation over uniformly distributed (α, β) ∈ Σi−1 × Σn−i. We claim that

dist(fi, fi+1) ≤ 2 ·Eα,β(εM(gi,α,β)). (5)

This inequality is proven (below) by observing that fi+1 is obtained from fi by sorting, separately,
the elements in each fi,α,β. (The factor of 2 is due to the relationship between the distance of a
vector to its sorted form and its distance to monotone.) We have,

dn · dist(fi, fi+1) =
∑

α,β

|{x ∈ Σ : fi(αxβ) 6= fi+1(αxβ)}|

=
∑

α,β

|{x ∈ Σ : gi,α,β(x) 6= Si[gi,α,β](x)}|

≤
∑

α,β

2d · εM(gi,α,β) = 2dn ·Eα,β(εM(gi,α,β))

7



where the inequality is justified as follows. Consider a vector v ∈ {0, 1}d, and let S(v) denote its
sorted version. Then S(v) = 0z1d−z, where z denotes the number of zeros in v. Thus, for some
e ≥ 0, the vector v has e 1-entries within its z-prefix and e 0-entries in its (d − z)-suffix. So the
number of locations on which v and S(v) disagree is exactly 2e. On the other hand, consider an
arbitrary perfect matching of the e 1-entries in the prefix and the e 0-entries in the suffix. To make
v monotone one must alter at least one entry in each matched pair; thus, εM(v) ≥ e/d.

By the second part of Lemma 5, for any i ∈ [n], α ∈ Σi−1, β ∈ Σn−i holds

Eα,β(εM(fi,α,β)) ≥ Eα,β(εM(gi,α,β)). (6)

Combining this with Eq. (4) and (5), the second item of the lemma follows:

εM(f) ≤
n∑

i=1

dist(fi, fi+1) ≤ 2 ·
n∑

i=1

Eα,β(εM(gi,α,β)) ≤ 2 ·
n∑

i=1

Eα,β(εM(fi,α,β)) = 2n ·Ei,α,β(εM(fi,α,β)).

3.3 Testing Monotonicity on a Line (the n = 1 case)

In this section we design algorithms for the case n = 1, for any Σ and Ξ. In accordance with
our algorithmic schema, the design of such algorithms amounts to the design of a probability
distribution p : Σ2 7→ [0, 1] (with support only on pairs (k, `) with k < `).

Note that for n = 1, we have Dn
p ≡ p. We present three such distributions, denoted p0, p1, and

p2, and provide bounds on Detect(f, pj), for each j.

The following lemma3, which relates εM(f) to Viol(f), will be used in our analysis of various
algorithms. Recall that a matching of a graph is a collection of edges that share no common
endpoint.

Lemma 7 For any f : Σ 7→ Ξ the graph G′ = (Σ,Viol(f)) has a matching of size εM(f) · |Σ|/2.

Proof: Recall that a vertex cover of a graph is a subset of vertices such that every edge of the
graph has at least one of its endpoints in the subset. We claim that a minimum vertex cover of
G′ has size at least εM(f) · |Σ|. The lemma directly follows as the size of a maximum matching is
at least 1/2 of the size of the minimum vertex cover. Let U ⊆ Σ be any vertex cover of G′. We
next show that by modifying the value of f only on points in U , we obtain a monotone function,
implying that |U | ≥ εM(f) · |Σ|, as claimed.

Let T = Σ\U . By definition of U , there are no violated edges between pairs of vertices in T .
Consider the following iterative process, where in each step we modify the value of f on a single
y ∈ U , remove y form U and add it to T . We maintain the property (which holds initially) that
following each step there are no violated edges between vertices in T . The process ends when U = ∅
and T = Σ, so that the final function is monotone. To redefine the value of f on y, we consider the
following two subsets of T : T1 = {x ∈ T : (x, y) ∈ Viol(f)} and T2 = {z ∈ T : (y, z) ∈ Viol(f)}.
By transitivity of the partial order, and the fact that there are no violated edges (x, z), for x, z ∈ T ,
at most one of these subsets is non-empty. If T1 is non-empty then we let f(y) = maxx∈T1{f(x)},
and if T2 is non-empty, then f(y) = minz∈T2{f(y)}. In case both are empty (all violated edges
incident to y have an end-point in U), the value of y may remain unchanged.

3While stated for a totally ordered set Σ, the result and the same proof hold for any partially ordered set S.
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We note that the size of the minimum vertex cover actually equals εM(f) · |Σ|. Consider any set
U such that by modifying the value of f only on strings in U we can obtain a monotone function
g. Then U must be a vertex cover of G′, as otherwise there remain violated edges with respect to
g.

Distribution p0: This distribution is uniform over pairs (k, k+1). That is, p0(k, k+1) = 1/(d−1),
for k = 1, . . . , d− 1.

Proposition 8 For any Ξ and f : Σ 7→ Ξ, Detect(f, p0) ≥ 2
d−1 · εM(f).

The lower bound can be shown to be tight even for Ξ = {0, 1} (by considering the function f
defined by f(x) = 1 if x < d/2 and f(x) = 0 otherwise).

Proof: If εM(f) > 0, then there exists some k ∈ {1, . . . , d − 1} so that f(k) > f(k + 1). If there
are at least two such k’s, then we reject with probability at least 2/(d − 1) ≥ 2εM(f)/(d − 1) as
εM(f) ≤ 1. Otherwise, there is a unique k that causes us to reject. In this case εM(f) ≤ 1/2 since
we can change either all f(i) to f(k + 1) for i ≤ k, or all f(i) to f(k) for i > k in order to make f
monotone. Thus, we reject with probability 1/(d − 1) ≥ 2εM(f)/(d− 1) in this case as well.

We see that the above test is too “short-sighted” since it only looks at the neighboring pairs
of vertices. We now describe a distribution that spots the violated edges much better. As noted
before, an alternative distribution which meets the same bound was previously suggested and
analyzed in [6].

Distribution p1: This distribution is uniform on a set P ⊂ Σ×Σ which is defined as follows. The
set P consists of pairs (k, `), where 0 < ` − k ≤ 2t and 2t is the largest power of 2 which divides
either k or `. That is, let power2(i) ∈ {0, 1..., log2 i} denote the largest power of 2 which divides i.
Then,

P
def
= {(k, `) ∈ Σ× Σ : 0 < `− k ≤ 2max(power2(k),power2(`))} (7)

and p1(k, `) = 1
|P | for every (k, `) ∈ P , and is 0 otherwise.

Proposition 9 For any Ξ and f : Σ 7→ Ξ, Detect(f, p1) ≥ 1
O(log d) · εM(f).

Proof: We first show that |P | = O(d log d). This can be shown by charging each pair (k, `) ∈ P
to the element divisible by the larger power of 2 (i.e., to k if power2(k) > power2(`) and to `
otherwise), and noting that the charge incurred on each i is at most 2 · 2power2(i). It follows that

the total charge is at most
∑d

i=1 2power2(i)+1 =
∑log2 d

j=0
d
2j
· 2j+1 = O(d log d).

Since p1 is uniform over P , the value of Detect(f, p1) is the ratio between the number of
violated edges of f in P and the size of P . Thus, it remains to show that the former is Ω(εM(f) ·d).
In the following argument it will be convenient to view the indices 1, . . . , d as vertices of a graph
and the pairs (k, `) ∈ P as directed edges. We refer to this graph as GP , and note that it is a
subgraph if G1

Σ.

Claim 9.1: For every two vertices k and ` in GP with k < `, there is a directed path of length at
most 2 from k to ` in GP .

Proof of Claim: Let r = dlog de, and consider the binary strings of length r representing k and `.
Let k = (xr−1, . . . , x0) and ` = (yr−1, . . . , y0). Let j be the highest index such that xj = 0 and
yj = 1. Note that xi = yi for j < i < r. We claim that the vertex s = (xr−1, . . . , xt+1, 1, 0, . . . 0) is

9



on a path of length 2 from k to `. This follows from the definition of P , since s is divided by 2j ,
while both s− k = 2j −∑j−1

i=0 xi2
i ≤ 2j and `− s =

∑j−1
i=0 yi2

i < 2j .
�

We now apply Lemma 7 to obtain a matching M of size m ≥ (εM(f) · d/2) consisting of violated
edges of f . By the above claim, there is path of length at most 2 in GP between every matched pair.
Each edge e of GP belongs to at most 2 such paths: on at most one path it is the first edge, and on
at most one it is the second edge (or otherwise M is not a matching). Since for every (x, y) ∈M we
have f(x) > f(y) (while x ≺ y), the length-2 path between x and y must contain a violated edge.
Thus, we obtain at least m/2 ≥ (εM(f) · d/4) violated edges in GP , and the proposition follows.

On the Optimality of Distribution p1. We show that the result of Proposition 9 is optimal
(up to a constant factor), even for Ξ = {0, 1}. The following argument is due to Michael Krivelevich.

Proposition 10 For any distribution p : Σ×Σ 7→ [0, 1], with support only on pairs (k, `) such that
k < `, there exists a non-monotone f : Σ 7→ {0, 1} so that

Detect(f, p) ≤ 2

log2 d
· εM(f)

Proof: Let p be a distribution on pairs as above. We define

ρ
def
= max

f :Σ 7→{0,1} s.t. εM(f)>0

{
Detect(f, p)

εM(f)

}

Our aim is to show that ρ ≤ 2/ log2 d. The key observation is that for any consecutive 2a indices,
p has to assign a probability mass of at least ρ · a/d to pairs (k, `) where k is among the lowest
a indices and ` is among the higher a such indices. This observation is proven as follows. Let
L,H be the low and high parts of the interval in question; that is, L = {s + 1, ..., s + a} and
H = {s+a+ 1, ..., s+ 2s}, for some s ∈ {0, ..., d− 2a}. Consider the function f defined by f(i) = 1
if i ∈ L ∪ {s + 2a + 1, ..., d} and f(i) = 0 otherwise. Then εM(f) = a/d. On the other hand, the
only pairs (k, `) with f(k) > f(`), are those satisfying k ∈ L and ` ∈ H. Thus, by definition of ρ,
it must hold that ρ ≤ Pr(k,`)∼p[k ∈ L & ` ∈ H]/(a/d), and the observation follows.

The rest of the argument is quite straightforward: Consider log2 d partitions of the interval
[1, d], so that the ith partition is into consecutive segments of length 2i. For each segment in the
ith partition, probability p assign a probability mass of at least 2i−1ρ/d to pairs where one element
is in the low part of the segment and the other element is in the high part. Since these segments
are disjoint and their number is d/2i, it follows that p assigns a probability mass of at least ρ/2 to
pairs among halves of segments in the ith partition. These pairs are disjoint from pairs considered
in the other partitions and so we conclude that (log2 d) · ρ2 ≤ 1. The proposition follows.

We now describe a distribution that works well for the boolean range only.

Distribution p2: This distribution is uniform over all pairs (k, `) such that k < `. That is,
p2(k, `) = 2/((d − 1)d) for 1 ≤ k < ` ≤ d.

Proposition 11 For any f : Σ 7→ {0, 1}, Detect(f, p2) ≥ εM(f)2/2.

A slightly more careful analysis (which we omit) can extend the bound to εM(f)2, which is tight.
For any integer e < d/2, consider the function f(x) = 0 if x ∈ {2, 4, 6 . . . 2e} and f(x) = 1 otherwise.
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Then εM(f) = e/d and |Viol(f)| = 1 + . . . + e ≈ e2/2. Thus, Detect(f, p2) ≈ (e2/2)/(d2/2) =
(e/d)2 = εM(f)2.

Proof: Let z be the number of zeroes in f and let 2e be the number of mismatches between f and
its sorted form. Then εM(f) ≤ 2e/d as by swapping the 2e mismatches we make f monotone. On
the other hand, considering the e 1-entries in the z-prefix of f and the e 0-entries in the (d − z)-
suffix, we lower bound the rejection probability by e2/((d− 1)d/2) > 2(e/d)2. Combining the two,
we conclude that Detect(f, p2) ≥ 2 · (εM(f)/2)2.

We remark that the restriction to boolean range in Proposition 11 is important. For any
integer e ≤ d/2, define f : Σ 7→ Σ by f(2i) = 2i − 1, f(2i − 1) = 2i for i = 1 . . . e, and f(i) = i
for i > 2e. Clearly, εM(f) = e/d, while f has only e violated edges: (2i − 1, 2i), i = 1 . . . e. Thus,
Detect(f, p2) = e/(d(d − 1)/2) = 2εM(f)/(d − 1), which is much less than εM(f)2 if e is large.

3.4 Proof of Theorem 2

In this subsection we combine Lemma 6 with the results for the case n = 1 provided in Subsec-
tion 3.3, and derive Theorem 2

Combining Lemma 6 and Proposition 9 (applied only to Ξ = {0, 1}), we have

Detect(f,Dn
p1

)) ≥ Ei,α,β(Detect(fi,α,β, p1)) [By Part 2 of the lemma]
≥ Ei,α,β(εM(fi,α,β)/O(log d)) [By the proposition]

≥ εM(f)
2n·O(log d) = Ω( εM(f)

n log d) [By Part 1 of the lemma]

which establishes the the first item in the theorem.

Combining Lemma 6 and Proposition 11, we have

Detect(f,Dn
p2

)) ≥ Ei,α,β(Detect(fi,α,β, p2)) [By Part 2 of the lemma]
≥ Ei,α,β(εM(fi,α,β)2/2) [By the proposition]
≥ [Ei,α,β(εM(fi,α,β))]2/2 [as E(X2) ≥ [E(X)]2]
≥ (εM(f)/2n)2/2 = Ω(εM(f)2/n2) [By Part 1 of the lemma]

which establishes the second item in the theorem.

4 Testing Monotonicity over General Ranges

We now reduce the problem of testing arbitrary-range functions to the simpler problem of testing
boolean functions, which was considered in the preceding section. This reduction works not only
for functions with domain Σn, but more generally when the domain is any partially ordered set S.
The reduction is characterized by Theorem 3, which states that a certain type of monotonicity test
for functions of the form f : S 7→ {0, 1} also works well for functions of the form f : S 7→ Ξ. Here Ξ
is a finite totally ordered set of size r, which we can regard as the integers in the interval [0, r− 1].
Furthermore, for simplicity, we assume that r = 2s for some integer s. All references to ”edges”
are references to edges of the partial order graph, whose vertices are strings in the domain S and
directed edges correspond to ordered comparable pairs (i.e. (x, y) is an edge iff x ≺ y).

To ensure that a function far from monotone can be readily detected by our test, we lower
bound Detect(f,D) in terms of εM(f). Equivalently, we are looking for a good upper bound on
εM(f) in terms of Detect(f,D). We reduce the task of obtaining an upper bound for functions
with an arbitrary range to that of obtaining such an upper bound for functions with binary range.
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The general idea of the reduction is to incrementally transform a function f into a monotone
function, while ensuring that for each repaired violated edge, the value of the function is changed
at only a few points. This transformation allows us to find a monotone function close to f and
to upper bound εM(f) by the distance from f to that function. The transformation produces the
following chain of functions: f 7→ f1 7→ f2 7→ f3, where f3 is monotone. The distance between
any two consecutive functions in the chain is equal to the distance to monotone of some auxiliary
function with a smaller range. Thus, we obtain an upper bound on εM(f) in terms of the distance to
monotone of smaller-range functions. In addition, edges violated by the auxiliary functions are also
violated by f , and we can obtain a lower bound on Detect(f,D) in terms of the corresponding
probability for the smaller-range auxiliary functions. Using the inductive assumption for smaller-
range functions and the two claims above, we finally obtain the needed upper bound on εM(f) in
terms of Detect(f,D).

Subsection 4.1 describes and analyzes operators squash, mon, and clear later used to define
functions f1, f2, and f3 described above. Subsection 4.2 proves the range reduction lemma which
upper bounds εM(f) and lower bounds Detect(f,D) by the corresponding quantities for smaller
range functions. This section is concluded by the proof of Theorem 3 in Subsection 4.3.

4.1 Operators squash, mon, and clear

First, we introduce operators, later used for obtaining functions f1, f2, and f3 related to f .

Definition 3 The operators squash, mon, and clear each map a function f : S 7→ [0, r − 1] to
a related function with the same domain and the same or smaller range. In particular, mon[f ] is
some arbitrary monotone function at distance εM(f) from the function f . The operators squash
and clear are defined below; in these definitions a and b are elements of [0, r − 1] and a < b.

squash[f, a, b](x) =





a if f(x) ≤ a
b if f(x) ≥ b

f(x) otherwise

clear[f, a, b](x) =





mon[squash[f, a, b]](x)
if mon[squash[f, a, b]](x) 6= squash[f, a, b](x)

f(x) otherwise

squash operator simply “squashes” the range of f to [a, b]. Notice that if an edge is not violated
by f , it is not violated by squash[f, a, b].

Claim 12 For all f : S 7→ [0, r − 1] and all a, b ∈ [0, r − 1] such that a < b, the operator squash
does not introduce any new violated edges, i.e. Viol(squash[f, a, b]) ⊆ Viol(f).

clear operator first “squashes” the range to [a, b], then alters the resulting smaller-range
function at some points to obtain the closest monotone function, and finally “unsquashes” the
function at unaltered points to the original values. This leads to the following simple claim:

Claim 13 For all f : S 7→ [0, r − 1] and all a, b ∈ [0, r − 1] such that a < b,

dist(f,clear[f, a, b]) = εM(squash[f, a, b]).

Proof: By definitions of the clear and mon operators:

dist(f,clear[f, a, b]) = dist(mon[squash[f, a, b]], squash[f, a, b]) = εM(squash[f, a, b]).

12



Define the interval of a violated edge (x, y) with respect to function f to be the interval [f(y), f(x)]
(since the edge is violated by f , f(x) > f(y)). We say that two intervals cross if they intersect
in more than one point. Intuitively, if we consider f(x) − f(y) as a measure of how violated an
edge (x, y) is, then we can say that clear[f, a, b] partially repairs violated edges of f whose inter-
vals cross [a, b] without worsening other violated edges. The following lemma formalizes important
properties of clear.

Lemma 14 The function clear[f, a, b] has the following properties for all f : S 7→ [0, r − 1] and
all a, b ∈ [0, r − 1] such that a < b:

1. Viol(clear[f, a, b]) ⊆ Viol(f), i.e. clear does not introduce any new violated edges.

2. clear[f, a, b] has no violated edges whose intervals cross [a, b].

3. The interval of a violated edge with respect to clear[f, a, b] is contained in the interval of
this edge with respect to f .

Proof: For brevity, define g = mon[squash[f, a, b]] and h = clear[f, a, b]. Let (x, y) be an edge
violated by h; that is, h(x) > h(y). By its definition, g is monotone and takes values in [a, b]. Also
notice that h(x) = f(x) if h(x) /∈ [a, b], and h(x) = g(x) if h(x) ∈ [a, b]. We consider four cases
where each of h(x) and h(y) is either inside or outside the interval [a, b].

• Case 1: h(x), h(y) ∈ [a, b]. This case cannot occur: (x, y) cannot be violated by h because
h(x) = g(x), h(y) = g(y) and g is monotone.

• Case 2: h(x), h(y) /∈ [a, b]. Since f and h agree on both x and y, it follows that (x, y)
is violated by f and [h(y), h(x)] = [f(y), f(x)]. This proves parts 1 and 3. To show that
[h(y), h(x)] does not cross [a, b], it remains to prove that the case when h(x) > b and h(y) < a
cannot happen. But in such a case we must have g(x) = b and g(y) = a and that contradicts
the monotonicity of g.

• Case 3: h(x) /∈ [a, b], h(y) ∈ [a, b]. Since (x, y) is violated, h(x) > b. Consequently, f(x) =
h(x) > b and, thus, g(x) = b. Since g is monotone, g(y) ≥ g(x) = b, and hence h(y) = g(y) =
b. This proves that [h(y), h(x)] intersects [a, b] in at most one point (b), establishing part 2.
If f(y) = h(y) = b, then f and h agree on both x and y, and parts 1 and (3) follow. If not,
then b = g(y) 6= squash[f, a, b](y). Thus, squash[f, a, b](y) < b, and hence f(y) < b = h(y).
Since f(x) = h(x) > b, parts 1 and 3 follow.

• Case 4: h(x) ∈ [a, b], h(y) /∈ [a, b]. This case is symmetrical to Case 3.

4.2 Range Reduction

We are now ready to define functions in the chain f 7→ f1 7→ f2 7→ f3, as well as auxiliary smaller-
range functions f ′1, f ′2, and f ′3. Lemma 15 defines these functions and summarizes their properties.
The transition from f to f1 transforms violated edges with one endpoint in the lower half of the
range and the other endpoint in the upper half into edges with both endpoints in the same half
of the range. Then we repair violated edges with both endpoints in the lower half of the range to
obtain f2 and finally, upper half of the range to obtain f3.
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Lemma 15 (Range Reduction) Given f : S 7→ [0, r − 1], define

f ′ = squash[f, r2 − 1, r2 ], f ′1 = squash[f1, 0,
r
2 − 1], f ′2 = squash[f2,

r
2 , r − 1],

f1 = clear[f, r2 − 1, r2 ], f2 = clear[f1, 0,
r
2 − 1], f3 = clear[f2,

r
2 , r − 1].

These functions have the following properties, for any probability distribution D.

1. Detect(f,D) ≥ Detect(f ′, D)

2. Detect(f,D) ≥ Detect(f ′1, D) + Detect(f ′2, D)

3. εM(f) ≤ εM(f ′) + εM(f ′1) + εM(f ′2)

Proof: All references to “parts” are references to parts of Lemma 14.

(1 ) The squash operator never adds new violated edges by Claim 12. Therefore, Viol(f ′) ⊆
Viol(f), and the claim follows.

(2 ) It is enough to show that Viol(f ′1) and Viol(f ′2) are disjoint subsets of Viol(f). First, note
that Viol(f ′1) and Viol(f ′2) are subsets of Viol(f) because f ′1 and f ′2 are constructed from f using
a sequence of clear and squash operators, which never add new violated edges by Claim 12 and
part 1.

It remains to prove that Viol(f ′1) and Viol(f ′2) are disjoint. By part 2, there is no edge violated
by f1 whose interval crosses [ r2 − 1, r2 ]. Hence, the edges violated by f1 are partitioned into two
disjoint subsets: “low” edges with intervals contained in [0, r2 − 1] and “high” edges with intervals
contained in [ r2 , r − 1]. The edges violated by f ′1 are a subset of the low edges, since the squash
operator repairs all high violated edges and adds no new violated edges by Claim 12. The edges
violated by f ′2 are a subset of the high edges, since the clear operator used to form f2 repairs all
low violated edges by parts 2 and 3, and no new violated edges are added by Claim 12 and part 1.

(3 ) First, we show that f3 is monotone. Since the function f3 is constructed from f using a sequence
of three clear operators, parts 2 and 3 imply that there is no edge violated by f3 whose interval
crosses any of the intervals [ r2 − 1, r2 ], [0, r2 − 1], or [ r2 , r − 1]. Therefore, f3 violates no edges at all
and is monotone.

Now the distance from f to the set of monotone functions is at most the distance from f to the
particular monotone function f3, and we get:

εM(f) ≤ dist(f, f3) ≤ dist(f, f1) + dist(f1, f2) + dist(f2, f3) = εM(f ′) + εM(f ′1) + εM(f ′2).

The last step uses Claim 13.

4.3 Proof of Theorem 3

In this subsection we use the results of the preceding lemma to prove Theorem 3. The proof is by
induction on s with the inductive hypothesis that for every function f : S 7→ Ξ where |Ξ| = 2s,

εM(f) ≤ C ·Detect(f,D) · s.

In the base case where s = 1, the hypothesis holds by the assumption stated in the theorem.
Now assume that the hypothesis holds for s − 1 to prove that it holds for s. We can reason as
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follows:

εM(f) ≤ εM(f ′) + εM(f ′1) + εM(f ′2)

≤ C ·Detect(f ′, D) + C ·Detect(f ′1, D) · (s− 1) + C ·Detect(f ′2, D) · (s− 1)

≤ C · (Detect(f,D) + Detect(f,D)(s− 1))

= C ·Detect(f,D) · s

The first inequality was proved in part 3 of Lemma 15. The second inequality uses the induction
hypothesis; recall that the range of f ′ has size 21, and the ranges of f ′1 and f ′2 have size r/2 = 2s−1.
The third step uses parts 1 and 2 of Lemma 15, and the final step is simplification. This completes
the proof.

5 An Alternative Algorithmic Schema

The algorithmic schema described in Section 2 encompasses all the algorithms we have dealt with
so far. In this section we present another monotonicity testing algorithmic schema for boolean
functions. We describe an algorithm which adheres to this schema and has query complexity
of O

(
(n/ε) log2 (n/ε)

)
and time complexity of O

(
(n/ε) log3 (n/ε)

)
(that is, independent of |Σ|),

proving Theorem 4.

The new schema uses an arbitrary probability distribution q1 : Σ 7→ [0, 1] on the points4 of Σ,
and an arbitrary probability distribution q2 : � 7→ [0, 1] on the integers. The functions t and s,
referred to below, depend on q1 and q2.

Algorithmic schema: Given parameters ε, n, and oracle access to an arbitrary boolean function
f , set Q = 0 (Q will count the number of queries performed) and repeat the following steps up to
t(ε, n) times or until Q ≥ s(ε, n).

1. Uniformly select dimension i ∈ [n], prefix α ∈ Σi−1, and suffix β ∈ Σn−i.

2. Select an integer k according to q2. Increase Q by k.

3. Select k points j1, ..., jk from Σ according to q1.

4. Sort the points selected (according to their index ja). For each pair of consecutive indices
ja < jb, set x = α ja β and y = α jb β. If f(x) > f(y) (i.e., (x, y) witnesses that f is not
monotone), then reject.

If all iterations were completed without rejecting then accept.

The analysis of this schema will be similar to the analysis presented in Section 2. An algorithm
that belongs to this schema is fully specified by the distributions q1, q2 and the functions t(ε, n)
and s(ε, n). Note that if among the points selected in Step 3 there is some pair ja < jb such that
f(α ja β) > f(α jb β), then there must exist such a consequtive pair.

An iteration of the above test defines a probability distribution P (q1, q2) on subsets of Σn. We
are looking for distributions q1 and q2 for which the probability Detect(f, q1, q2) of detecting a
violating pair of points in a random subset A ∼ P (q1, q2) is well lower bounded as a function of
εM(f) and for which the expected size of A is not too large.

4As opposed to the preceding schema where elementary events in the probability space were the pairs in Σ× Σ.
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Let us now specify a “good” pair of distributions q1,q2. Let ` = dlog(2n/ε)e.

distribution q1: This is the uniform distribution on Σ.

distribution q2: This distribution is supported on the ` integer points 2, 4, . . . , 2`−1, 2`. It assigns
probability 2−`+1 to 2`, and for k = 1, . . . `− 1, it assigns a probability of 2−(`−k) to 2`−k.

As before, we start the analysis from the one-dimensional case.

Lemma 16 Let g : Σ 7→ {0, 1} with εM(g) = ε. Then, choosing uniformly k ≥ 2 points j1, ..., jk in
Σ we will observe a violation of monotonicity with probability p(k) ≥ (1− e−εk/2)2.

Proof: We repeat almost verbatim an argument used in the proof of Lemma 6. Since Σ is a totally
ordered set of size d, we may view g as a vector in {0, 1}d, and let S(g) denote its sorted version.
Then S(g) = 0z1d−z, where z denotes the number of zeros in g. Thus, for some r ≥ 0, the vector g
has r 1-entries within its z-prefix and r 0-entries in its (d − z)-suffix. Clearly, r ≥ εM(g) · d, since
otherwise changing the r 1-entries in the prefix to zero we obtain a monotone vector.

It follows that there are two subsets A,B ⊆ Σ, with |A|, |B| ≥ εM(g)|Σ|, such that g restricted
to A is the all–1 vector, g restricted to B is the all–0 vector, and for all a ∈ A, b ∈ B holds a < b.

Therefore, to detect a violation we just have to choose a point in A and a point in B. The
probability that this event happens is at least the probability that there is a point in A among the
first k/2 choices and a point in B among the second k/2 choices. These two events are independent,
and therefore:

p(k) ≥ (1− (1− ε)k/2)2 ≥ (1− e−εk/2)2.

The following lemma is a key step in the prove of Theorem 4. It uses Lemma 6 to perform the
dimension reduction in this setting.

Lemma 17 For any f : Σn 7→ {0, 1} with εM(f) ≥ ε holds:

Detect(f, q1, q2) ≥ c0 ·
1

` · 2` ,

where c0 is an absolute constant (c0 > 1/100).

Proof: Let Ω denote the probability space of all triples i ∈ [n], α ∈ Σi−1, β ∈ Σn−i endowed with
uniform distribution. Let � be endowed with distribution q2. We consider two random variables X
and Y , whereX is defined on Ω and Y on the product probability space Ω× � . For ω = (i, α, β) ∈ Ω,

let X(ω)
def
= εM(fi,α,β). Also, for ω = (i, α, β) ∈ Ω and k ∈ � , let Y (ω, k) be the probability that

chosing k points in Σ uniformly and independently, and checking all the obtained ordered pairs, a
violation is detected for fi,α,β. Item 2 of Lemma 6 tells us that EΩ(X) ≥ ε

2n ≥ 1
2`

. We have to
prove that

Detect(f, q1, q2) = EΩ× � Y (ω, k) ≥ c0 ·
1

` · 2` .

We define two families of sets: {Aj} ⊆ Ω and {Bj} ⊆ � . For any 0 ≤ j ≤ `− 1, let

Aj =
{
ω ∈ Ω : 2j−1E(X) ≤ X(ω) ≤ 2jE(X)

}

and
Bj =

{
k ∈ � : k ≥ 2`−j

}
.
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Next, we show that the probabilities of (at least some) of the sets Aj, Bj are not too small. Since
by definition of the sets Aj we have X(ω) < 1

2E(X) on any ω in the complement of ∪jAj , we obtain

`−1∑

j=0

Pr[Aj ] · 2jE(X) ≥ 1

2
E(X),

implying the existence of an index 0 ≤ j0 ≤ `− 1 with Pr[Aj0 ] ≥ 1
`·2j0+1 . As for the sets Bj, note

that (this is the crucial property of the distribution q2) Pr[Bj ] ≥ 2j−` for all 0 ≤ j ≤ `− 1.

The preceding lemma states that for any 0 ≤ j ≤ ` − 1 and for any pair (ω, k) ∈ Aj × Bj , it
holds that Y (ω, k) ≥ (1− e−X(ω)·k/2)2 ≥ (1− e−1/4)2. Therefore:

Detect(f, q1, q2) = E(Y ) ≥ E(Y |Aj0 ×Bj0) · Pr[Aj0 ×Bj0 ] ≥ (1− e−1/4)2 · Pr[Aj0 ] · Pr[Bj0 ]

≥ (1− e−1/4)2 · 1

` · 2j0+1
· 2j0−` =

(1− e−1/4)2

2
· 1

` · 2` ,

and we are done.

5.1 Proof of Theorem 4

Consider a monotonicity testing algorithm A consistent with the algorithmic schema described
in this section, with the distributions q1 and q2 we have just defined. Set t(ε, n) = c · `2` and
s(ε, n) = 4c · `22` where c is a large constant. Clearly this algorithm always accepts a monotone
function and its query complexity is bounded by s(ε, n) = O((n/ε) log2(n/ε)). As the time com-
plexity is dominated by sorting the points selected in each iteration of the algorithm, it is at most
O(s(ε, n) log(s(ε, n)) = O((n/ε) log3(n/ε)). We have to prove that, for sufficiently large constant c,
the algorithm rejects with probability ≥ 2

3 any f : Σn 7→ {0, 1} with εM(f) ≥ ε.
Let A′ be an algorithm identical to A, except for the fact that there is no upper limit on

the number of queries Q it performs. Let B be the event Q ≥ s(ε, n). Then {A accepts } =
{A′ accepts } ⋃ B, and therefore Pr[A rejects ] ≥ Pr[A′ rejects ]− Pr[B].

By Lemma 17, the probability that one iteration of A′ detects a violation is at least Ω( 1
`·2` ).

Therefore, if c is large enough, t(ε, n) = c`2` iterations of A′ will detect a violation with probability
≥ 11

12 , say. To conclude the proof that A is a tester of monotonicity, it suffices to show that for
sufficiently large c, Pr[B] ≤ 1

4 .

Let ki for i = 1...t(ε, n) count the number of queries A′ performs in the i’th iteration. Then
k1, ..., kt(ε,n) are t := t(ε, n) independent random variables with distribution q2, and Q =

∑t
i=1 ki.

Therefore E(Q) = t ·E(k) = t · `, and Var(Q) = t ·Var(ki) ≤ t · 2`. Chebyshev’s inequality applied
to Q readily gives

Pr(Q ≥ 4c · `22`) ≤ Pr(|Q−E(Q)| ≥ c · `22`) ≤ Var(Q)

c2 · `422`
≤ 1

c2 · `3

and we are done.
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