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Abstract

We give new randomized algorithms for testing multivariate polynomial identities over
finite fields and rationals. The algorithms use [y, log(d; +1)] (plus [loglog C] in case of
rationals where C is the largest coefficient) random bits to test if a polynomial P(z1,...,%,)
is zero where d; is the degree of x; in P and has an error probability of € for any € > 0. The
running time of the algorithms is polynomial in the size of arithmetic circuit representing
the input polynomial and 1/e. These algorithms use fewer random bits than all the known
methods and also take an order of magnitude less time compared to some of the recently
proposed methods [CK97, LV98]. Our algorithms first transform the input polynomial to a
univariate polynomial and then uses Chinese remaindering over univariate polynomials to
efficiently test if it is zero.

We also give a simple test for primality based on identity checking.

1 Introduction

Given a polynomial P(z1,...,z,) and a field F, to test if the polynomial is identically zero over
F' is an important problem with applications to matching [Lov79, MVV87, CRS95|, read-once
branching programs [BCW80], multi-set equality [BK95] etc. It is also used in the context of
interactive and probabilistically-checkable proofs [LFKN90, Sha90, BFL90, AS92, ALM*92] and
learning sparse multivariate polynomials [Zip79, GKS90, CDGK91, RB91].

The problem is trivial if the input polynomial P is given as a sum of terms—P is zero iff
all the terms are zero. However, in general, P is given in some implicit form, e.g., a sym-
bolic determinant, product of polynomials, straight-line programs, arithmetic circuits etc. Of
these, arithmetic circuits is the most general model since all the other forms can be efficiently
transformed to such circuits. Henceforth, we will assume that the polynomial P is given as an
arithmetic circuits containing addition and multiplication gates with input being the n variables
Z1, ..., Zn, (the circuit may also have constants from the given field F'). We will also assume that
the two field operations can be done efficiently. The degree of a variable in such a polynomial
can be exponential in the size of the circuit, and value of coefficients (in case F' is infinite) doubly
exponential. We let d; denote the degree of the variable z;, d = max;{d;}, and C the value of
the largest coefficient.

Schwartz and Zippel [Sch80, Zip79] observed that if a random assignment for the variables
of P is chosen from the set S™, S C F' (F' = F if F is infinite, otherwise it may be a small
extension of F') and P is evaluated on this assignment, then the probability that a non-zero P
evaluates to zero is bounded by Y7 ; d;/|S|. By choosing |S| > Y1, d;/e we get an efficient
(since the given arithmetic circuit can be evaluated efficiently on the assignment) randomized
test for the problem that errs with probability at most €. Clearly, the number of randot bits
required by the algorithm is at least n - log |S| = n - (log Y7, d; + log %) and the time taken is



polynomial in the size of the circuit and log % (There is an additional parameter here: the size
of the largest coeflicient in case F' is infinite, and size of the field F' in case F' is finite but we
shall ignore it for the time being).

Recently, Chen and Kao [CK97] proposed a new paradigm for identity testing over the field
Q: they constructed for each z; a set of 2M1°8(4i+ D1 jrrational assignments such that P is zero
iff it evaluates to zero on any of these assignments. As one cannot evaluate the polynomial
on irrational values, they replaced the irrational values by suitable rational approximations and
then showed that if a random assignment is picked for each z; from its corresponding set, a
non-zero P evaluates to zero on this assignment with probability inversely proportional to the
bit-length of the approximations. Thus, the number of random bits needed in this test is exactly

1 [log(d; + 1)] irrespective of the error probability. The time taken by the algorithm is a
polynomial in 7, d, and % as the bit-length of the approximation is required to be at least d+ %

Lewin and Vadhan [LV98] generalized the above paradigm to work for identity testing over
finite fields. Instead of choosing irrational values for variables in the polynomial, they chose
square roots of irreducible polynomials over F[z]. These square roots are infinite formal power
series and so they approximated these by truncating the power series at certain degree. They
showed that similar properties hold for these assignments as well and obtained exactly the same
bounds for the number of random bits used and the running time.

In comparison to the Schwartz-Zippel test, the Chen-Kao/Lewin-Vadhan tests require far
fewer random bits, and their number is independent of the error parameter. However, these
tests take more time than Schwartz-Zippel: the former take time polynomial in d and %, which
is exponential in both the size of the arithmetic circuit representing the polynomial and log%
as opposed to polynomial in the two parameters in the latter. While the second gap cannot be
bridged without eliminating randomness altogether (if the time taken is polynomial in log% in
Chen-Kao/Lewin-Vadhan then by choosing % to be a large enough exponential one can com-
pletely de-randomize the algorithm as the number of random bits is independent of €), the first
gap is a little unsatisfactory. It means that the Chen-Kao/Lewin-Vadhan tests are inefficient
even for a univariate identity with high degree.

In this paper, we make two contributions to the identity testing problem. First, we provide
a new, and important, application of this problem: primality testing. We exhibit a univariate
polynomial of degree n which is zero (over a suitable finite field) iff the number n is prime.
This test is conceptually simpler than the existing tests for primality, e.g., Miller-Rabin [Mil76,
Rab80], Solovay-Strassen [SS77], although not as efficient.

Our second contribution is yet another paradigm for identity testing: via Chinese remainder-
ing over polynomials. The idea here is simple: first transform the given multivariate polynomial
to a higher degree univariate polynomial such that the identity property is preserved. Then test
if the univariate polynomial is zero using division by a small degree polynomial randomly chosen
from a suitable set. Using this, we are able to obtain two algorithms—one for finite fields and the
other for Q—that require [ ;" log(d; + 1)] (plus [loglog C if the field is Q) random bits and
work in time polynomial in the size of the arithmetic circuit and % These algorithms bridge the
aforementioned gap and thus are essentially optimal in both the parameters. Even the number
of random bits required by the algorithms is smaller than Chen-Kao/Lewin-Vadhan (consider
the case when d; = 2 for each i: our algorithms require O(n) fewer bits in this case). This fact
is not immediately apparent when the field is Q since Chen-Kao test requires > 7" ; [log(d; +1)]
random bits as opposed to an additional term of [loglog C| in our algorithm. However, it
is implicitly assumed in the Chen-Kao test that the coefficients of the input polynomial are
polynomial sized whereas we allow the coefficients to be exponentially sized. If the coefficients
are polynomially sized then our algorithm requires only [} 7 ; log(d; + 1)] random bits since
the additional requirement of [loglog C'] random bits can be eliminated by cycling through all
possible values of these bits (there are only polynomially many such values).



The organization of the paper is as follows: section 2 defines the formal machinery used
in the paper, section 3 gives the primality testing algorithm, section 4 gives the new identity
testing algorithms, and section 5 discusses some de-randomization issues.

2 Formal Setting

Let F be a field. By F|a] we denote the field extension of F' obtained by adjoining to F' the
algebraic element a. GF[g] denotes a finite field of size ¢. Q denotes the field of rationals.

We represent polynomials as arithmetic circuits. An arithmetic circuit over a ring consists
of input variables, constants, and addition and multiplication gates where the constants and
arithmetic operations are from the underlying ring. The size of the circuit is the number of
gates in it. It is easy to see that the degree of a polynomial represented by an arithmetic circuit
can be exponential in the size of the circuit, and so can be the size of coefficients in case the
underlying ring is integers/ rationals.

3 Primality testing

In this section, we exhibit a new primality test which is based on polynomial identity testing.
Let P(z) = (14+2)" —1—2".

Lemma 3.1 P(z) = 0(mod n) iff n is prime.

Proof. We can rewrite P as:
n—1
P(z) = Z (n) 2.
i=1 \J

Suppose n is prime. Then, (?) = 0(mod n) for every j, 1 < j < n since n occurs in the
numerator but not in the denominator of (7;) Therefore, P(z) = 0(mod n).

Suppose n is composite. Let p be a prime divisor of n. Consider (Z) Suppose p® is the
largest power of p that divides n. Then (Z) is divisible by p®~! but not by p® Therefore,
(Z) # 0(mod p®) which implies (Z) # 0(mod n). Clearly, 1 < p < n and so P(z) # 0(mod n).

|

We cannot immediately invoke any of the identity testing algorithms to obtain a randomized
polynomial-time algorithm for primality. This is because all the tests work over a field and the
number n here may be composite. Also, the Lewin-Vadhan test would require time polynomial
in n which is exponential in the input size. In the next section, we show how to make our test
work for composite moduli.

Our test requires [logn| random bits, takes time polynomial in logn and % (the exponent
of logn is large, at least six), and errs with probability e. In comparison, the Miller-Rabin test
requires [log n] random bits, takes time O((log n)?) and errs with probability 1. This probability
can be reduced at the cost of increasing the number of random bits slightly. Clearly, this test
scores over our test in terms of practical utility (same is true for Solovay-Strassen test too).
However, our test is conceptually simpler and has an easier proof of correctness.

4 Identity testing

In this section, we give our identity testing algorithms. The section is divided in four subsections.
In the first one, we give the algorithm that works for univariate polynomials over any finite field.



In the next subsection we generalize the algorithm to work over multivariate polynomials. In the
third subsection, we modify the algorithm to work for polynomials modulo composite numbers
and in the final subsection we give the algorithm that works over rationals.

4.1 Univariate polynomials over finite fields

Let P(z) be a univariate polynomial over finite field GF[q] of characteristic p. Let d be the
degree of P. In this subsection operations will always be over the field GF[g] unless explicitly
mentioned otherwise. The idea of testing the polynomial is simple: since we cannot multiply
out the polynomial to check if all its coefficients are zero (this would require do) steps), we use
Chinese remaindering to test if the polynomial is zero. In other words, randomly choose a small
degree polynomial Q(z) and test if P(x) is divisible by Q(x). If P is non-zero, this test will fail
with high probability. To make the test suceed with probability 1 — ¢, we need to choose the
polynomial @ from a set of polynomials such that the lcm of any € fraction of these polynomials
has degree at least d. Also, to keep the number of random bits required to a minimum, we need
to sample from this set using only log d random bits.

One possible way of doing this is to consider a set of d mutually co-prime polynomials of
degree % each (or more strongly, a set of d irreducible polynomials of the same degree). However,
sampling from such a set using only logd random bits appears difficult as there is no known
efficient way of constructing a large number of mutually co-prime polynomials'. Therefore, we
will simply construct a set of d small degree polynomials satisfying the required property though
the polynomials in the set may not be mutually co-prime.

For a prime number r, let

r—1
Q"‘ (z) = Z zia
1=0

(Q, is the r** cyclotomic polynomial). Let ¢ = [logd]. For a binary vector s € [0,1]¢ and
number ¢ > £, let

-1
Asi(z) = zt + z s[i] - z°,
=0
where s[i] is the i* component of s. Let

Tr,s,t(.’lﬁ) = Qr (As,t(z))'

Our set of polynomials will consist of T 5 ; for all values of s and suitably fixed values of r
and t. We first prove that this set has the required property in the following three lemmas.

Lemma 4.1 Let r be any prime number, r # p, such that r does not divide any of ¢g—1, ¢*> —1,
..., ¢ 1—1. Then the polynomial Ty s4(z) for any value of s and t has no factors of degree less
than £.

Proof. Let irreducible polynomial U(z) of degree v divide T} 4 +(x). Let a be a root of U(z).
By adjoining a to GF[q] we get the extension field GF[¢g"]. In this extension field we have
Qr(As () = Tr s ¢(a) = 0 since U(x) divides T; 5 ¢(z). Let B8 = A (). Then, g is a root of
Qr(z) in GF[¢"]. Since r # p, B # 1. Also, f” =1 in GF[q"]. Therefore, r must divide the order

LTf the size of the field is larger than d then such a set of polynomials can be constructed easily: take polynomials
of the form z< —  where i varies over d different field elements. However, this does not work for small field sizes
as we need to first extend the field so that the size of extension becomes more than d. But for extending the field

we need an irreducible polynomial of necessary degree which requires additional random bits. Our method works
for all field sizes.



Input: Polynomial P(z) of degree d, field GF|g], and error parameter e.

1. Let £ = [logd] and t = max{[1], ¢}.

2. Find the smallest prime r such that r # p and r does not divide any of ¢ — 1, ¢* — 1, ...,
qZ—l —1.
]é

3. Randomly choose an s € [0,1]° and compute the polynomial 7} s ;(z) = Qr(As()).

4. Accept iff P(z) is divisible by T} s ¢(x).
Figure 1: Algorithm A

of the multiplicative group GF*[¢"]. In other words, r | ¢ — 1. By the choice of r, we have
v > 4. [ ]

Lemma 4.2 Let r be chosen as above. Then for any t and any polynomial U(zx), U(x) can
divide Ty s 1(x) for at most r — 1 different values of s.

Proof. Let irreducible polynomial U(z) of degree v divide Ty, ¢(2), ..., Trs,,t(x). As before,
consider the extension field GF[¢"] obtained by adjoining a root « of U(z) to GF[q]. It follows
that As, ¢(a), ..., As,t() are a roots of Qr(z) over GF[¢"]. Consider A;, i(a) — As; () for
1 # j. This is a polynomial of degree at most £ —1 in «. Since the minimal polynomial of o over
GF[q] has degree v and v > ¢ (from Lemma 4.1), it follows that the above difference cannot be
zero and so As; 1(a) # As; t(a). Therefore, all the above a roots of Q,(2) are distinct. As the
degree of Q,(z) isr—1, we get a <r — 1. ]

Lemma 4.3 Let r be chosen as before. Then for any t the lem of any K polynomials from the
set has degree at least K - t.

Proof. Consider polynomials T} s, (%), Trs5,t(2), - - -, Tr.sx t(z) for some K distinct values of s.
The product of these polynomials has degree K -¢- (r — 1). Any polynomial U(z) can divide at
most 7 — 1 of these according to the Lemma 4.2. Therefore, the lcm of these polynomials has
degree at least K - t. [

The algorithm is now obvious—it is given in Figure 1. The following lemma proves its
correctness.

Lemma 4.4 Algorithm A solves identity testing problem for univariate polynomials over finite
fields. It errs with probability at most € if P(x) is not identically zero. Further, it uses [logd]
random bits and works in time polynomial in M, logq, and % where M is the size of the
arithmetic circuit representing P(x).

Proof. Tt is clear that the algorithm uses £ random bits. That it works in time polynomial
in M, t, r, and logq follows from the easily observed fact: testing if polynomial P is divisible
by a degree v polynomial can be done in time polynomial in v and the size of the circuit by
multiplying out the circuit modulo the degree v polynomial.

Number 7 is the smallest prime that does not divide any of ¢g—1, ..., ¢¢ ' — 1. By the Prime
Number Theorem, r < £3 - (log q)? (a very crude estimate). Since £ is bounded by M, we get
the required bound on the time taken.



Input: Polynomial P(z1,...,z,) of degree d; in z;, field GF[g|, and error parameter e.
1. Let D; = T/Z}(dj + 1) for 1 <i <.
2. Let P'(y) = P(y",y"™2,...,y").

3. Run Algorithm A on P’ and e.

Figure 2: Algorithm B

It is also clear that if P(x) is zero then the algorithm always accepts. If P(z) is non-zero then
at most % polynomials 7 s ;(«) will divide P(z) by the above lemma. Therefore, the probability
of acceptance is at most % <e ]

4.2 Multivariate polynomials over finite fields

In this subsection, we generalize the algorithm A to work over multivariate polynomials. The
idea is to simply transform the given multivariate polynomial to a univariate one which is zero
iff the former is and then apply algorithm A.

Let P(x1,x2,...,2,) be the input polynomial over field GF|[g]. Let d; be the degree of z; in
P and d = max;{d;}.

Let D; = ;‘_;11(d]_ +1) for 1 <4 <mnand Py = P. We define a sequence of polynomials P;
for 1 < i < n as follows:

Pi(y,z2,...,2q) = P(z1,...,zp),

-Pi(yaxi+17 .. axn) Pi*l(yayDiaxi+la R 7$n) for i > 1.

The following lemma, lists crucial properties of these polynomials:

Lemma 4.5 For 1 <14 < n, polynomial P; is zero iff P;_1 is. Further, variable y has degree at
most D1 — 1 in P;.

Proof. We prove this by induction on i. For i = 1 the above properties are trivially true.
Suppose they are true for ¢ = j — 1. P; is obtained by substituting yPi for the variable z; in
P;_;. Clearly, if P;_; is zero then so is P;. Suppose Pj_ is not zero. Polynomial P;_; can be
written as a degree d; polynomial in variable z; whose coefficients are themselves polynomials
over the remaining variables. Let P;_1(y,zj,..., %) = E?io Ci(y, Tjq1,---52n) - xé and let Cy,
be the highest non-zero coefficient of P;_;. By the induction hypothesis, the degree of y in each
of the coefficient polynomials Cj is at most Dj — 1. Consider P;. The term C,, - y™Pi is a
non-zero polynomial that has degree at least m - D; in y. Any other non-zero term of P; is a
polynomial that has degree at most (m —1)-D; + Dj —1 = m-D; —1 in y. Therefore, P;
cannot be zero. The degree of y in P; is at most dj - D; + D; — 1= Dj;q — 1. [

The algorithm is now obvious: it is given in Figure 2.

Lemma 4.6 Algorithm B solves identity testing problem for multivariate polynomials over finite
fields. It errs with probability at most € if P is not identically zero. Further, it uses [> i, logd;]
random bits and works in time polynomial in M, logq, and % where M is the size of the
arithmetic circuit representing the input polynomial.



Input: Polynomial P(z1,...,z,) of degree d; in x;, number m, and error parameter e.
1. Let D; = T/Z}(dj + 1) for 1 <i <.
2. Let P'(y) = P(yPr,yP2,... yPn).
3. Let £ = [logd] and t = max{[1],¢}.
4. Randomly choose an s € [0, 1]¢.
5. For every prime r < £3 - (logm)? do the following:

(a) Compute the polynomial T} s 1(x) = Qr(Ast()).
(b) Check if P'(z) is divisible by T} +(x) over Zp,.

6. Accept iff P'(z) is divisible by T s +(x) for every value of r.

Figure 3: Algorithm C

Proof.  Polynomial P' is a univariate polynomial of degree [[}_;(d; + 1) — 1 and is zero iff P
is. Moreover, the arithmetic circuit representing P’ has size O(M + n? - logd) = O(M?3). The
lemma follows from the properties of Algorithm A. |

4.3 Polynomials over Z,,

In this subsection, we modify our test to work for polynomials over Z,,, where m is not necessarily
a prime. This is useful in applications such as primality testing as shown in the previous section,
and also in testing identities over rationals as we will show in the next section.

We will make use of the following lemma, in our test:

Lemma 4.7 For any univariate polynomial P(x) the following holds:

e For any number m, if P(z) # 0(mod m) then there is a prime p and exponent a such that
ptt divides m, and I%P(:C) # 0(mod p).

e For any prime p and univariate monic polynomial Q(x), if P(z) is not divisible by Q(z)
over Z, then for every number m and a such that ptt divides m, p®- P(z) is not divisible

by Q(x) over Zy,.

Proof. If P(z) # 0(mod m) then there is a prime p and exponent b such that p® divides m but
not every coefficient of P(z). Let a be the largest power of p that divides every coefficient of
P(z). Then p®*! divides m and I%P(x) # 0(mod p).

If p*- P(z) = Q(z)-R(z)(mod m) where p*! divides m then p®-P(z) = Q(z)-R(z)+m-R'(z)
over integers. Since p® divides m, Q(x) - R(x) is divisible by p® and since the coefficient of
largest power of Q(z) is not divisible by p, p® must divide R(z). Therefore, P(z) = Q(x) -
#R(m)(mod p). [ ]

Given a univariate polynomial P and number m, if we run the Algorithm A by doing all
the calculations modulo m (instead of over a field), the algorithm would still work correctly:
if P(z) = 0(mod m) it always accepts, and if P(z) # 0(mod m) then by the above lemma
#P(w) # 0(mod p) for some prime p and number a. In this case, any polynomial Q(x) that



does not divide #P(x) over Z, will also not divide P(z) over Z,, (by the above lemma). Thus
the error probability does not increase.

The only problem is in computing r: the number r should be chosen such that it does not
divide p/ — 1 for 1 < j < £. However, p is not known. This is taken care of by trying out all
possible values of r up to £2 - (logm)2. It was shown earlier that the smallest “right” value of
r is bounded by £3 - (logp)? < £2 . (logm)?. Therefore for at least one of the values of r the
algorithm would decide correctly and that is sufficient. For the multivariate case, the polynomial
is converted to a univariate one in the same way as before—the argument there goes through
for rings also. The full algorithm is given in Figure 3.

The above discussion implies the following lemma:

Lemma 4.8 Algorithm C solves identity testing problem for multivariate polynomials over Z,,
for any m. It errs with probability at most € if P is not identically zero. Further, it uses
[>iqlog d;] random bits and works in time polynomial in M, logm, and % where M is the size
of the arithmetic circuit representing P.

One can modify the Schwartz-Zippel test to work over Z,, in a similar fashion as above.

4.4 Polynomials over rationals

In this subsection, we give a test for identities over rationals. The additional problem we need to
take care of is the size of coefficients—in the arithmetic circuit model the size of coefficients can
be exponential in the size of the input. We solve this problem, again, by Chinese remaindering:
choose a collection of small numbers such that a non-zero polynomial remains non-zero modulo
most of these numbers. To keep the number of random bits to a minimum, we do not try to
choose prime numbers, or even relatively prime numbers. Instead, we define the collection as
follows.

Our collection of numbers will consist of IV + 7 for 0 < 7 < Ny and suitable values of N and
Np. The following lemma captures the property we require of this collection:

Lemma 4.9 For any value of N and Ny, the lem of any K numbers from the set S = {N,N +
]-a R aN + NO - ]-} s at least 2K-10gN—4-N0-(logN0)2-

Proof. The product ITx of any K numbers from the set is at least N¥. To compute lem we
need to eliminate factors occurring in more than one number. Observe that if number a divides
two numbers from the set S then a < Nj since a would also divide their difference. We now
count the maximum possible contribution of all the prime numbers (and their powers) less than
Ny to the product IIg.

A prime p < Ny divides at most Ny/p of the numbers in the set. Thus it contributes at
most pNo/? to the product. But this is not all as there may be multiples of higher powers
of p in S. Multiples of p? would contribute a further factor of pNO/T’2 to the product etc. In

. log Ng 1
all, prime p and its powers contribute at most pNO (i 57) < pNo/(p=1) < 9Nolog No/(p=1) ¢
IIg. Therefore, the contribution of all primes and their powers less than Ny is bounded by
N
gNolog No-(32, % ) < 94-No-(1og No)®  The lower bound on the lem follows. [

Figure 4 contains the algorithm for integers. The following lemma proves its correctness.

Lemma 4.10 Algorithm D solves identity testing problem for multivariate polynomials over
integers. It errs with probability at most € if P is not identically zero. Further, it uses
[y, logd;] + [loglog C random bits and works in time polynomial in M and 1.



Input: Polynomial P(x1,...,z,) of degree d; in x;, largest coefficient C, and error parameter e.
1. Let Ng = [logC], t = [2], and N = 9t (1+4-(log No)?)
2. Randomly choose a number 7, 0 < j < Ny — 1.

3. Call Algorithm C with parameters P, N + j, and €/2.

Figure 4: Algorithm D

Proof. If P is zero over integers, it remains zero modulo any number and so the algorithm
always accepts. If P is non-zero with its largest coefficient being C, it can be zero modulo at
most K numbers from the set S where K is such that the lcm of some K numbers from S is less
than C' < 2M0_ Since this lem is at least 25108 N—4-No-(log No)? according to the previous lemma,
we get:

K < Ny-(1+4-(logNy)?)/log N = Ny/t.

Therefore, with probability at most €/2, P is zero modulo N + j. And if P is non-zero modulo
N + j then Algorithm C accepts with probability at most €/2. Therefore, the overall error
probability is at most e.

It is clear that the algorithm uses the claimed number of random bits, and works in time
polynomial in M, loglog C, and % And since loglog C is bounded by M, we get the desired
time bound. [

5 De-randomizing identity testing?

Lewin and Vadhan [LV98] suggested that stronger algebraic tools may eventually lead to a
complete de-randomization of the identity testing problem. However, at the moment it is not
clear how to achieve this. In case of certain specific polynomials we may be able to do this more
quickly. Such specific de-randomizations will definitely be of interest, e.g., de-randomization of
primality testing polynomial, matching polynomial etc. We now discuss briefly how this may be
achieved.

Recall that the primality testing polynomial was P(z) = (1 + 2z)" — 1 — z"(mod n). We
conjecture that if n is composite, this polynomial is not divisible by at least one polynomial of
the form 2" — 1 for r < logn. The justification for this is that if P(z) is divisible by 2" — 1 then
the 7 sums Zf;ko'rﬂ <n (”7:_]) for 1 < j < r are all zero modulo n. It seems very unlikely that
this happens for all logn different values of r.

One can come up with suitable hypothesis with other specific polynomials too, e.g., the
matching polynomial. The standard polynomial for the matching problem is a multivariate one.
First transform it to a univariate one using the trick in Algorithm B and then one can try to
find a small sample space for divisor polynomials.
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