
Lower Bounds for Linear Transformed OBDDs and FBDDs

Detlef Sieling1

FB Informatik, LS 2, Univ. Dortmund
44221 Dortmund, Fed. Rep. of Germany

Abstract: Linear Transformed Ordered Binary Decision Diagrams (LTOBDDs) have been
suggested as a generalization of OBDDs for the representation and manipulation of Boolean
functions. Instead of variables as in the case of OBDDs parities of variables may be tested
at the nodes of an LTOBDD. By this extension it is possible to represent functions in poly-
nomial size that do not have polynomial size OBDDs, e.g., the characteristic functions of
linear codes. In this paper lower bound methods for LTOBDDs and some generalizations
of LTOBDDs are presented and applied to explicitly defined functions. By the lower bound
results it is possible to compare the set of functions with polynomial size LTOBDDs and
their generalizations with the set of functions with polynomial size representations for many
other restrictions of BDDs.

1 Introduction

Branching Programs or Binary Decision Diagrams (BDDs) are a representation of Boolean
functions with applications in complexity theory and in programs for hardware design and
verification as well. In complexity theory branching programs are considered as a model
of sequential computation. The goal is to prove upper and lower bounds on the branching
program size for particular Boolean functions in order to obtain upper and lower bounds on
the sequential space complexity of these functions. Since for unrestricted branching pro-
grams no method to obtain exponential lower bounds is known, a lot of restricted variants of
branching programs has been considered; for an overview see e.g. Razborov [21].

In hardware design and verification data structures for the representation and manipulation
of Boolean functions are needed. The most popular data structure are Ordered Binary De-
cision Diagrams (OBDDs), which were introduced by Bryant [3]. They allow the compact
representation and the efficient manipulation of many important functions. However, there
are a lot of other important functions for which OBDDs are much too large. For this rea-
son a large number of generalizations of OBDDs has been proposed as a data structure for
Boolean functions. Many of these generalizations are restricted branching programs that are
also investigated in complexity theory. Hence, the lower and upper bound results and meth-
ods from complexity theory are also useful in order to compare the classes of functions for
which the different extensions of OBDDs have polynomial size.

1Supported in part by DFG grant We 1066/8.

1

Electronic Colloquium on Computational Complexity, Report No. 19 (1999)

ISSN 1433-8092

In this paper we consider several variants of branching programs that are obtained by in-
troducing linear transformations in OBDDs or generalized variants of OBDDs. In order to
explain the differences between ordinary OBDDs and OBDDs with linear transformations
we first repeat the definition of BDDs/branching programs and of OBDDs. A Binary Deci-
sion Diagram (BDD) or Branching Program for a function

���������	�	�	�
���
���
is a directed acyclic

graph with one source node and two sinks. The sinks are labeled by the Boolean constants �
and � . Each internal node is labeled by a variable

���
and has an outgoing � -edge and an out-

going � -edge. For each input ��� � � ���	�	�	��� � ��� there is a computation path from the source
to a sink. The computation path starts at the source and at each internal node labeled by

���
the next edge of the computation path is the outgoing � � -edge. The label of the sink reached
by the computation path for � is equal to

��� � � . The size of a branching program or BDD is
the number of internal nodes. In OBDDs the variables have to be tested on each computation
path at most once and according to fixed ordering.

In the following we call an expression
� ������� �"!	!	!#� � ���%$&�

a linear test. A generalized vari-
able ordering over

� � �	�	�
�'��� �
is a sequence of (linear independent linear tests. In Linear

Transformed OBDDs (LTOBDDs) the internal nodes may be labeled by linear tests instead
of single variables as in the case of OBDDs. However, on each computation path the tests
have to be arranged according to a fixed generalized variable ordering. The function

�
rep-

resented by an LTOBDD is evaluated in the obvious way: The computation path for some
input �)� � � ���	�
�	�'� � ��� starts at the source. At an internal node labeled by

� �����*�
�+!	!	!�� � ���%$,�
the outgoing edge labeled by � �����*�#�-!	!	!.� � ���%$&� has to be chosen. The label of the sink at the
end of the computation path is equal to

��� � � .
In Section 2 we present an alternate definition of LTOBDDs. There we also define several
extensions of LTOBDDs. An example of an LTOBDD is shown in the left of Figure 1. We
remark that the linear independence of the linear tests of a generalized variable ordering is
necessary, since otherwise not all inputs can be distinguished by the LTOBDD and, therefore,
not all functions can be represented.

The evaluation of linear tests instead of single variables at the nodes of BDDs was already
suggested by Aborhey [1] who, however, only considers decision trees. Linear Transformed
OBDDs have been suggested as a generalization of OBDDs (Meinel, Somenzi and Theobald
[19]), since they are a more compact representation of Boolean functions than OBDDs. The
results of Bern, Meinel and Slobodová [2] on Transformed BDDs imply that the algorithms
for the manipulation of OBDDs can also be applied to LTOBDDs so that existing OBDD
packages can easily be extended to LTOBDDs. Furthermore, the well-known sifting al-
gorithm due to Rudell [22] for the computation of (heuristically) good variable orderings
for OBDDs can be adapted to compute good generalized variable orderings for LTOBDDs
(Meinel, Somenzi and Theobald [19]). Günther and Drechsler [10] present an algorithm for
computing optimal generalized variable orderings.

An example that shows the power of LTOBDDs are the characteristic functions of linear
codes. For more details about linear codes we refer to MacWilliams and Sloane [18]. It is
easy to see that all characteristic functions of linear codes can be represented by LTOBDDs
of linear size: In order to check whether a word

�
belongs to a linear code it suffices to test

whether the inner product of
�

and each row of the parity check matrix of the code is equal to
� . For each row we can choose a linear test that is equal to the inner product of the row and

2

the input. Since the rows of the parity check matrix are linearly independent, we can choose
these linear tests as a generalized variable ordering of an LTOBDD, and an LTOBDD com-
puting the NOR of these linear tests also computes the characteristic function of the code. On
the other hand, exponential lower bounds on the size of many restrictions of branching pro-
grams are known for the characteristic functions of certain linear codes: Exponential lower
bounds for syntactic read- � -times branching programs are proved by Okol’nishnikova [20],
for nondeterministic syntactic read- � -times branching programs by Jukna [12], for semantic� � ��� � � -branching programs by Jukna and Razborov [14], and for

�
OBDDs by Jukna [13].

The definition of
�

OBDDs is given in Section 2. We omit the definitions of the other variants
of branching programs since they are not subject of this paper, but we would like to point out
that these variants of branching programs are the most powerful ones for which exponential
lower bounds can be proved.

The aim of this paper is to present methods to prove exponential lower bounds on the size of
LTOBDDs and some generalizations of LTOBDDs. Many lower bounds for restricted BDDs
have been proved by arguments based on communication complexity theory. Roughly, the
BDD is cut into two parts so that some part of the input is known only in the first part of the
BDD and the other part of the input only in the second part of the BDD. If the computation
of the considered function requires the exchange of a large amount of information between
those two parts of the input, the cut through the BDD and, therefore, also the BDD has to be
large. For LTOBDDs this approach is more difficult to apply. If in one part of the LTOBDD� � � ���

is tested and in the other part
��� � ���

, one can hardly say that nothing about
���

is
known in one of the parts of the LTOBDD. The main result of this paper is to show how to
overcome this problem.

The paper is organized as follows. In Section 2 we repeat the definitions of several vari-
ants of BDDs and define the corresponding variants of LTOBDDs. In Section 3 we present
lower bound methods for LTFBDDs (i.e., LTOBDDs with a relaxed variable ordering condi-
tion) and in Section 4 for

�
LTOBDDs (i.e., nondeterministic OBDDs with parity accepting

mode). Finally, we summarize our results and compare the classes of functions with polyno-
mial size LTOBDDs with the corresponding classes for other variants of BDDs.

2 Further Definitions

Before we define some generalizations of LTOBDDs we discuss an alternate definition of
LTOBDDs, which is equivalent to that given in the Introduction and will be useful in our
lower bound proofs. In order to simplify the notation we always assume that vectors are
column vectors and we also use vectors as arguments of functions. Furthermore we only
consider vector spaces over � � . Then an LTOBDD for some function

�
consists of an OBDD

for some function � and a regular matrix 	 , so that
����� � �
� � 	 ! � �

. In order to illustrate
this definition Figure 1 shows an LTOBDD for some function

�
and an isomorphic OBDD

3

� � � �

���
���

���
���

��� ���
���

���

	
���
	����
	��
	
���
	��

	�� 	��	��
	
����	�� 	
���
	��

	
���
	�� 0 1

0 1 0 1

0

0 1

0 1

0 01 1

0 0 01 1 1

0 01 10
1

11010

Figure 1: An example of an LTOBDD with the generalized variable ordering
� � � ��� � � �

,� � � ���
,
���

,
� � � ���

for some function
�

and of an OBDD for some function � so that���*� � � � � 	 ! � �
.

for some function � , so that
����� � � � � 	 ! � �

for

	 �

���
�
� � � �
� � � �
� � � �
� � � �

�
��
� �

We now define some generalizations of OBDDs and the linear transformed variants of these
generalizations. In FBDDs (Free BDDs, also called read-once branching programs) on each
computation path each variable is tested at most once. This property is also called the read-
once property. An LTFBDD for some function

�
consists of an FBDD for some function

� and a regular matrix 	 so that
���*� � � � � 	 ! � �

. If we draw LTFBDDs as FBDDs with
linear tests at the internal nodes, we see that at most (different linear tests may occur in
an LTFBDD. Another possibility to define LTFBDDs is to allow an arbitrary number of
different linear tests. We call the resulting variant of LTFBDDs strong LTFBDDs: In a
strong LTFBDD the linear tests of each computation path have to be linearly independent.
This definition is quite natural, since the term “free” in the name FBDD means that a path
leading from the source to some node � can be extended to a computation path (a path
corresponding to some input) via the � -edge leaving � and the � -edge as well. In a BDD
this is obviously equivalent to the read-once property. In linear transformed BDDs this is
possible iff on each path the linear tests performed on this path are linearly independent.

Obviously, an LTFBDD is also a strong LTFBDD, while the opposite is not true. We shall
even see in the following section that polynomial size strong LTFBDDs are more powerful
than polynomial size LTFBDDs so that the name strong LTFBDD is justified.

A nondeterministic OBDD is an OBDD where each internal node may have an arbitrary
number of outgoing � -edges and � -edges. Hence, for each input there may be more than one
computation path. A function represented by a nondeterministic OBDD takes the value � on

4

the input � , if there is at least one computation path for � that leads to the � -sink.
�

OBDDs
are syntactically defined as nondeterministic OBDDs. However, a

�
OBDD computes the

value � on the input � , if the number of computation paths for � from the source to the � -
sink is odd. We may define nondeterministic LTOBDDs and

�
LTOBDDs by introducing a

regular transformation matrix 	 as described above or by allowing linear tests at the internal
nodes, where a generalized variable ordering has to be respected.

The investigation of
�

OBDDs is motivated by polynomial time algorithms for several im-
portant operations on Boolean functions, which are presented by Gergov and Meinel [8] and
Waack [24]. It is straightforward to extend most of these algorithms to

�
LTOBDDs. We

shall see that polynomial size
�

LTOBDDs can represent a larger class of functions than�
OBDDs. On the other hand, we also obtain exponential lower bounds for

�
LTOBDDs.

Another motivation for lower bound proofs for
�

OBDDs and
�

LTOBDDs is their relation-
ship to other variants of OBDDs that are used in programs for VLSI design. Such a variant
are Ordered Functional Decision Diagrams (OFDDs), which were introduced by Kebschull,
Schubert and Rosenstiel [16]. OFDDs are syntactically defined as OBDDs, but evaluated in
a different way: Each computation path starts at the source. At an internal node labeled by

���
a computation path may proceed via the outgoing � -edge, if � � �"� , and it may proceed via
the outgoing � -edge or the outgoing � -edge, if � � � � . Similar to

�
OBDDs

��� � � � � iff the
number of computation paths for � to the � -sink is odd. By the given definition it is easy to
observe that OFDDs can be replaced by

�
OBDDs of the same size (Gergov and Meinel [8]).

The same holds for so-called OKFDDs (Ordered Kronecker FDDs), which are an extension
of OFDDs (Drechsler, Sarabi, Theobald, Becker and Perkowski [7]). In the same way as
described above linear transformations can be introduced into OFDDs and OKFDDs, and
many of the algorithms on OFDDs and OKFDDs easily generalize to the linear transformed
versions. Since linear transformed OFDDs and OKFDDs can be simulated by

�
LTOBDDs

without increasing the size, our lower bound for
�

LTOBDDs implies the same lower bound
for the linear transformed variants of OFDDs and OKFDDs.

3 Lower Bounds for LTFBDDs and a Comparison of
LTFBDDs and Strong LTFBDDs

Lower bounds for FBDDs can be proved by cut-and-paste arguments as first shown by
Wegener [25] and Žák [26]. The following lemma describes an extension of the cut-and-
paste method that is suitable for LTFBDDs.

Lemma 1: Let
����� � � ��� ��� � � � ��� and let �	� � . If for all ��
 (matrices � with linearly

independent rows, for all
 � �
 � �	�	�	���
 $��
������� � � ��� $ and for all � ��� � � ��� � , ������� , there
is an

����� � � ��� � so that � ! � ��
 and
���*� � �� ����� � � � , the LTFBDD size for

�
is bounded

below by � $�� ���
� .

Proof: Let an LTFBDD � with the transformation matrix 	 for the function
����� � �	�
�	�'��� ���
���

be given. Let
� � � �*� ���	�	�
�'�!�����
���*� �,� � 	 ! ��� � �	�	�	�����
���
��� (i.e., we may interpret � as a BDD

in which at the internal nodes the linear tests
� � ��� ���	�
�	�'�"�����
���*� � are performed). Then

� � ��� �
5

is the result of the � th linear test on input
�

. We are going to show that the assumptions of
the lemma imply that the top �

�
� levels of ��� are a complete binary tree, which implies the

lower bound. Assume for contrary that there are partial computation paths � and ��� that join
after � tests, where ��� �

�
� .

First, we assume that on � and � � the same linear tests, w.l.o.g.
� � �	�	�
�'�!�	� �
� , are performed,

possibly in different orderings. Hence, there are constants
 � �	�
�	�'�
 � � � and
 � �	�	�	�
�
 � �
� so
that the partial computation path � is chosen for exactly those inputs

�
for which

� � �*� � �
 � �	�	�	�	�"�	� �
� �*� � �
 � �
� , and � � is chosen for exactly those inputs � for which
� � � � � �

 � �	�	�
�	�!� � �
��� � � ��
 � � � . Let
 � �
�	�	���
 $!�
� be defined as � .
We are going to construct a partial computation path
 that completes � and ��� to a path
to a sink. Then on
 the linear tests

� � �
�	�	�	�!�����
�
are performed. Let � denote the matrix

consisting of the rows of 	 corresponding to
� � �	�	�
�'�!� $!�
� . Let � � 	

�
� ! �
 � �
 � �	�	�
�'�
 � �
� �

 � �
�
� � �	�	�	��� � � . By the assumptions of the lemma there is an

�
so that � ! � � �
 � �	�	�	���
 $��
���

and
����� � �� ���*� � � � . This implies that the computation path for

�
starts with the partial

computation path � . Let
 be the partial computation path consisting of the computation path
for

�
between the end of � and the sink.

Now consider the input
� � � . Note that

� � � � � is equal to the inner product of the � th row
of 	 and � . By the definition of � , for ��� ��� �

�
� we have

� � � � � �
 � �
 � and� � �*� � � � � � � ��� � � � � � � � �
 � � �
 � �
 � � ��
 � . Hence, for
� � � the partial computation

path ��� is chosen. Again by the definition of � , for ������� (
�
� we have

� �*� � � � � and�����*� � � � � �����*� � � ����� � � � ���*��� �
. Hence, for ������� (

�
� and the input

� � � the linear
tests

�����*� � � � yield the same results as
� ���*� �

, i.e., the path
 is chosen. Hence, for
�

and
� � �

the same sink is reached, which is a contradiction to
����� � �� ���*� � � � .

Finally, we discuss the situation that on � and ��� not the same set of linear tests is performed.
Then there is some linear test

�
that is performed w.l.o.g. on � but not on ��� . Now we introduce

a marking of the nodes � on ��� . If there is a path from some node labeled by
�

to � , we mark� with ‘A’, and if there is a path from � to some node labeled by
�
, we mark � with ‘B’.

There is no node marked with A and B since otherwise there is a path on which the linear
test

�
is performed twice. For the same reason from a node marked by A no node marked

by B is reachable. The first node of ��� , i.e. the source, is marked by B since the test of
�

on � is reachable from this node, and for a similar reason the node where � and ��� join is
marked by A. Hence, ��� starts with one or more nodes marked by B, possible followed by
some unmarked nodes, and at the end there may be nodes marked by A. On the edge

� � ��� �
leaving the last node � marked by B we insert a dummy node � performing the linear test

�
,

where both outgoing edges lead to
�

. By the choice of
� � ��� � the resulting BDD is still an

LTFBDD, which represents the same function. Let � � be the path consisting of � � up to the
node � where at � the outgoing � -edge is chosen, and let � � be the path consisting of � � up to
� where at � the outgoing � -edge is chosen. Then on � � and � � the same sets of linear tests
are performed and they join after at most � tests. Now, we may apply the same arguments as
above to obtain a contradiction, since the arguments also hold for � � � . !
It remains to apply this method to a particular function. We call the function defined in the
following the matrix storage access function MSA. We remark that a similar function was
considered by Jukna, Razborov, Savický and Wegener [15]. Let (be a power of � and let

6

� ����� � (�
� �����	��
 (
� ��� � � . Let the input

� � �	�	�
�'���
���
� be partitioned into
� � , into � � ����
 (

matrices � � �	�	�
�'� ��� �
� of size
�
 �

and possibly some remaining variables. Let � �*��� � � � if
the matrix � � contains a row consisting of ones only, and let � ���*� � � � otherwise. Let � ��� �
be the value of

� � � �
����� ���
�	�	��� � � ��� �&� interpreted as a binary number. Then

MSA
�*� � �	�
�	�'��� ���
��� � � � � if � ��� � � � ,� � � ��� � 	 � if � ��� ��� � .

Theorem 2: LTFBDDs for MSA have size ��� ��� �����! #" �	� �%$ � � .
Proof: It suffices to show that for � � � � � the assumptions of Lemma 1 are fulfilled. Let
a �
 (-matrix � , a vector
 � �
 � �
�	�	���
 $!�
��� and a vector � ��� � � ��� � , � �� �� be given. We
are going to construct an input

�
for which � ! � �
 and MSA

��� � �� MSA
��� � � � .

If � � � � , we choose ��&�� � . Otherwise there is some ��& for which � ��' � � . We shall
construct an input

�
so that � ��� � �(��& and � �*� � � � �(��& as well. If ��& � � , it holds that

MSA
�*� � � � � �� � � � � � � MSA

��� � � � and, if ��& �� � , we have MSA
��� � � � � � � � � 	 � ����� � � � � � � ��� � � 	 �*) � � � � � 	 �*) � � � MSA

��� � � � as required.

Let
� ��&� �
� �
�	�	��� �+&� � be the representation of the chosen value for �,& as a binary number. For

� � � �	�	�	�	� � �
� we successively construct linear equations of the form

��- � � or
�.- � � ,

which make sure that for
�

and
� � � the matrix � � contains a row consisting of ones only, if�+&� � � , or that � � contains a column consisting of zeros only, if �,&� �-� . Hence, for a solution

of the system of equations the number � ��� � takes the value �/& and MSA
�*� � �� MSA

�*� � � � .
However, we also have to make sure that the equations � ! � �
 are fulfilled. Hence, we
shall choose the equations

�0- � � or
�.- � � in such a way that the vectors of coefficients

of all equations together with the rows of � are a linearly independent set. Then there
is a solution

�
for the system of all considered linear equations so that � ! � �
 and

MSA
�*� � �� MSA

�*� � � � .
For each � � � �	�	�	�
� � �

� we inductively construct � � equations where the left-hand-sides
are single variables from the matrix � � . These equations make sure that � � ��� � takes the
value � &� . Let � � � . Assume that for the matrices � � �	�
�	�	� � � �
� the equations are already
constructed. We show how to choose the equations for the matrix � � . Up to now we have� � � � � � � � � �1� � � equations (for the matrices � � �	�	�	��� � � �
� and for the rows of �) with
linearly independent vectors of coefficients. Let 2 be the set of vectors of coefficients of all
these equations.

In the following we use the notation
� �354 � in order to refer to the input bit in the � th row and

� th column of the matrix � � , and the notation � �364 � for the corresponding bit of � .

W.l.o.g. let ��&� � � . We shall choose two rows, the � th and
 th row of � � , which consist of
the variables

� �354 � �	�	�
�	��� �354 7 and
� � 8 4 � �
�	�	����� � 8 4 7 , respectively, and construct the linear equations� �354 � � � �
�	�	�	���

�354 7 � � ���
� 8 4 � ��� �8 4 � � � �	�	�	�
���

� 8 4 7 � � �8 4 7 � � . The equations for the � th row
make sure that in the input

�
this row only consists of ones and the equations for the
 th

row make sure that in the input
� � � this row only consists of ones. It is easy to see that

in a similar way we can enforce columns only consisting of zeros in the case that � &� � � .

7

It remains to show how to choose � and
 so that the set of vectors of coefficients of the
resulting system of linear equations is linearly independent. For � ��� � �	�	�	�	� � � let

� 3 denote
the set of vectors of coefficients of the equations

� �354 � � � �	�	�	�	���
�354 7 � � .

Claim: There is some � � � � �	�	�
�	� � � so that 2�� � 3 is linearly independent.

In order to prove the claim we assume for contrary that for all � � � � �
�	�	��� � � the set 2�� � -
is not linearly independent. Then for each � , there is a linear combination

� - �� �� of vectors
of
� -

which simultaneously is a linear combination of vectors of 2 . Hence, the dimension of
the vector space spanned by 2�� � � ���	�	�	�	� � 7 � is equal to the dimension of the vector space
spanned by 2 , i.e., � � � �1� � � .

On the other hand, remember that 2 consists of the rows of � and of a set 2 � of � � � vectors
for equations with a single variable on the left-hand side. Obviously 2 ��� � � ���	�	�	�
��� 7 � is a
linearly independent set and the dimension of the vector space spanned by 2 ��� � � ���	�	�
�'��� 7 �
is � � � � �

. Since this vector space is a subset of the vector space spanned by 2 , which has
the dimension � � � �1� � � , we obtain a contradiction, which implies the claim.

Hence, there is some row � so that 2	� � 3 is linearly independent. We remove this row from� � and obtain a matrix with
� �

� rows. Then we may apply the same arguments in order to
obtain a second row
 so that 2�� � 3 � � 8 is a linearly independent set.

Altogether, we obtain a system of linear equations where the set of vectors of coefficients is
linearly independent. Let

�
be a solution. Then the linear equations enforce that � ! � �
 ,

that � ��� � � � �*� � � � , and, by the case distinction above, that MSA
��� � �� MSA

��� � � � . This
completes the proof of Theorem 2. !
In the following theorem we state a polynomial upper bound on the size of strong LTFBDDs
for MSA. Hence, polynomial size strong LTFBDDs can represent a larger class of functions
than polynomial size LTFBDDs, and we get a justification to distinguish between these two
restrictions of linear transformed BDDs.

Theorem 3: There is a strong LTFBDD for MSA with
 � (
� � �	��
 (� nodes.

Proof: It is easy to construct an OBDD � � for the computation of � ���*� � . The OBDD tests
the variables of � � in a rowwise variable ordering. If a row only consisting of ones is found,
the � -sink is reached. If in some row a � -entry is found, the remaining variables of the row
are skipped and for the next row it is tested whether it is a row consisting of ones only. The
size of this OBDD is

� �
.

In order to compute � ��� � we arrange the OBDDs � � in a complete binary tree of depth � . At
the root there is a copy of � � �
� . In the cases � � �
� ��� � �+� and � � �
� ��� � �"� different copies of
� � � � are reached, and so on. At the leaves of the tree we know the value of � �*� � . If � �*� � �-� ,
a test of

� � suffices to compute the value of the function. At the leaf that is reached for some� ��� ��� � we perform the linear test
� � � � � � 	 � in order to compute the value of the function.

It is easy to see that this linear transformed BDD represents the function MSA and that its
size is bounded by
 � (

� ���	��
 (� . Since in the binary tree only single variables are tested and� � is not tested there, the tests
� � and

� � � � � � 	 � performed at the last level are not linear
combinations of the tests of the previous levels. Hence, the constructed linear transformed
BDD is a strong LTFBDD. !

8

4 Lower Bounds for LTOBDDs, � LTOBDDs and Nonde-
terministic LTOBDDs

LTOBDDs,
�

LTOBDDs and nondeterministic LTOBDDs have in common that they respect
a generalized variable ordering. Hence, we shall apply communication complexity based ar-
guments in order to prove lower bounds. For an introduction into communication complexity
theory we refer to the monographs of Hromkovič [11] and Kushilevitz and Nisan [17]. We
are going to prove lower bounds on the communication complexity by constructing large
fooling sets. In order to introduce the notation we repeat the definition of fooling sets.

Definition 4: Let
� � � � � ��� � � � � � ��� be a Boolean function. Let

��� ��� �
be a partition of

the set of input variables. For an input
�

let
� ��� �

denote the assignment to the variables in
�

according to
�

and let
� � � �

denote the assignment to the variables in
�

according to
�

. Let��� ��� � � �
� � � �

be the input consisting of
� ��� �

and �
� � �

.

A fooling set for
�

and the partition
��� ��� �

of the input variables is a set � � � � � ��� � of
inputs which has for some
 ��� � � ��� the following properties.

1. 	 ��� � ������� � ��
 .
2. 	 � � � � � ��� �� � ��
 ����� ��� � � � � � � � ��

����
 ��� �

��� � ��� � � � � ��

�� .
We say that � is a strong fooling set if it has the following property 2 � instead of property 2
from above.

2 � . 	 � � � � � ��� �� � ��
 ����� ��� � � � � � � � ��

����
 ��� �
��� � ��� � � � � ��

�� .

We call � a � -fooling set or strong � -fooling set, respectively, if it has the above properties
for
 � � .

It is well-known that the size of a fooling set for a function
�

and a partition
��� ��� �

is a lower
bound on the size of OBDDs for

�
and all variable orderings where the variables in

�
are

arranged before the variables in
�

. However, in an LTOBDD for
�

and the transformation
matrix 	 the function � � � � � ��� 	

�
� ! � � is represented. Hence, we have to construct large
fooling sets for � in order to obtain lower bounds on the LTOBDD size for

�
.

In order to simplify the notation let 2 � 	
�
�

throughout this section. Furthermore, let the
number (of variables be an even number. We always partition the set

� � � �
�	�	��� � ���
� � , which
� depends on, into

� � � � � �	�
�	�'� � ��� � �
� � and
� � � � ��� � �	�
�	�'� � ���
� � . Furthermore, we use

the notation �
��� �

and �
� � �

to denote
� � � �	�	�	��� � ��� � �
� � and

� � ��� � �	�
�	�'� � ���
�'� , respectively. We
shall apply the following lemmas to prove the lower bounds. Lemma 6 is inspired by the
presentation of Dietzfelbinger and Savický [6].

Lemma 5: If for all regular matrices 2 there is a fooling set of size at least
�

for the function
� � � � � ��� 2 ! � � and the partition

��� ��� �
, the LTOBDD size for

�
and all generalized variable

orderings is at least
�
.

9

Proof: Assume that there is an LTOBDD � of size less than
�

for the function
�

. Let2 be the matrix for which
�*� � �	�
�	�	���
���
��� ��2 ! � � � �	�	�	��� � ���
��� , where � � �	�	�	��� � ���
� is the

generalized variable ordering of � . Then � is simultaneously an OBDD for the function
� � � � � ��� 2 ! � � and the variable ordering � � �	�	�	�	� � ���
� (where � � �
�	�	��� � ���
� are considered
as variables). On the other hand, the existence of a fooling set of size

�
implies the lower

bound
�

on the OBDD size for � (see e.g. Kushilevitz and Nisan [17]). This follows by a
well-known cut-and-paste argument: If for different inputs � and � of the fooling set the
partial computation paths for �

��� �
and � ��� � lead to the same node, the computation paths for

� , � ,
� �
��� � � � � � � � and

� � ��� � � � � � � � lead to the same sink which is a contradiction to the fact that
by the definition of the fooling sets the function does not take the same value for all these
inputs. Hence, we get a contradiction to the assumption that the size of � is less than

�
. !

Lemma 6: If for all regular matrices 2 there is a fooling set of size at least
�

for the function
� � � � � ��� 2 ! � � and the partition

��� ��� �
, the

�
LTOBDD size for

�
and all generalized

variable orderings is at least
� � � � �

� . If for all regular matrices 2 there is even a strong
fooling set of size at least

� � for the function � � � � � ��� 2 ! � � and the partition
� � ��� �

, the�
LTOBDD size for

�
and all generalized variable orderings is at least

� � .
Proof: Again it suffices to prove a lower bound on the size of

�
OBDDs for � . The results of

Waack [24] imply that the rank of the communication matrix for � and the partition
� � � � �

is a lower bound on the size of
�

OBDDs for � and the variable ordering � � �
�	�	�	� � ��� � . The
lower bound

� � on the size of a strong fooling set for � and the partition
� � ��� �

implies
that the

� �
 � � identity matrix is a submatrix of the communication matrix for � and the
partition

� � ��� �
. This clearly implies the lower bound

� � on the rank of the communication
matrix. If

�
is merely a lower bound on the size of an ordinary fooling set, by the results

of Dietzfelbinger, Hromkovič and Schnitger [5] the rank of the communication matrix is at
least

� � � � �
� . !

Lemma 7: If for all regular matrices 2 there is a � -fooling set of size at least
�

for the
function � � � � � ��� 2 ! � � and the partition

��� ��� �
, the nondeterministic LTOBDD size for

�
and all generalized variable orderings is at least

�
.

Proof: The same cut-and-paste argument as described in the proof of Lemma 5 implies that
the size of nondeterministic OBDDs for � and the variable ordering � � �	�	�
�'� � ��� � is bounded
below by the size of a � -fooling set for � and the partition

��� ��� �
. Hence, we can apply the

same proof as for Lemma 5. !
Although the lemmas imply that the well-known fooling-set method can be extended to
prove lower bounds on the size of LTOBDDs and their generalizations, it remains the prob-
lem to apply this method to an explicitly defined function. In the following we define the
function INDEX-EQ, a combination of the functions INDEX and EQ, which are both well-
known functions in communication complexity theory. We get lower bounds on the size of
LTOBDDs,

�
LTOBDDs and nondeterministic LTOBDDs by constructing large fooling sets

which are even simultaneously strong fooling sets and � -fooling sets.

10

Definition 8: Let � be a power of � and let
� � � $. The function INDEX-EQ is defined on

(��� � � � variables
� � �
�	�	�����
���
� . The variables

� � �	�
�	�	����� �
�
are interpreted as a memory

and the
� � � variables

��� �
�	�	�	���
���
�
are interpreted as

� � � � ����
 � � pointers each consisting
of

�	��
 �
bits. Let � � � � ��� ����
 � �

. Let � � � ���	�
�	�'� � � � ��� � � � ���	�	�	��� �.� � �
denote the values

of the pointers. Then INDEX-EQ
�*� � �	�	�	�����
��� �'� takes the value � iff the following conditions

hold.

1. 	 � ��� � �	�	�	�	� � � ���
	 � �%� � � 7 � �%� .
2. � � � ��� !	!	! � � � � �

and
� � � �
� !	!
! � �.� � �

.

3. � � � ��� � � � � or
�.� � ��� � � � � .

Because of the first condition the computation of the function includes the test whether the
words whose bits are addressed by the pointers are equal. The second and the third condition
ensure that the equality test has only to be performed if the pointers are ordered and if either
all � -pointers are smaller than all

�
-pointers or vice versa. We remark that the last two

conditions are not necessary for the proof of the lower bound. These conditions allow to
prove a polynomial upper bound on the FBDD size of INDEX-EQ, which we shall state at
the end of this section.

Theorem 9: The size of LTOBDDs,
�

LTOBDDs and nondeterministic LTOBDDs for the
function INDEX-EQ is bounded below by ��� � �����! #" �
� .
Proof: By Lemmas 5–7 it suffices to show that for all regular (
 (matrices 2 there is
a strong � -fooling set of size at least ��� for the function � � � � � INDEX-EQ

� � 2 ! � � and
the partition

� � � � �	�	�	��� � ��� � �
� � � � � ��� � �
�	�	��� � ���
� � � . The construction of the strong � -fooling
set essentially consists of the following steps. In the first one we construct sets � and �
of indices of memory variables. In the second step we construct a set which will be the
fooling set. The set � has the property that for all inputs of the fooling set the values of the
variables with indices in � only depend on the results of the linear tests in

� � � �	�
�	�'� � ��� � �
� � .
Similarly, for the inputs of the fooling set the values of the memory variables with indices in
� only depend on the linear tests in

� � ��� � �	�	�	�	� � ���
� � . Since an equality test of those memory
variables has to be performed, a large amount of information has to be exchanged between� � � �
�	�	��� � ��� �"� � � and

� � ��� � �
�	�	�	� � ��� � � in order to evaluate INDEX-EQ. Finally, we prove
that the constructed set is really a fooling set.

Let 2 a regular (
 (matrix. We always keep in mind that 2 is the matrix for which��� � �	�
�	�'��� ���
��� � 2 ! � � � �	�	�
�'� � ��� �'� . In particular, each row of 2 corresponds to one of the�
-variables and each column of 2 to one of the � -variables.

Notation. We use the following notation. Let 2 ��� � be the left half of 2 , i.e., the (
 (� �
matrix consisting of the first (� � elements of each row of 2 . Similarly, let 2 � � � be the right
half of 2 . Let 2
 � � � denote the � th row of 2 (the row corresponding to

���
), and let 2 ��� �
 � � �

and 2 � � �
 � � � be the left and right half of this row, respectively. Let each pointer � � � � consist
of the � � �	��
 �

bits � $�� ��� � ���	�	�	��� � � � � � which are interpreted as a binary number. Similarly
let each pointer

� � � � consist of the bits
�	$��
��� � ���
�	�	��� � � � � � . We shall use the notations

�0-
and

� � � � � simultaneously even of both denote the same bit. Then 2
 � ��� � � � denotes the row of 2
corresponding to the bit � � � � � of the input.

11

Construction of � and � . The choice of � and � can to be done in such a way that � and
� have the following properties.

(P1) � ��� � � � ��� , � ��� � � � ��� and � � � � � � �	�
�	�'� � �
��� .

(P2) The set
� 2 ��� �
 �
� ��� � � � � is linearly independent and���
	�� � 2 ��� �
 �
� � � � � � � ��
 ����	�� � 2 ��� �
 �*- ��� � � � � � � ���+(

�
��� � � �� � .

(P3) The set
� 2 � � �
 �*- ��� � � � � is linearly independent and���
	�� � 2 � � �
 �*- ��� � � � ��
 ���
	�� � 2 � � �
 � � ��� � � � � � ��� � (

�
��� � � �� � .

We shall apply property (P2) (and similarly (P3)) in order to prove that a system of linear
equations whose vectors of coefficients are 2 ��� �
 � � � , where � � � � � � � ��� � � � � (

�
��� ,

has a solution. (P2) and (P3) also imply that ��
 � ��� .

As an intermediate step for the construction of � and � we choose a set ��� � � � �	�	�	�
� � �
��� ,

where � � ��� � � ���
. Let � be a basis of ���
	�� � 2 ��� �
 �
� ��� � ��� � (

�
��� . Then � ����� � � � .

We extend this basis to a basis of the vector space generated by the rows of 2 ��� � . Since the
rank of 2 ��� � is equal to (� � � � � � � and since � ��� � � � � , at least

� � �
rows have to be

chosen. Let � � be the set of indices of exactly
� ���

of those rows.

Now we choose � . Let � be a basis of the vector space ���
	�� � 2 � � �
 �
� ��� � � � ��� � � � �+(
�
��� .

Then � ��� � � ��� � � � � . We extend � to a basis of the vector space generated by 2 � � � . Since
the rank of 2 � � � is equal to � � � � , at least

� ���
rows have to be chosen. Let � be the set of

indices of exactly
� � ��� of those rows.

Finally, we choose � � � � . Let be a basis of the vector space ����	�� � 2 ��� �
 �*- ��� � � � � � �
��� (

�
��� . Then � !� � � � � � � � �"� . We extend to a basis of the vector space����	�� � 2 ��� �
 �*- ��� � � � ��� � � � � � � ���+(

�
��� , where we only choose rows 2 ��� �
 �
� � , where

� � � � . Since the dimension of the resulting vector space is at least
� � � � � ��� , at least

� � ���
rows have to be chosen. Let � be the set of indices of exactly

� � ��� of those rows.

It is easy to see that � and � have the property (P1). Since � and � are chosen using
the theorem that any linearly independent set can be extended to a basis, it follows that� 2 ��� �
 �
� ��� � � � � and

� 2 � � �
 �.- ��� � � � � are both linearly independent sets. This theorem
has also been applied in order to choose � in such a way that

� 2 ��� �
 �
� ��� � � � � and a basis
of ����	�� � 2 ��� �
 �*- ��� � � � � � � � � (

�
��� are linearly independent. Hence, the second

condition of (P2) is fulfilled. Finally, � is chosen in such a way that (P3) even holds if � is
replaced by its superset � � .

Construction of the fooling set. Let �#& be the
� � � � smallest element of � and let � & be

the
� � � � smallest element of � . If �#& � �*& , we choose for � & the � smallest elements of �

and for � & the � largest elements of � . W.l.o.g. ��� � � . Then � � � � � � and all elements
of � are smaller than all elements of � . If �#& � � & , we choose for �/& the � largest elements
of � and for � & the � smallest elements of � . Then all elements of � are larger than all
elements of � . Let � & � � � � � ���	�	�
�	� � � � � � and � & � � � � � ���	�	�	�	� � � � � � such that � � � ��� !
!	! �
� � � �

and � � � � � !	!	! � � � � �
. We shall only construct inputs where the chosen addresses

� � � ���	�	�	�
� � � � ��� � � � ���	�	�
��� �.� � �
are equal to � � � ���	�
�	�'� � � � ��� � � � ���	�	�	��� � � � �

. Hence, for all
considered inputs the second and the third condition of the definition of INDEX-EQ are
fulfilled so that the value of INDEX-EQ on these inputs only depends on the first condition.

12

Let � �.��� � and � �.��� � denote the � th bit of � ��� � and � ��� � , respectively. Let � � � � � �	�	�	�	� � ���
���
be an arbitrary solution of the system of linear equations that consists for all

� ��� � �	�	�	�	� � �
and all � ��� � �	�
�	�	� � �

��� of the following equations.

2
 � �	��� � � ! � � � � ��� �2
 � �	��� � � ! � � � � ��� � (1)

This system of linear equations has a solution since all rows of 2 are linearly independent.

Now we construct the fooling set. For all
�
 � � ���	�	�	�	�
 � � �,��� � � � ����� we construct a system

of linear equations. We shall prove that this system has at least one solution. We select
an arbitrary solution and include it into the fooling set � . Since for different assignments
to
 � � ���	�	�
�	�
 � � �

we get different systems of linear equations, which have disjoint sets of
solutions, we obtain a set � of size � � .

In the following system of linear equations the only variables are denoted by � ; all other
identifiers denote constants. The linear equations are arranged as a table which shows the
connections between the different equations. Note that the left column only contains vari-
ables in �

��� �
and the right column only variables in �

� � �
. Hence, we may also consider the

equations as two independent systems, one determining the values of �
��� �

and the other one
the values of �

� � �
.

1
���

block: For all
� ��� � �	�
�	�	� ��� :2 ��� �
 � ��� � � � ! � ��� � ��
 ��� � � 2 � � �
 � ��� � � � ! � � � � and 2 � � �
 � ��� � � � ! � � � � � 2 � � �
 � ��� � � � ! � � � �

2
�	�

block: For all
����� � �
�	�	��� ��� :2 ��� �
 � -,� � � � ! � ��� � � 2 ��� �
 � -&� � � � ! � ��� � and 2 � � �
 � -&� � � � ! � � � � ��
 ��� � � 2 ��� �
 � -&� � � � ! � ��� �

3

��

block: For all
� ��� � �	�	�	�
� ��� and for all � � � � �	�	�
�'� � �

��� :2 ��� �
 � � ��� � � ! � ��� � � 2 ��� �
 � �	��� � � ! � ��� � and 2 � � �
 � �.��� � � ! � � � � � 2 � � �
 � � ��� � � ! � � � �2 ��� �
 � � ��� � � ! � ��� � � 2 ��� �
 � � ��� � � ! � ��� � and 2 � � �
 � � ��� � � ! � � � � � 2 � � �
 � � ��� � � ! � � � �
We have to prove that the system of linear equations has a solution. Since the left and
the right column work on disjoint sets of variables, we can consider the solvability of both
parts separately. Consider the left column. The system of linear equations consisting of
the second and third block is solvable, since � ��� � is a solution. Now we choose a ba-
sis from

� 2 ��� �
 �*-,���*� � �	�
�	�'� 2 ��� �
 �*-&� � � � � � � 2 ��� �
 � � ��� � � � 2 ��� �
 � � ��� � ��� � � � � �	�	�
�	� � �
��� �	� �� � �
�	�	�	� ��� � and remove from the second and third block all equations with vectors of co-

efficients not contained in the basis. The set of solutions does not change. To the resulting
system of equations we add the equations of the first block. Remember that � � ��� � and

� �.��� �
belong to

� � � � � � � � (
�
��� . Hence, by property (P2) we obtain a system of linear equa-

tions where the vectors of coefficients are linearly independent. This implies that this system
has a solution. The solvability of the system of equations in the right column follows with
similar arguments and property (P3).

Proof of the fooling set properties. Let us start with the first property of fooling sets. Let
� � � , where � is a solution of the system of equations for
 � � ���
�	�	�	�
 � � �

. Then the value

13

of � � ��� � in the input 2 ! � is

� �.��� � � 2
 � �	��� � � ! �
� 2 ��� �
 � �	��� � � ! � ��� � � 2 � � �
 � � ��� � � ! � � � �
� 2 ��� �
 � �	��� � � ! � ��� � � 2 � � �
 � � ��� � � ! � � � �
� 2
 � �	��� � � ! �
� � � ��� ���

The first equality follows from the definition of 2 . The third equality follows from the fact
that � fulfills the equations of the third block. The last equality is true since � is a solution
of (1). In the same way it follows

�"� ��� � � � � ��� � . In other words, for the input 2 ! � the
addresses � � � ���
�	�	��� � � � ��� � � � ���	�	�	��� � � � �

are selected.

Now we look for the value of
� ���

�
�
.

� ���
�
� � 2
 � ���

�
� � ! �

� 2 ��� �
 � ��� � � � ! � ��� � � 2 � � �
 � ��� � � � ! � � � �
� �
 ��� � � 2 � � �
 � ��� � � � ! � � � � � � 2 � � �
 � ��� � � � ! � � � �
�
 ��� ���

The third equality follows from the fact that � fulfills the equations of the first block. In the
same way, we obtain

� -,�
�
� �
 ��� � . Hence, for all

� � � � �	�	�	�
� ��� it holds that
� 	 �

�
� �� 7 � � � � �
 ��� �,� and INDEX-EQ

� 2 ! � � � � .
Now consider the condition � � of the definition of strong fooling sets. Let � and � be elements
of � , where � �� � . Let � be a solution of the system of linear equations for
 � � ���	�	�
�	�
 � � �
and let � be a solution of the system of linear equations for
 � � ���	�
�	�	�
 � � �

. Since � �� � ,
there is some � such that
 � � � ��
 � � � .
The same computation as above shows that for the inputs 2 ! � , 2 ! � , 2 ! � �

��� � � � � � � � and2 ! � � ��� � � � � � � � the addresses � � � ���	�	�	��� � � � ��� � � � ���	�	�
�'� � � � �
are chosen. Furthermore, similar

computations show that in the input 2 ! � �
��� � � � � � � � the variable

� ���
�
�

takes the value
 ��� � and� -&�
�
�

takes the value
 ��� � . Then
� �����'� �
 � � � ��
 � � � � � -&���'�

. Hence, INDEX-EQ
� 2 !

� �
��� � � � � � � �,� � � . Similarly, it follows that INDEX-EQ

� 2 ! � � ��� � � � � � � �,� � � . Hence, � is a
strong � -fooling set for � � � � � INDEX-EQ

� 2 ! � � .
The computations also show that from � � � the values
 � � ���
�	�	���
 � � �

for which � is
included into � can be computed. It suffices to compute

� � 2 ! � and to look for� �����*� �	�
�	�	��� ���
�
�
. Hence, for different
 � � ���	�	�	�
�
 � � �

different inputs � are included into �
as claimed above. This implies � � ������� . !
We conclude this section with a polynomial upper bound on the FBDD size for INDEX-EQ.

Theorem 10: There are FBDDs of size
 � (�� � for INDEX-EQ.

Proof: Let � be a power of � and let (, � and
�

be defined as in Definition 8. The FBDD
consists of � layers. We start with the description of the first one. In the top there is a
complete binary tree of depth � �	��
 � in which the variables of the pointers � � � � and

�.� � � are

14

tested. If both pointers are equal, the � -sink is reached. In the following we only consider
the case � � � �
� �.� � � . The other case can be handled similarly. Since � � � �
� � � � � , the FBDD
has also to test whether all � � ! � are smaller than

�.� � � . Hence, the FBDDs stores
� � � � , i.e., for

inputs with different values
� � � � the computation paths do not join before a sink.

After testing the variables of the pointers � � � � and
� � � � the variables

� 	 �����
and

� 7 ���*� are tested
and compared (i.e. if they are different, the � -sink is reached). The pointers � � � � and

� � � �
remain stored.

Now we describe the � th layer, where � � � � �	�	�
�	� ��� . We assume that in the previous layer
the pointers

�.� � � , � � � �
� � and

�.� � �
� � are stored and passed to the � th layer. In the � th

layer the variables of the pointers � � � � and
�.� � � are tested in complete binary trees of depth� ����
 � . Since

�.� � � , � � � �
� � and

� � � �
� � are stored, it is easy to test whether � � � � � �.� � � ,

whether � � �
�
� � � � � � � and

�.� � �
� � � � � � � . In the negative case the � -sink is reached.

Otherwise,
� 	 � �&�

and
� 7 � �&� are tested and compared. Finally, the values of

�.� � � , � � � � and
�.� � �

are given to the next layer, or, after the last layer, the � -sink is reached if all tests are passed.

In each layer at most � pointers and the fact � � � � � � � � � is stored. Hence, width � ���
is sufficient, and the total size is bounded by
 � (� � . It is obvious that in the constructed
BDD on each computation path each pointer variable is tested at most once. It remains to
show that this is also true for the memory variables. We observe that in the � th layer the bit� 	 � �&�

is tested only if � � � � � � � �
�
� � and � � � � � �.� � � . Similarly,

� 7 � �&� is tested only if� � � � � � � � �
� � . If two � -pointers or two

�
-pointers address the same variable, the pointers

are not ordered and this is recognized at the latest when the second pointer is read. Then the
computation is aborted so that the addressed bit is read only once. If there is an � -pointer
and a

�
-pointer addressing the same bit, the � -pointers or the

�
-pointers are not ordered or

the � -pointer is not smaller than
� � � � . Again the addressed bit is read only once. !

5 A Comparison of Complexity Classes of Linear Trans-
formed BDDs

Let P-LTOBDD, P-LTFBDD, P-sLTFBDD, NP-LTOBDD and
�

P-LTOBDD denote the sets
of functions that have polynomial size LTOBDDs, polynomial size LTFBDDs, polynomial
size strong LTFBDDs, polynomial size nondeterministic LTOBDDs and polynomial size�

LTOBDDs, respectively. Let P-OBDD, P-FBDD,. . . be defined similarly. In Figure 2 some
inclusions between these classes are summarized. 	

� 2 means that 	�� 2 , and a dotted
lines between classes 	 and 2 means that these classes are not comparable, i.e., 	 �� 2 and2 �� 	 . The numbers in the figure refer to the following list of functions proving that the
corresponding inclusion is proper or proving that the classes are not comparable. In order
to make Figure 2 clearer, the relations between P-LTOBDD and NP-LTOBDD and some
related classes are drawn separately.

First we remark that it is easy to see that all inclusions shown in Figure 2 hold. Besides
the functions mentioned in the following, in the literature a lot of functions can be found
that witness that the inclusions (1), (3) and (15) are proper. E.g., the so-called Hidden

15

(4)

(6)
(7)

(8)

(1)

(14)

(3)

(5)

(11)
(10)

(9)

(12)

(2)

P-OBDD

�
P-BDD

�
P-LTOBDD

P-FBDD
�

P-OBDD P-LTOBDD

P-sLTFBDD

P-LTFBDD

(13)

(2)

NP-LTOBDD

P-LTOBDD

P-OBDD

NP-OBDD

(15)

(17)

(19)

NP-BDD

(16)

(18)

Figure 2: Comparison of the complexity classes of polynomial size LTOBDDs and related
BDD variants.

Weighted Bit Function HWB only has exponential size OBDDs (Bryant [4]) but polyno-
mial size FBDDs (Sieling and Wegener [23]) and polynomial size

�
OBDDs (Gergov and

Meinel [8]), which are simultaneously polynomial size nondeterministic OBDDs.

Our results on the function MSA prove that the inclusions (1), (7), (13), (15) and (18)
are proper. The polynomial upper bounds for nondeterministic OBDDs and

�
OBDDs are

straightforward: The nondeterministic OBDD or
�

OBDD “guesses” some number � and
during the tests of the variables it computes

� � , if �)� � , or
� � � � �

, if � � � , and simulta-
neously it evaluates � ��� � and compares � with � �*� � . The upper bound for strong LTFBDDs
is stated in Theorem 3. The lower bound for LTFBDDs is stated in Theorem 2. It clearly
implies the same lower bound on the size of OBDDs, FBDDs and LTOBDDs for MSA. The
characteristic functions of linear codes prove that the inclusions (2), (6), (11) and (17) are
proper. The upper bound and references for the lower bounds are given in the Introduc-
tion. In particular, the lower bound for nondeterministic read- � -times branching programs
of Jukna [12] implies lower bounds of the same size for OBDDs, FBDDs and nondetermin-
istic OBDDs. We remark that Günther and Drechsler [9] presented a different function to
prove that (2) is a proper inclusion. Their results implicitly imply that also (6) and (17) are
proper inclusions. By our results for INDEX-EQ it follows that (3), (10), (14) and (19) are
proper inclusions (Theorems 9 and 10).

It remains to discuss the incomparability results. (4) and (16) follow from the bounds on
MSA and on the characteristic functions of linear codes, (5) follows from the bounds on
INDEX-EQ and the characteristic functions of linear codes, and (8), (9) and (12) follow from
our results on INDEX-EQ and MSA.

16

6 Conclusion

We conclude that the methods presented in this paper allow to prove exponential lower
bounds for several variants of linear transformed BDDs. In particular, it is possible to sepa-
rate the classes of functions with polynomial size representations for many variants of linear
transformed BDDs. It remains an open problem to prove exponential lower bounds for strong
LTFBDDs.

Acknowledgment

I thank Beate Bollig, Rolf Drechsler, Wolfgang Günther, Martin Sauerhoff, Stephan Waack
and Ingo Wegener for fruitful discussions and helpful comments.

References

[1] S. Aborhey, Binary decision tree test functions, IEEE Transactions on Computers 37
(1988), 1461–1465.

[2] J. Bern, C. Meinel, and A. Slobodová, Efficient OBDD-based Boolean manipulation
in CAD beyond current limits, in Proceedings of 32nd Design Automation Conference
(1995), 408–413.

[3] R.E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Trans-
actions on Computers 35 (1986), 677–691.

[4] R.E. Bryant, On the complexity of VLSI implementations and graph representations
of Boolean functions with application to integer multiplication, IEEE Transactions on
Computers 40 (1991), 205–213.

[5] M. Dietzfelbinger, J. Hromkovič, and G. Schnitger, A comparison of two lower-bound
methods for communication complexity, Theoretical Computer Science 168 (1996),
39–51.

[6] M. Dietzfelbinger, and P. Savický, Parity OBDDs cannot represent the multiplication
succinctly, Technical Report, Universität Dortmund (1997).

[7] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M.A. Perkowski, Efficient
representation and manipulation of switching functions based on ordered Kronecker
functional decision diagrams, in Proceedings of 31st Design Automation Conference
(1994), 415–419.

[8] J. Gergov, and C. Meinel, Mod-2-OBDDs—a data structure that generalizes EXOR-
sum-of-products and ordered binary decision diagrams, Formal Methods in System De-
sign 8 (1996), 273–282.

[9] W. Günther, and R. Drechsler, BDD minimization by linear transformations, in Pro-
ceedings of Advanced Computer Systems, Szczecin, Poland (1998), 525–532.

17

[10] W. Günther, and R. Drechsler, Linear transformations and exact minimization of BDDs,
in Proceedings of IEEE Great Lakes Symposium on VLSI (1998), 325–330.

[11] J. Hromkovič, “Communication Complexity and Parallel Computing,” Springer, 1997.

[12] S. Jukna, A note on read- � times branching programs, RAIRO Theoretical Informatics
and Applications 29 (1995), 75–83.

[13] S. Jukna, Linear codes are hard for oblivious read-once parity branching programs,
Information Processing Letters 69 (1999), 267–270.

[14] S. Jukna and A. Razborov, Neither reading few bits twice nor reading illegally helps
much, Discrete Applied Mathematics 85 (1998), 223–238.

[15] S. Jukna, A. Razborov, P. Savický and I. Wegener, On � versus
� �

�� -

� � for deci-
sion trees and read-once branching programs, in Proceedings of International Sympo-
sium on Mathematical Foundations of Computer Science, Lecture Notes in Computer
Science 1295 (1997), 319–326.

[16] U. Kebschull, E. Schubert, and W. Rosenstiel, Multilevel logic synthesis based on func-
tional decision diagrams, in Proceedings of European Design Automation Conference
(1992), 43–47.

[17] E. Kushilevitz and N. Nisan, “Communication Complexity,” Cambridge University
Press, 1997.

[18] F.J. MacWilliams, and N.J.A. Sloane, “The Theory of Error-Correcting Codes,” North-
Holland, 1977.

[19] C. Meinel, F. Somenzi and T. Theobald, Linear sifting of decision diagrams, in Pro-
ceedings of 34th Design Automation Conference (1997), 202–207.

[20] E.A. Okol’nishnikova, On lower bounds for branching programs, Metody Diskretnogo
Analiza 51 (1991), 61–83 (in Russian), English Translation in Siberian Advances in
Mathematics 3 (1993), 152–166.

[21] A.A. Razborov, Lower bounds for deterministic and nondeterministic branching pro-
grams, in Proceedings of Fundamentals of Computing Theory, Lecture Notes in Com-
puter Science 529 (1991), 47–60.

[22] R. Rudell, Dynamic variable ordering for ordered binary decision diagrams, in Pro-
ceedings of International Conference on Computer-Aided Design (1993), 42–47.

[23] D. Sieling and I. Wegener, Graph driven BDDs—a new data structure for Boolean
functions, Theoretical Computer Science 141 (1995), 283–310.

[24] S. Waack, On the descriptive and algorithmic power of parity ordered binary decision
diagrams, in Proceedings of Symposium on Theoretical Aspects of Computer Science,
Lecture Notes in Computer Science 1200 (1997), 201–212.

[25] I. Wegener, On the complexity of branching programs and decision trees for clique
functions, Journal of the Association for Computing Machinery 35 (1988), 461–471.

[26] S. Žák, An exponential lower bound for one-time-only branching programs, in Proceed-
ings of International Symposium on Mathematical Foundations of Computer Science,
Lecture Notes in Computer Science 176 (1984), 562–566.

18

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

