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Abstract

The width of a Resolution proof is defined to be the maximal num-
ber of literals in any clause of the proof. In this paper we relate proof
width to proof length (=size), in both general Resolution, and its
tree-like variant. The following consequences of these relations reveal
width as a crucial “resource” of Resolution proofs.

In one direction, the relations allow us to give simple, unified proofs
for almost all known exponential lower bounds on size of resolution
proofs, as well as several interesting new ones. They all follow from
width lower bounds, and we show how these follow from natural ex-
pansion property of clauses of the input tautology.

In the other direction, the width-size relations naturally suggest a
simple dynamic programming procedure for automated theorem prov-
ing - one which simply searches for small width proofs. This relation
guarantees that the running time (and thus the size of the produced
proof) is at most quasi-polynomial in the smallest tree-like proof. The
new algorithm is never much worse than any of the recursive auto-
mated provers (such as DLL) used in practice. In contrast, we present
a family of tautologies on which it is exponentially faster.

*Institute of Computer Science, Hebrew University, Jerusalem, Israel elli@cs.huji.ac.il

tInstitute of Computer Science, Hebrew University, Jerusalem, Israel avi@cs.huji.ac.il.
This research was supported by grant number 69/96 of the Israel Science Foundation,
founded by the Israel Academy for Sciences and Humanities

ISSN 1433-8092



1 Introduction

The central task of Proof-Complexity theory is to prove non-trivial lower
bounds on the length (=size) of proofs, for non-trivial propositional proof-
systems. This is done for three interrelated reasons.

1. By the famous theorem of Cook and Reckhow [CR79] NP=Co-NP iff
there exists a propositional proof system, which can prove every tau-
tology 7 in length polynomial in |7|. Thus, super-polynomial size lower
bounds for stronger and stronger proof systems hopefully brings us
somewhat closer to asserting NP # Co — NP.

2. Automated Theorem Proving is essential for various aspects of (mainly
practical) computer science. It is usually implemented with simple
propositional proof systems. Discovering hard tautologies sheds light
on the possibilities and usefulness of various Automated Theorem Prov-
ing techniques.

3. Simple propositional systems are nonuniform analogs of natural frag-
ments of Peano Arithmetic, most notably the various Bounded Arith-
metic systems, which capture in some sense “polynomial time reason-
ing”. Thus, lower bounds in the former yields independence results in
the latter. Stunning evidence of Razborov [R95] and Razborov and
Rudich [RR94] show that the reasoning Complexity theory applied so
far for proving circuit lower bounds lies within these fragments. Thus
such lower bounds may clarify the limits of our (human, rather than
automated) proof techniques.

Despite some very recent impressive successes in proving super-polynomial
lower bounds on a variety of propositional proof systems, it is probably fair
to say that we are still far from understanding the reasoning power of very
simple ones.

The Resolution proof system, which is the focus of this paper, is perhaps
the simplest non-trivial one. All assertions in this proof system are clauses
(namely disjunction of literals). A tautology is represented by its negation
— as a set of contradicting clauses. ( this is always possible by the NP-
completeness of SAT). The proof (or refutation) uses a simple deduction rule
to generate more clauses from these “axioms clauses” till a contradiction is
reached in the form of the empty (FALSE) clause. Resolution forms the basis
of essentially all automated theorem proving procedures used in practice.



Being so simple and fundamental, Resolution was a natural system to
attack. However, proving size lower bounds even for it turned out to be
very challenging. The first super-polynomial lower bounds were presented
by Tseitin [T68]. Only 20 years later did the first exponential lower bounds
appear, in the seminal work of Haken [H85]. Other examples soon followed
[U87, CS88|, based on Haken’s method of proof. All of them seemed to
require a significant array of technical tools and calculations (most notably,
random restrictions). Very basic questions regarding Resolution are still
open, and attempts to resolve them and simplify existing proofs are part of
the current line of research (e.g. [RWY97, BP96, BKPS98]).

The main message of this paper is that Resolution is best studied when
we focus on width. Like size, width is a “resource” of proofs we may want to
minimize. It is defined to be the number of literals in the largest clause of
the proof.

The main observation of this paper is a relation between these two fun-
damental resources:

e If a contradiction 7 over n variables, has a tree-like refutation of size
St, then it has a refutation of maximal width log, St

e If 7 has a general resolution refutation of size S, then it has a refutation

of maximal width O(y/nlogS).

Both the notion of width and the relations above, gradually surfaced in
previous papers and we merely make them explicit. Reading through the
existing lower bound proofs, it is evident that wide clauses play a central
role, with the following logic: If a Resolution proof is short, then random
restrictions will “kill” all wide clauses with high probability. But a sepa-
rate argument shows that still they have to exist even in refutations of the
restricted tautology. Thus the proof has to be long.

Moreover, identical functional relations as those we obtain for width vs.
size, appear in [CEI96] between degree in Polynomial Calculus proofs, and
size of Resolution proofs, and we simply observe that their argument actually
applies to give these stronger relations. That paper, and the subsequent
[BP96|, were the main inspiration for our work.

The first major application of our explicit width-size relations is signif-
icant simplification and unification of almost all known exponential lower
bounds on Resolution proof length. Naturally, this understanding leads to
new lower bounds as well. The main point is that now, to prove size lower



bounds, it is sufficient to prove width lower bounds. It removes the need
for random restrictions, and allows to concentrate on the original tautology
rather than restricted forms of it.

We develop a general strategy for proving width lower bounds, which
follows Haken’s original proof technique but for the above reason is now
simple and clear. It reveals that large width is implied by certain natural
expansion properties of the clauses (axioms) of the tautology in question.
We show that in the classical examples of the Pigeonhole principle, Tseitin
graph tautologies, and random k-CNF’s, these expansion properties are quite
simple to prove (indeed, they comprised in some implicit way the simple part
of the existing lower bound proofs).

We further illustrate the power of this approach by proving new expo-
nential lower bounds to two different restricted versions of the pigeon-hole
principle. One restriction allows the encoding of the principle to use arbitrar-
ily many extension variables in a structured way (completely unstructured
extension variables make the proof system as strong as Extended Frege, for
which no lower bounds are known). The second restriction allows every pi-
geon to choose a hole from some constant size set of holes.

The second major application of our relations is in automatization results
for the Resolution proof system. This is the basic problem faced in the
analysis of automatic provers searching for a proof; how long will they run,
as a function of the shortest existing proof of the input tautology.

The relations beg the use of the following simple (dynamic programming)
algorithm: Set ¢ = 1. Start with the axioms, and try to derive all clauses of
width at most 7. If the empty clause is derived, we are done. If not, increase
7 by 1 and repeat.

Clearly, the running time on any tautology 7 over n variables is at most
n°®) when w is the minimal width of a proof of 7. By the relations above,
this time is at most Sp(7)°0°%8™ (namely quasi-polynomial in the minimal
tree-like Resolution proof length), and at most exp(y/nlogS(7)) (namely
sub-exponential in the minimal general Resolution proof length). These
bounds were already obtained by [BP96], who adopted the [CEI96] algorithm
from the Polynomial Calculus system to resolution.

Note that the relation to tree-like proofs is of particular importance, due
to the fact that the most popular automated provers such as [DLL62] produce
tree-like Resolution proofs. Thus our algorithm never runs much longer than
these provers on any tautology. Our final contribution, described below, is a



new collection of natural tautologies, for which our algorithm is exponentially
faster than such provers.

We give a construction which associates to every directed graph G on n
edges a tautology 7(G) with the following properties.

1. 7(G@) has O(n) variables and O(n) clauses.
2. 7(G) has general Resolution proofs of length O(n).
3. 7(G) has Resolution proofs of width O(1).

4. Every tree-like Resolution proof of 7(G) has length at least exp(P(G)),
where P(G) is the classical pebbling number of the graph G.

The construction itself is motivated by a special case of it for the Pyramid
graph of [BEGJ98], which was in turn motivated by [MR98]. However, the
simple adaptation of the the pebbling bound into a tree-like Resolution lower
bound for the Pyramid does not directly extend to arbitrary graphs, and we
believe that the general connection in (4) is of independent interest. The
proofs of the main claims are presented in [BIW99].

At any rate, this construction allows us to use much harder graphs to
pebble than Pyramids. Specifically, [CPT77] explicitly construct for every n
a graph G, of size O(n) satisfying P(G,) = Q(n/logn). For these graphs,
(4) implies exponential runtime for any tree-like automated prover, while
(3) guarantees polynomial runtime for our dynamic programming algorithm,
giving the desired exponential separation of the two automated proof search
methods.

The paper is organized as follows. Section 3 states and proves the Size-
Width relations. Section 4 summarizes the lower bounds on width for Tseitin
formulas, random k-CNF’s and the Pigeonhole principle and its variants.
Section 5 presents the general strategy for proving width lower bounds, and
section 6 applies the strategy to obtain the main results presented in section 4.
Section 7 discusses the tightness of the tradeoff. Finally, section 8 discusses
the efficiency of the Automated Theorem Proving algorithm based on the
Size-Width tradeoft.



2 Definitions

2.1 General

x will denote a boolean variable, ranging over {0,1}. Throughout this paper
we shall identify 1 with True and 0 with False. A literal over x is either
z (denoted also as z') or Z (denoted also as x°). A clause is a disjunction
of literals. We say that a variable z appears in C' (denoted z € C) if a
literal over z appears in C. A CNF formula is a conjunction of clauses.
Let F = {C1,C;y...C,} be a CNF formula over n variables, a Resolution
derivation 7 of a clause A from F is a sequence of clauses 7 = {Dy, D, ... Dg}
such that the last clause is A and each line D; is either some initial clause
C; € F or is derived from the previous lines using one of the following
derivation rules:

1. The Resolution Rule: £vz__Fvz

EVF
2. The Weakening Rule: E—’\E;F
where x € {z1,%,...,2,} and E, F are arbitrary clauses. The Weakening

Rule is not necessary, and even without it the Resolution proof system is
complete, but we add it for the sake of simplicity. A resolution refutation is
a resolution derivation of the empty clause 0. The graph G, of a derivation
7w is a DAG with the clauses of the derivation as nodes, and for derivation
step edges are added from the assumption clauses to the consequence clause.
A derivation 7 is called tree-like if G, is a tree; we may make copies of the
original clauses in F in order to make a proof tree-like. The size of the
derivation 7 is the number of lines (clauses) in it, denoted S;. S(F) (St(F))
is the minimal size of a (Tree-like) refutation of F.

2.2 Restrictions

For C a clause, x a variable and a € {0, 1}, the restriction of x on q is:

C if x does not appear in C
Clz=a el if the literal z* appears in C
C\ {z'7%} otherwise

Similarly, F|;—4 oo {Cls=a : C € F}. For m = {C},...Cs} a derivation of
Cs from F and a € {0,1}, let 7|,—, = {C], ... C".} be the restriction of 7 on
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x = a, defined inductively by:

( Ci|:c:a C,eF

Ci, v i, C; was derived from Cj Vy and
Cj, V ¢ via a resolution step,
for h1<goa<i

CiV Alg=y Ci = C;V A via the weakening rule,
for j <

\

The consequence of resolving a clause B with 1 is defined to be B. We shall
assume w.l.o.g. that 7|,—, does not contain the clause 1, by removing all
such clauses from 7|,—,.

2.3 Width

The width of a clause C, denoted w(C), is defined to be the number of literals
appearing in it. The width of a set of clauses is the maximal width of a clause
in the set, i.e. w(F) = maxcer{w(C)}. In most cases input tautologies F
will have w(F) = O(1).

The width of deriving a clause A from the formula F, denoted w(F - A)
is defined by min,{w(7)} where the minimum is taken over all derivations
m of A from F. We also use the notation F F,, A to mean that A can be
derived from F in width w. We will be mainly interested in the width of
refutations, namely in w(F F 0).

3 The Size-Width Relations

The following lemmata and theorems are a direct translation of [CEI96] to
Resolution derivations. Stated informally, they say that if F has a short
resolution refutation then it has a refutation with small width.

Lemma 3.1 for a € {0,1}, if Flo—q Fw A then F by AV '

Proof: F|,_, is created from F by disposing of all initial clauses that include
the literal ¢ and removing the literal '~ from all other initial clauses where
it appears. Let F' be the set of initial clauses containing the literal z'=2,
and let m be a width w derivation of A from F,_,. Add the literal z'=* to
all clauses in 7 and call the new derivation 7’. We claim that 7’ is a legal
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resolution derivation. If C € F' then C' V z'~% is an initial clause of F. If
C € F\ F' then CV z'~® can be derived from C by a single weakening step.
Finally, if C was derived from A, B via a resolution step, then C V z'7¢ is
the resolution consequence of AV z'7% BV z!7%. It is easy to see that the
width of each clause in 7’ is larger by 1 than the matching clause in 7, end
of proof. (]

Lemma 3.2 For a € {0,1}, define Fpa as the set of all clauses in F con-
taining the literal . If Flz—q b1 0 and Fly=1 4 b 0 then w(F F 0) <
max{k, w(Fg)}.

Proof: According to lemma 3.1, if F|,—, Fx_1 0 then F F '~ We now
resolve the clause z'~® with all clauses in F,. and derive F|,—; 4. This part

will have width w(F). Finally, by the assumption we can refute F|,—1_,
with width . L]

Theorem 3.1 w(F t 0) < w(F) + log Sp(F).

Proof: We prove by induction on b and n, the number of variables, that if
Sr(F) < 2% then w(F F 0) < w(F)+b. If b=0 then 0 € F, and we're done.
Otherwise, the last derivation is %, where z,T were derived by tree-like
derivations T, 7% of sizes S,, Sz, respectively, and Sp = S, + Sz + 1. Ty|z—o
(Ty|z=1) is a tree-like refutation of F|,— (F|,=1) of size at most S, (Sz).
Assume w.l.o.g. S, < 2°7!. By induction on b, w(F|,—o F 0) < w(F)+b—1
and by induction on n, w(F|,—; F 0) < w(F) + b. Applying lemma 3.2
completes the proof. L]

Corollary 3.1 Sp(F) > 2w(Fr0)—w(F)
Theorem 3.2 w(F F 0) < w(F)+ O(/nlnS(F)).

Proof: Let 7 be a minimal size refutation of F, of size S. Let k = w(F).
If S =1 then 0 € F and we're done. Otherwise, set d % [\/2n1nS(F)],

and a & (1 — £)='. Let 7 be the set of fat clauses in 7, having width

2n
greater than d. We prove by induction on b and n, that if |7*| < a® then
w(F F 0) < d+ k+b The base case (b = 0) is trivially true. For the
induction step, there are 2n literals, so by the pigeonhole principle there is

some literal (w.l.o.g.) z appearing in > L -|7*| fat clauses. Restrictingz =1
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removes all the clauses in which z appears, and leaves us with a refutation
of F|y=1 with at most (1 — ) - |7*| < a’7! fat clauses. F|y=1 Fapko-1 0,
By induction on b. F|y,—o Fgixss 0, by induction on n. Applying lemma 3.2
completes the proof. L]

Corollary 3.2 S(F) = exp (Q(M))

If w(F) ~ #Variables, corollaries 3.1,3.2 are useless for obtaining lower
bounds. This will not be a problem in practice, since all the formulas we shall
consider, either have constant initial width (i.e. Tseitin formulas, random
k-CNF’s), or can be reduced to such formulas (i.e. the Pigeonhole principle).

4 Results

Over the past 30 years several exponential lower bounds on size have been
obtained, for several different contradictions. We wish to provide new and
simple lower bounds for all these tautologies, and we organize this section as
follows. We start each subsection with a definition of the contradiction, and
discuss it’s initial size and width. This is followed by a lower bound on the
width of the refutation. Exponential lower bounds on size of refutations, via
corollaries 3.1, 3.2, conclude the discussion.

4.1 Tseitin Formulas
4.1.1 Definition

A Tseitin contradiction is an unsatisfiable CNF capturing the basic combi-
natorial principle that for every graph, the sum of degrees of all vertices is
even.

Definition 4.1 (Tseitin Formulas) Fiz G a finite connected graph, with
V(G)| =n. f:V(G) = {0,1} is said to have odd-weight if Xycy () f(v) =1
(mod 2). Denote by dg(v) is the degree of v in G. Fiz f an odd-weight
function. Assign a distinct variable x. to each edge e € E(G). Forv € V(Q)
define PARITY, % (Bpece e = f(v)(mod 2)). The Tseitin Contradiction of
G and f 1s:
(G, f)= N\ PARITY,
veV(Q)



If the maximal degree of G is constant, then the initial size and width of
7(G, f) is small as well:

Lemma 4.1 If d is the mazimal degree of G, then 7(G, f) is a d-CNF with
at most n - 2471 clauses, and nd/2 variables.

4.1.2 Width lower bound

The width of refuting 7(G, f) is bounded from below by the ezpansion of the
graph G, hereby defined.

Definition 4.2 (Expansion) For G a finite connected graph, the Expan-
sion ofG S

e(Q) def min{|E(V',V\V')|: V' CV,

VI/3< VI <2v]/3}

The main claim of this section is (for a proof see section 6.1):

Theorem 4.1 For G a connected graph and f an odd-weight function on
V(G), w(r(G, f) F0) > e(G)

Corollary 4.1 [U87] For G a 3-regular connected Ezpander (i.e. e(G) =
QUV)), and f an odd-weight function on V(G), S((G, f)) = 247G

4.2 the Pigeonhole Principle
4.2.1 Definition

The Pigeonhole principle with m pigeons and n pigeon-holes, states that
there is no 1-1 map from m to n, as long as m > n. This can be stated by a
formula on n - m variables z;;,1 < i < m,1 < j < n, where z;, = 1 means
that ¢ is mapped to j.

Definition 4.3 (PHPZD) PHP!™ is the conjunction of the following set of
clauses:

P, « Vicj<n ®i; for 1 <o <m.

Hi, ¥z, VI for1<i<i<m1<j<n.
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Whenever m > n, PHP™ is an unsatisfiable CNF with m - n > n?
variables, O(m?) Clauses and initial width n.

The large initial width of PH P and its large number of variables does
not allow the derivation of size lower bounds directly from width lower
bounds. In the next two subsections we generalize these pigeonhole tau-
tologies in two different ways — the first reducing the width using extension
variables, and the second reducing the number of variables but fixing most
of them. The lower bounds for both are new and of independent interest.

4.2.2 Width lower bound for Tree-like Resolution

It is easy to check that w(PHP™  0) < n. This means that using the
standard formulation of PHP;" one cannot achieve a lower-bound on size
via the Size-Width tradeoff. Therefore we shall need to reduce PHP" to
a constant width analog, and prove (n) lower bounds on width for this
formulation.

Definition 4.4 (EPHPJ) For f(Z) a boolean function, a Nondeterministic
Extension of f is a function g(Z,y) such that f(¥) = 1 iff yg(Z,y) = 1.
the T variables are called Original variables, and the § are called Extension
variables.

A Row-Extension of PHP", denoted EPHP" is derived by replacing
every row axiom P; with some nondeterministic extension CNF formula EP;,
using distinct extension variables 1j; for distinct rows.

One standard extension is:

Example 4.1 Replace every P; with the following 3-CNF over n+ 2 clauses
and 2n + 1 variables:

io N Nj=1(Wi;_y V @i, V Tij) A i,
The main claim of this section is (for a proof of the following theorem
and corollary 4.2, see section 6.2):

Theorem 4.2 for m > n, w(EPHP™F 0) > n/3

Corollary 4.2 Forallm > n and any Row Ertension of PHP, Sy(EPHP!") =
98(n)

As PHP" is a legitimate Row Extension of PHP", we get:
Corollary 4.3 [BP97] For all m > n, Sp(PHP™) = 29"

11



4.2.3 Width lower bound for General Resolution

The number of variables of PH P is quadratic in the width of it’s refutation.
Hence, in order to apply corollary 3.2 and derive exponential lower bounds on
size for general resolution, we shall need the following generalization, which
restricts PH P by limiting the number of holes into which a pigeon may
enter. This will decrease the number of underlying variables, while leaving
the width lower bound in place.

Definition 4.5 (G — PHP) Let G = ((VUU), E) be a bipartite graph, |U| =
m, |V|=n. Assign each edge a distinct variable x.. G — PHP is the con-
junction of the following clauses:

P, dof Voece Te for v e V.

Hy 2V T fore= (v,u),e = (V',u), v, €V,

v#V, uel.

G — PHP is a natural generalization of the Pigeonhole Principle, because
PHP = K, ,—PHP. This generalization will prove useful by the following
observation, presented here without a proof:

Lemma 4.2 For any two bipartite graphs G,G' over the same vertex set, if
E(G") C E(G) then S(G'— PHP) < S(G — PHP).

The width of refuting G — PH P is bounded from below by the expansion
of G, for the following bipartite version of expansion (we define it already
with the parameters that will yield linear width, but this can be generalized):

Definition 4.6 (Bipartite Expansion) We say that a bipartite graph G =
(VUU),E) |V|=m |U|=n is expanding if for every subset U' of U of
size |U'| > n/3 and every subset V' of V of size |V'| < n/6, V' has a perfect
matching into U'.

The main theorem of this section is (for a proof see section 6.2):
Theorem 4.3 For every expanding G = (VUU), E), |[V|=m > |U|=n

we have

w(G — PHP I 0) = Q(n).

12



For m = n+1, whp a random bipartite graph of sufficiently large bounded
degree is expanding, yielding:
Corollary 4.4 [H85] S(PHPr+1) = 29U

The best known lower bound for the Weak Pigeonhole principle (i.e. when
m is much larger than n) is S(PHP™) = 2%*/m) [BT88]. When m >> n, a

random, degree log(m/n) (on the V side) bipartite graph is expanding. This
gives a slightly less than optimal lower bound:

Corollary 4.5 [BT88] S(PHP) = 2" (wwsstmrm)

4.3 Random k-CNPF’s
4.3.1 Definition

We start with a formal definition of a random k-CNF:

Definition 4.7 (Random k-CNF’s) Let F ~ f:’A denote that F is a
random k-CNF formula on n variables and m = A - n clauses, chosen at
random by picking A -n clauses i.i.d from the set of all (Z) -2k clauses, with
repetitions. A is called the clause density.

In their seminal paper, Chvatal and Szemerédi [CS88] showed that for
k > 3 with high probability (whp) a random k-CNF formula with constant
clause density A > In2-2*, is unsatisfiable and requires an exponential length
refutation.

4.3.2 Width lower bounds

For the sake of simplicity we shall work only with £ = 3, and these bounds
can be easily extended to any fixed k£ (see e.g. [BKPS98|). The following
is proven by use of a straightforward Union bound (for a proof, see section
6.3):

Theorem 4.4 For any e > 0, and F ~ F&*, whp
w(F F0) = Q)

Using this width lower bound, we easily obtain the best currently known
lower bounds on size:

Corollary 4.6 [BKPS98] For any € > 0, and F ~ Fi®, whp S(F) =
exp (7))

13



5 Proof Strategy

All lower bounds on width follow the same strategy:

1. Define a complexity measure u : {Clauses} — N such that p(Aziom) <
1.

2. Prove p(0) is large.

3. Infer that in any refutation there is some clause C' with medium size

u(C).
4. Prove that if p(C) is medium then w(C) is large.

We shall now formalize and explain this strategy. First we will define a
measure that will satisfy conditions 1-3.

Definition 5.1 (u4) for f a boolean function, let Vars(f) denote the set of
variables appearing in f. Let o € {0,1}V*) be an assignment to f. we
say that o satisfies f, if f(a) = 1. For C a clause and T' a set of boolean
functions, let V.= Vars(l') U Vars(C). We say that T implies C, denoted
' &= C, if every assignment satisfying every function v € T satisfies C as
well.

Let A be an unsatisfiable set of boolean functions, i.e. A =0, and let C
be a clause.

pA(C) € min{|A'|: A CAAEC)
14 is a sub-additive complexity measure with respect to resolution steps:

Lemma 5.1 Suppose D was inferred from B,C by a single resolution step.
Then for any set of boolean functions A:

pa(D) < pa(B) + pa(C)

In order to assure condition 1 of the strategy, we want u(Aziom) to be
small:

Definition 5.2 (Compatibility) For F a non-satisfiable CNF we say that
A is compatible with F if A= 0 and VC € F pu(C) < 1.

14



We will always pick a compatible A and use it to define y = p4. Note
that part 2 of the strategy puts another requirement on A, namely that no
“small” subset of it is contradictory. However, this would be intuitively easy
to achieve with “hard” tautologies.

We now claim that part 3 is deduced from the definitions:

Lemma 5.2 If A is compatible with F then in every refutation of F there
must be a clause C' with

1(0)/3 < u(C) < 2u(0)/3.

The rest of the section is devoted to proving the connection between
condition 4 and the expansion properties of a set of sensitive functions which
is compatible with the input formula:

Definition 5.3 (Sensitivity) A boolean function f is called Sensitive if any
two distinct falsifying assignments o, 3 € f~'(0), have Hamming distance
greater than 1. Examples of Sensitive functions are PARITY and OR.
For A a set of boolean functions, and f € A, a Critical Assignment for
. : 0 g=7f
is an assignment o € {0,1}V5A) such that g(a) = {
f ’ 0.1} s@={1 974 ea
For a, 8 € {0, 1}V‘”"5(A), we say that B s the result of flipping « on the
variable x, if
_J1-aly) y==
Bly) = a(y) otherwise

We shall define the expansion of a CNF formula in terms of it’s minimal
boundary:

Definition 5.4 (Boundary) For f a boolean function and x a variable,
we say that f is dependent on x if there is some assignment o such that
f(a) =0, but flipping o on x satisfies f.

For A a set of boolean functions, the Boundary of A, denoted 0A, is the
set of variables x such that there is a unique function f € A that is dependent
on .

A critical assignment to a sensitive function can be easily changed to a
satisfying assignment, by flipping a boundary variable. Formally:
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Lemma 5.3 If f € A is Sensitive, a is a Critical Assignment for f, and
x € Vars(f) N OA then flipping « on = yields an assignment [ that satisfies
A.

We define the expansion of F to be the minimal boundary of a medium
size sub-formula of F:

Definition 5.5 (Expansion) For A = 0, let k = u4(0). Define the Ex-
pansion of A to be:

e(A) € min{|0A'| : A C A 1/3-k < |A|<2/3-k}

The main tool, used in proving most lower bounds on width, presents the
connection between width and expansion:

Theorem 5.1 For F an unsatisfiable CNF,

w(F F0) > maxe(A),

where the mazimum is taken over all sets A of sensitive functions, compatible
with F.

Proof: Fix some A that is compatible with F, and let u4(0) = k. By
Lemma 5.2 there must exist some clause C such that k/3 < p4(C) < 2k/3.
Let A’ C A be a minimal set such that A’ = C. We claim that any variable
z € 0A" must appear in C. To see this notice that for every f € A’ there
is some assignment ay such that af(C) = af(f) = 0 and as(g) = 1 for
all g € A" g # f. This follows from the minimality of A’, for otherwise
A"\ f = C. Suppose, for the sake of contradiction, that x € AN f but
z ¢ C. By lemma 5.3, flipping « on z satisfies A’, but the new assignment
agrees with o on Vars(C'). Hence A’ }= C, contradiction. O

6 Proof of Main Results

6.1 Tseitin Formulas

We start with a proof of Theorem 4.1, to illustrate the simplicity of the
strategy. We shall need the following lemma from [U95]:

Lemma 6.1 [U95] If G is connected, then 7(G, f) is contradictory iff f is
an odd weight function.
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Proof: (Theorem 4.1) We use the notation of section 5. Set Ay, =
{PARITY, : v € V(G)} and denote p(C) = pa,(C). Every axiom C
is one of the defining axioms of PARITY,. Clearly, for this very same v
PARITY, = C. Hence for any axiom C, p(C) = 1. So far we have shown
that Ay is compatible for 7(G, f). Next we claim that ©(0) = |V(G)], be-
cause for any |V'| < [V(G)| Ay is satisfiable. This latter claim is seen by
the following reasoning: Let v be some vertex in V' \ V’. Look at the formula
7(G, f') for
oy ) 1=f(u) u=w

Filu) = { f(u) otherwise

By lemma 6.1 7(G, f') is satisfiable. Ay~ is a sub-formula of 7(G, f'), and
hence satisfiable as well. Ay (g is a collection of PARITY functions, which
are Sensitive. Finally, For V! CV, 0Ay ={z.:e € E(V',V \V')}. This
is true because if e = (v,u), v € V';u € V\ V' then PARITY, is the
only function of Ay dependent on z.. Hence e(Ay) > e(G) and we apply
theorem 5.1 to complete the proof. L]

6.2 The Pigeonhole Principle

In this section we give the proofs of the main results regarding the pigeonhole
principle, i.e. theorem 4.2, corollary 4.2, and theorem 4.3.

Proof: (Theorem 4.2) The proof follows the strategy presented in section
5, and we shall use the same notation, but the notion of Boundary has to be
altered slightly. Define A = {A; : 1 <i < m} where A; is the conjunction of
EP; and all hole axioms H;’i’. Let us denote Ar = AjerA;i. Set u(C) = pua(C).

Clearly, u(Aziom) < 1, u(0) = n+ 1, and p is subadditive. Hence in
every refutation 7 there must be a clause C' with n/3 < p(C) < 2n/3. Fix
such a C and fix a minimal I C [m] such that A; = C. Let R(C) the set of
rows who have a literal in C.

If |C| > n/3 we are done. Otherwise there must be some i € I \ R(C).
Take any assignment « such that Ap;(a) =1, A;() = C(«) = 0 which must
exist by the minimality of I. Without loss of generality, o sets all variables
outside R(C) U I \ i to 0. By the definition of the Ay’s the 1’s of original
variables in o must be a partial matching. But as |C] < n/3 and |I| < 2n/3,
there must be a column j in which no original variable is set to 1. Flip the
assignment « to set z;; to 1, and extend the nondeterministic variables y; in
any way to set EP; to 1. Call this new assignment (. It is easy to verify that
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A[(B) =1, C(B) = 0, contradiction. ]

Proof: (Corollary 4.2) If w(EPHP!") = 3 we apply corollary 3.1. If
this is not the case, one can replace every clause with a nondeterministic
3-CNF extension, in the manner described in example 4.1. Call this new
formulation E2PH P™. Tt is easy to verify that F2PH P™ is still a legal Row
Extension of the Pigeonhole Principle. It is also easy to verify that if 7 is
the nondeterministic extension of a clause C, derived as described in 4.1, one

can derive C from 7 in w(C) resolution steps. Hence the exponential lower
bound for treelike refutations of F2PH P™ carries over to EPHP™. L]

Proof: (Theorem 4.3) Similar to the previous proof, define A = {A4; :i € V
with A; is the conjunction of P; and all hole axioms Hfj’“'. Let us denote
Ar = Nier4i. Set p(C) = pa(C).

Again, p(Aziom) < 1, u(0) > 2n/3, and u is sub-additive. Hence in
every refutation 7 there must be a clause C' with n/3 < u(C) < 2n/3. Fix
such a C and fix a minimal I C V such that A; = C. Let R(C) be the set
of rows that have a literal in C.

If |C| > n/6 we are done. Otherwise there must be some subset V'
of I\ R(C) which has size |V'| = n/6. Take any assignment « such that
Apnvi(a) =1, C(a) = 0 which must exist by the minimality of /. Without
loss of generality, « sets all variables outside R(C) U I\ V' to 0. By the
definition of the A;’s the 1’s of o must define a partial matching.

But as |C| < n/6 and [T\ V'] < n/2, there must be a set U’ of at least n/3
columns, of which no variables are set to 1. By the expansion property V'
can be perfectly matched to U’. Changing « to an assignment ( in which the
variables in this perfect matching are set to 1, and the rest are untouched,
yields A;(8) = 1, C(8) = 0, contradiction. ]

6.3 Random k£-CNF’s

In this section we prove theorem 4.4. In order to prove lower bounds on
width of refuting a random formula F, it is enough to look at the expansion
properties of the following hyper-graph. The vertex set is the set of variables,
and each clause defines an edge. Formally:

Definition 6.1 For F a 3-CNF formula on n variables and m clauses, let
Hy denote the 3-uniform hyper-graph on n wvertices and m = A - n edges
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defined by

V(HrF) = {1,2,...n}
E(Hy) = {(i1,d9,13) : AC € F s.t. x;y, x4y, 24, € C}

For any subset V' of vertices, let E(V') denote the set of edges within V'
(i.e. for anye € E(V'), all 3 vertices are in V'), and similarly for any subset
E' of edges, let V(E') denote the set of vertices covered by E'.

We shall need a generalized definition of expansion, suited for hyper-
graphs.

Definition 6.2 (Hyper-graph Expansion) For H a 3-uniform Hyper-graph,
the Expansion of H is

e(H) % min{2|V(E")| — 3|E'| : E' C E,

n/2A% < |E'| < n/A?}

Positive expansion by itself is not enough to ensure high refutation width,
and we need to be sure that F does not include a “small” unsatisfiable sub-
formula. For this we need the following definition.

Definition 6.3 (Partial Matchability) H, a 3-uniform Hyper-graph, is
called Partially matchable if VE' C E such that |E'| < n/A?% we have
V(E)| = [E'].

The main theorem of this section states that if Hx is partially matchable,
then the expansion bounds the width from below:

Theorem 6.1 For an unsatisfiable 3-CNF, such that Hr is partially match-
able: w(F F0) > e(Hg).

Proof: We use the notation of section 5. Set A to be F and let y = p4.
Clearly p(Axiom) = 1. Thus, F is a set of sensitive functions, compatible
with F. By the matchability of Hz, p(0) > n/A?, since we can find a
matching from every small size sub-formula F' C F, |F'| < n/2A? into
Vars(F'), and use this matching to find an assignment satisfying F'. Finally,
|OF'| > 2|V (E")|—3|E’|, where E' = E(H#), because every variable (vertex)
outside the boundary of 7' (E') must be covered by at least 2 clauses (hyper-
edges), so |V (E")| < |0F'|+3(3|E'|—|0F'|). Applying theorem 5.1 completes
the proof. (]

For the proper clause density, a random F conforms to the conditions of
the previous theorem, as stated in the following lemma:
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Lemma 6.2 For every e > 0 there is some constant ¢, dependent on €, and
1
independent of n, such that if A < n2~° and H is a random 3-uniform

hyper-graph on n vertices and An edges, then whp H is partially matchable
and e(H) > cn/A?

The proof of the lemma is done by calculating a simple Union bound, as
is done in [BKPS98]. The lemma completes the proof of theorem 4.4.

7 Tightness of the bounds

7.1 Tightness for Tree-Like Resolution

How large can be the gap between Sr(7) and w(7 F 0) 7

Our answer is that the gap can be very large. Specifically, we shall show
a family of tautologies which can be refuted in constant width, but for which
the minimal tree-like refutation has size that is exponential in the input
size. This family of contradictions, which is a generalization of [MR98| and
[BEGJ98], is presented in the following definition. For these contradictions
we prove a connection between pebbling and tree-like Resolution size, and
they provide us with an exponential gap between general Resolution and
tree-like Resolution (corollary 7.1).

Definition 7.1 A circuit G is a DAG with a single target, in which each
verter has fan-in 2 or 0. A wertexr with fan-in 0 is called a source and a
verter with fan-out 0 is called a target. Associate a pair of boolean variables
z(v)o, z(v)1 with every vertex v € V(G). Pebg, the Pebbling Contradiction
of G is the conjunction of:

Source Axioms: z(s)y V z(s), for s a Source vertez.

Target Axioms: Z(t)y A Z(t); for t a Target (Two singleton clauses per
target vertez).

Pebbling Axioms: (z(u1)s A z(u2)s) = (x(v)o V x(v)1) for ui, us the sons
of v, and all a,b € {0,1}.

Notice that Peb(G) is a non-satisfiable 4-CNF over 2|V/| variables, with
O(|V]) clauses.
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For G a circuit, let P(G) be the pebbling measure of G, which is the
minimal space needed to carry out the calculation of the circuit G, assuming
the output of each node requires one memory cell. For a thorough survey of
pebbling see [P].

All proofs of the following claims appear in [BIW99].

Lemma 7.1 For G a circuit, S(Pebg) = O(|V]) and w(Pebg F 0) < 6.
Theorem 7.1 Sp(Pebg) = 24F(),

[CPT77] present for every n explicit constructions of G,, with |V(G)| =
O(n) and P(G) = Q2(n/logn). The Pebbling contradictions of these graphs
provide the best known separation between treelike and general Resolution,
improving the recent exp(y/n)-separation of [BEGJ9S]:

Corollary 7.1 For all large enough n, there exist formulas F,, of size F, =
n, such that S(F,) = O(n), and w(F, F 0) = O(1), but Sp(F,) = 2Un/logn),

7.2 Tightness for General resolution

Recently, it has been shown by [BG99] that the trade-off of theorem 3.2
are as tight as one can hope for. Specifically, [BG99] present a natural
family of graph-based k-CNF contradictions (k is constant), 7,, for which

S(1,) = n°W but w(r, F 0) = Q(y/n).

8 Automated Theorem Proving

One of the most extensively used and investigated methods for proving unsat-
isfiability of CNF formulas, are commonly called Davis-Putnam procedures.
Actually, these procedures are derived from a system devised by Davis, Lo-
gemann and Loveland [DLL62|, and hence we will refer to them as DLL
Procedures. A DLL procedure relies on choosing a variable x, and trying to
refute F|,—r and F|,_F recursively. If F is unsatisfiable, DLL(F) terminates
providing a tree-like resolution refutation of F.

An immediate consequence of the Size-Width trade off is a different proce-
dure for refuting unsatisfiable formulas. This Algorithm is a known heuristic
in the Al community, and was already suggested in [BP96], based on the
Groebner Basis (GB) algorithm [CEI96]|. The essence of this procedure is
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seeking a minimal width refutation, and can be described schematically by
the following algorithm:

A (F)
Fix w =0
Repeat {
If0 e F end
Else {
Increase w
Derive all resolution consequences of width < w

}
}

Algorithm A has running time bounded by n , as this is the max-
imal number of different clauses that will be encountered. For example, if
F has a polysize treelike refutation, then RunTime(A(F)) = |F|OUoel7).
Moreover, the previous section (corollary 7.1) provides concrete examples for
tautologies where algorithm A exponentially outperforms DL L-procedures:

O(w(FF0))

Theorem 8.1 There exist unsatisfiable formulas such that Time(DLL(F))
is exponentially larger than Time(B(F))

Proof: We use the notation of section 7.1. Take F = Peb(G) for G with
P(G) = |V|/log|V|. By lemma 7.1, RunTime(A(F)) = |V|°0 = |F|o0W),
while by theorem 7.1 any tree-like refutation of F, e.g. a DLL-procedure,
must have RunTime = 2% F1/1og| 7)) O

9 Open Problems

9.1 Is Resolution Automatizable?

A proof system P is called Automatizable if there exists an algorithm Ap
which when presented with a tautology (contradiction) F produces a proof
(refutation) 7 of F in the system P and the running time of Ap is polynomial
in the size of the minimal proof of A in P, i.e. Time(Ap(F)) < (Sp(F))°W.
Similiarily, P is called Quasi-Automatizable if the running time of the above

mentioned Ap is Quasi-Polynomial in the size of the minimal proof, i.e.
Time(Ap(F)) < Sp(F)OUosSr(FN®
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The algorithm of the previous section shows finds a Resolution proof in
time quasi-polynomial in the size of the smallest Tree-like Resolution proof.
The following questions remain open:

Is General Resolution Automatizable 7 Quasi-Automatizable 7 Is Tree-
like Resolution Automatizable 7 Quasi-Automatizable?

9.2 Improving the lower bound for random k-CNF’s

The present lower bounds for random A-CNF’s in [BKPS98| follow from a
lower bound on the Boundary size for random k-Uniform Hypergraphs. This
is obtained via the Union bound. One possible method for improving the
lower bound on size of refutations of random formulas would be to replace this
Union bound with a finer analysis of the probability of a random hypergraph
having a small boundary.
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