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Abstract

We show that a pseudo-random number generator, introduced re-
cently by M. Naor and O. Reingold, possess one more attractive and
useful property. Namely, it is proved that for almost all values of pa-
rameters it produces a uniformly distributed sequence. The proof is
based on some recent bounds of exponential sums with exponential
functions.

ECCC

1991 Mathematics Subject Classification. Primary 11K45, 94A60;

Secondary 11K38, 11L07, 11T23

Key words and phrases. Pseudo-random numbers, Exponential func-

tions, Exponential sums.

*Supported in part by ARC grant A69700294.

ISSN 1433-8092



1 Introduction

Let p be an n-bit prime, 2" ! < p < 2" — 1 and let [ be a prime divisor of
p—1.

Denote by IF, the finite field of p elements and select an element g € IF of
multiplicative order | modulo p. We recall that ¥ € IF] is of multiplicative
order t if and only if

g#1,1<i<t-1, g¢'=1

Then for each n-dimensional vector a = (ay,...,a,) € (Z/1)" one can define
the function

fa(x) — gafl...aﬁ" c IFp,

where x = x; ...z, is the bit representation of an integer x, 0 <z < 2" — 1,
with some extra leading zeros is necessary.

In [6] M. Naor and O. Reingold has proposed the function f,(z) as an effi-
cient pseudo-random function (for a randomly chosen vector a € (Z/1)"). It
is shown in [6] that this function can be computed in parallel by threshold
circuits of bounded depth and polynomial size and also has some very desir-
able security property, provided certain standard cryptographic assumptions
hold.

Here we show that this function has one more useful feature, which comes as
an additional bonus to the aforementioned cryptographic properties of fa(z).
Namely, we prove that for almost all vectors a € (Z /)", the sequence fa(x),
x=0,1,...,2" — 1, is asymptotically uniformly distributed.

We remark that although this property does not seem to have any imme-
diate cryptographic implications, the inverse fact, that is, non-uniformity
of distribution, if it had been true, would have disastrous consequences for
applications of this function. Besides this, studying the uniformity of distri-
bution of interesting functions is a very attractive number theoretic question.
Our main tool is the bound of exponential sums with exponential functions
which is due to S. V. Konyagin and the author [2]. Previously known esti-
mates, which are due to N. M. Korobov [3, 4] and H. Niederreiter [7, 8], can
also be used, however they imply weaker results.



2 Preparations

We identify IF, with the set {0,...,p — 1}.
For a set M C IF,, we define the discrepancy D( M) modulo p as

where N(Z) is the number of fractional parts {m/p} with m € M which hit
the interval Z = [a, §] C [0, 1] of length |Z| = 8 — «.

We denote by D, the discrepancy of the set {fa(z)|2z = 0,1,...,2" — 1},
We show that D, = o(1) for all except possibly o(I") vectors a € (Z/I)",
provided that [ > p'/3*¢ with any fixed ¢ > 0.

Throughout the paper the implied constants in symbols ‘O’ and ‘<’ are
absolute (we recall that A < B is equivalent to A = O(B))

We also denote by loga the binary logarithm of ¢ and
e(a) = exp(2mia/p).

We need a form of the Erdos—Turdn inequality which relates the discrepancy
and exponential sums, see Corollary 1.1 to Chapter 1 of [5] or Corollary 3.11
of [8].

Lemmal. For any set M C IF}, the bound
—11

DMy« s+ 7 31 3

e (hm) ‘
holds.

We also need the following upper bound on exponential sums with exponen-
tial functions which is essentially Theorem 3.4 of [2].

Lemma2. Let p be prime and let 9 € T be of multiplicative order t modulo
p. Then the bound

t—1

> e(hd")

r=0

max < B(t,p)

ged(h,p)=1




where
p'/2, if t > p*3;
B(t,p) =4 p43/8, if pt/? <t < p*3;
pY /B8 if plf3 <t < plf?;

holds.

3 Main Result

Now we are prepared to prove our main result.

Theorem 3. For for all, except possibly o(p™), vectors a € (Z/1)", the bound

D, < A(l,p)
where
pIIR2I= 2 0g? p, if 1 > p7;
A(L ) = p'/21~log’ p, if p?* <1< p;
(p) = p/t 8 log?p,  if pt? <1< p?y
p'/8173/8 log” p, if pt/® <1 < p'?,

and v = 2.5 —1log3 =0.9150.. ., holds.

Proof. We may assume that p is large enough, in particular that n > 3. From
Lemma 1 we conclude that It is easy to show that

p—1

1
S De<rp 2y T )
ae(zZ/1)"” h=1
where
on ]
W= ¥ I el
ae(zZ/l)" | z=0
Using the Cauchy inequality, we derive
on_1 2
Wi =1" Z Z e (hfa(x))
ac(z/n)" | z=0




We recall that |z|? = 2z for any complex z and that e(a) = e(—a) for any
real a. Then, it is easy to see that replacing the square of the inner sum by
a double sum and changing the order of summation we obtain

Wi=1"Y Y e(h(fale) - fuly))).

z,y=0aec(zZ/l)"
If x = y the inner sum is equal to [".

Now we consider the case z # y. We say that x > y if z; > y;, i =1,...,n,
where x = x1...x, and y = y; ...¥, are the bit representation of x and y.

We also say that integers x and y are comparable if either x > y or y > x.
Ifx#yand x>ywefixi,1<i<n, withz; =1,y =0.
We see that the term f,(y) does not depend on a;.

Let the vector (z1, ..., 2,_1) be formed by the all bits of = except x;, that is,
ze=x 1f 1 < k <iand zp = 21 if 2 <k < n — 1. Therefore,

<

be(z/H™!

-1

> e (hy,)

r=0

S e(h(fal@) — fa(y)))

ae(zZ/n)"

where b = (by,...,b,_1) and

b

21 Zn—1
...bn71

ﬁb,m = gbl
We see that if
by...bp—1 Z0 (mod )

then, because [ is prime, 9y, , is of multiplicative order {. Hence the bound of
Lemma 2 applies to the inner sum. For other O(ni"~?2) vectors b we estimate
the inner sum trivially by (.

It is easy to see that there are
o \F

pairs of (z,y), 0 < z,y < 2" — 1, with > y. Thus this part of the sum can
be estimated as

2"—1

> X e(h(fule) — falv)| < 3" (nl "t + 1" B(Lp)).

z,y=0 Z n
zAy, >y ac(z/l



The case z # y and y > x can be considered quite analogously.

Finally, let us consider pairs of  and y which are not comparable. In this
case there are ¢ and j, 1 <+¢,5 <n, with z; =y; =1 and z; =y, = 0. We
see that the term f,(y) does not depend on a; and the term f,(x) does not
depend on a,.

Let the vector (z1,...,2,-2) be formed by the all bits of z except z; and z;
that is, 2z =2, 1 <k < I, zp =41 I <k <J—1and 2 = 249 if
J—1<k <n-—2,where I = min{3s, j} and J = max{s, j}. We also form the
vector (wi, ..., w,_2) in a similar way from the all bits of y except y; and y;.

Therefore,

-1

> e (hA;,)

r=0

-1

de (h,uf)’y)

s=0

Y e(h(fal@) = fa®)))

ac(z/l)"

< 2

be(z/1)"?

)

Where b = (bl, ey bn—Z);

21 Zn—2
S

)\b,z = gbl

w1 bwn—2
by

and by = g™ 2,
We see that if
bl e bn—l ¢ 0 (mod l)

then, because ! is prime, A,, and up, are both of multiplicative order .
Hence the bound of Lemma 2 applies to both inner sums. For other O(ni"3)
vectors b we estimate the inner sums trivially by [ each.

Therefore, for each pair of x and y which are not comparable the bound

Y. e(h(fal@) - fa(¥)| < 0" +1"?B(l, p)®
ac(z/1)"

holds.

Putting everything together and taking into account that 2" = O(p) and
3" = O(p*), where o = log 3, we derive

Wi o< (M43 (nn 4 M B(Lp)) + 22 (it + 1 2B(1,p)?))
< pl2n + npaZZn—l +pal2n_1B(l,p) + np2l2n—1 +p2l2"_23(l,p)2.



It is easy to see that the terms including B(l,p) dominate all other terms.
Thus
Wy < p*1" V2 B(1,p)"* + pi™ ' B(l, p). (2)

Combining (1) and (2), we derive

> 1<y

ae(zZ/H™
Da>A(l,p)

1 a/2—1ln—1/ZB l, 1/2+ln—1B l,
s po<? (8 ()
(1,P) aciziy (,p)

Remarking that the first term in the numerator dominates if and only if
[ < p?, we obtain the desired result. O

4 Remarks

It is easy to see that the bound of Theorem 3 is nontrivial beginning with
[ > p'/3*¢ with any fixed ¢ > 0. It is also useful to recall that there exist
infinitely many primes p such that p— 1 has a prime divisor [ > p®577, see [1].
For such p and [ we see that D, < [7%26 for almost all a € (Z/1)". Moreover,
it is expected that [ = (p — 1)/2 is prime for infinitely many primes p. Such
pairs of p and [ are of special value for cryptography. For them we deduce
that D, <[ %% for almost all a € (Z/1)".

Analogues of Theorem 3 can also be obtained for other pseudo-random num-
ber generators from [6]. The same method can also be used to study the
distribution of fa(z) for x =0,1,...,N — 1 with N < 2"

Finally, it would also be interesting to study the distribution of k-tuples
(fa(z), ..., falx + k£ —1)).
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