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Abstract. We prove that for all positive integer k and for all sufficiently small
e > 0 if n is sufficiently large then there is no Boolean (or 2-way) branching program
of size less than 2¢™ which for all inputs X C {0,1,...,n — 1} computes in time kn
the parity of the number of elements of the set of all pairs (z,y) with the property
z € X,y€e X,z <y, z+y € X. For the proof of this fact we show that if
A= (ai,j)?zo,jzo is a random n by n matrix over the field with 2 elements with the
condition that “Vi,j,k,l € {0,1,...,n—1}, i+ j = k+ [ implies a; ; = ax,;” then with
a high probability the rank of each §n by én submatrix of A is at least cé|log§|™2n,

where ¢ > 0 is an absolute constant and n is sufficiently large with respect to 4.

Introduction. A Boolean (or 2-way) branching program is a finite directed acyclic
grap with a unique source node, so that each non-sink node is labeled by one of the
input variables zg, ..., z,_1, each non-sink node has outdegree two, each edge is labeled
by an element of {0,1} so that the two outgoing edges of a non-sink node always get
different labels, and each sink-node is labeled by an element of {0,1}. If an input
is given we start from the unique source node and go along a path according to the
following rule. If we are at node v and the label of v is the variable z; then we leave
v on the unique outgoing edge whose label is the value of z;. This path will end in a
sink node; the label of the sink-node is the output of the program at the given input,
the length of the path is the computational time at the given output, the maximal
length of a path in the graph that we may get from an input this way is the length
(or depth) of the branching program. The number on nodes in the graph is the size
of the branching program.

This model describes a very general way of computation where the computational
time measures of the number of accesses to the individual bits of the input, the size
measures the number of different states of the machine performing the computations.
We do not measure the computational time needed to determine the next state of
our machine (that is, the next node in the graph along the path). We may also think
about this model as a random access machine whose input registers contain a single
input bit, with a working memory containg log, M bits where M is the size of the

branching program.
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We give an explicit function, described in the abstract, which cannot be computed
with a Boolean branching program in linear time if the size of the branching program
is 2¢". The best previously known result in this direction is a lower bound given
by Beame, Saks and Thathachar for the computation of an explicitly given function,
namely they show that there is an € > 0 so that the question whether the quadratic
form 0TQo is zero, (where o is the input a 0,1-vector of length n and @ is the
n X n Sylvester matrix over the field with three elemts) cannot be decided with a
branching program of length (1 + €)n and of size 20(™). (The proof shows that the
theorem holds for € = .0178.) For multi-output functions severaltime space tradoffs
were known already for a long time, see e.g [BC], [Beal.

A generalization of the Boolean branching program is the R-way branching program
where each input variable takes its values from a set T' of size R and each node in
the graph corresponding to the branching program has R outgoing edges each by a
different element of I'. The output, and length of the program defined in the natural
way. In [BST] a nonlinear lower bound is given, on the length of an R-way branching
program computing an explicitly defined function, (similar to the function used in

the Boolean case.) More precisely they prove that for all & there is an r; so that for

all sufficiently large n there is an (explicitly given) 0-1 valued function g(z1, ..., z,) of
n variables such that: (a) each variable is taking its values from a set of size r; and
(b) there is no rg-way and size n® branching program which computes g(z1,...,z,) in
depth kn.

If R = clogn then the R-way branching program corresponds to the random access
machine whose input registers contain clog,n bits. It has been proved in [A] that
the element distinctness problem (where each “element” is the content of a register),
cannot be decided with an R-way branching program, for R = clog, n, in length
linear in n if the size of the program is at most 2¢*, provided that ¢ > 2. (If the
problem is to find two elements whose Hamming distance is smaller than %clog2 n
then for a similar lower bound on the length the necessary restriction on the size
is only 2¢71°827) These proofs are based on the ananlysis of certain combinatorial
properties of the input, which are very similar to the combinatorial properties used
in [BTS].

Our proof in the present paper uses the technical lemmata of the element distinct-
ness results. Namely, it is shown in [A] that if a function f can be computed in linear
time with the given restrictions on the size then there are two large disjoint subsets
Wi, Wy of the set of the input variables and an input x so that for each 7 = 1,2 we
may change the input x in many different ways by changing the values of the variables
in W; only, so that the output does not change, moreover these changes can be per-
formed simultaneously on W; and Wj so that the output still does not change. The
ratio between the sizes of the sets W, and the logarithm of the number of changes,
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has a crucial importance in the proofs of the present paper. (A precise statement of
this result, is given in Lemma 1 below.)

We use this result to show that a qaudratic form (which is NOT given explicitly)
cannot be computed in linear time. The algebraic part of this proof (Lemma 5) is a
theorem proved in [BRS] (and in more general forms in [Tha] and [BST]). We reduce
the problem of giving a quadratic form with the required properties to the question
about the ranks of the submatrices (or minors) of the matrix generating the quadratic
form, in a similar way as it is done in [BST]. In both cases the goal is to get a matrix
A so that each [6n]| by [én] submatrix of the matrix A has rank at least ¢(§)n, for
each § > 0, provided that n is sufficiently large with respect to §, where the function
) should be as large as possible. The Sylvester matrices used in [BST| are explicitly
given examples of such matrices with 1(§) = 42, provided that we consider only
submatrices that do not contain any elements of the main diagonal. (This restriction
does not affect the applicability of the matrix to the lower bound proof.) We will call
an n X n matrix A = (a; ;) a Hankel matrix if “V7,5,k,1€ {0,1,...,n—1},i4+j = k41
implies a; ; = ax,;”. We show that if A is a random n by n Hankel matrix over the
field with 2 elements, with uniform distribution on the set of all such matrices, then
with a high probability the described property about the ranks of the submatrices
holds with () = cd|log$|~? for an absolute constant ¢ > 0. As a consequence,
using also the mentioned lemma from [A], we are able to show that if A is the marix
that we get from A by replacing each entries in the main diagonal and above by 0,
then the quadratic form </1:B,:L'>, where z is the input vector, cannot be computed
with a branching program of linear length and size at most 2¢™. Of course this is not
an explicitly given function, we only know that the lower bound holds for almost all
matrices. However, we got the matrix by randomizing only 2n — 1 bits. Therefore
if we include these bits in the input, then we get an explicitly given problem (with
3n — 1 input variables, where the described tradeoff holds between the length and
size of any branching program computing the qaudratic form.) In other words if
A(y), y = (yo,---, y2n—2) denotes the Hankel matrix whith a; ; = y;;, then </1(y)z, )
cannot be computed in the given length and size from the input (z,y). Assume now
that A = (a; ;) is a fixed Hankel matrix so that </1:1:, z) cannot be computed with a
branching program with the given restrictions. Suppose that z = (zq,...,z,—1) and
X ={i|lz; =1}, and D = {i + jla;; = 1,1,j € {0,...,n — 1}}. It is easy to see that
</1:c, z) is the parity of the number of all pairs (7, j), 1 € X,j € X with the property
1t < jandt+4j € D. By encoding the set D by a part of the input we will be able to
show that the problem “compute the parity of the number of elements of the set of
all pairs (7, ) with the property 1 € X, j € X, 7 < j, 1+ j € X” cannot be solved by

a branching program of linear length and of size at most 2™¢.
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Finally we note that our results about random Hankel matrices remain true over
any fields with appropriate modifications. (See the remarks after Lemma 7, Lemma 8
and Lemma 9. See also a comment, about the applicability of these modified version

for generalizations of Theorem 1, in the proof of Lemma 5.)

1. In this section we reduce the problem of giving a lower bound for the time
needed to solve the problem described in the introduction to the existence of a matrix
A which can be constructed from n bits with the property that each large submatrix

of A has also relatively large rank.

Notation. If X,Y are sets then Func(X,Y) will denote the set of all functions
defined on X, whose values are in Y.

A branching program as we will define below will be what is usually called a (de-
terministic) Boolean or 2-way branching program indicating that the input variables

are taking their values from a set of size 2.

Definition. A branching program B with n input variables zq, ..., z,_1 is a five tuple
(G, start, sink, var, val), with the following properties
(a) G is a finite directed acyclic graph,
(b) start is the unique source node of G,
(c) var is a function defined on the non-sink nodes of G with values in the set of
variables {zg, ..., zn_1},
(d) out is a function defined the sink nodes of G with values in {0,1},
(e) valis a function defined on the set of edges with values in {0,1},
(f) each non-sink node have out-degree 2, and the function val takes different values

on the two outgoing edges.

An input for the branching program B is a 0, l-evaluation of the variables z;.
(Instead of such an evaluation we ususally will think about an input as a 0, 1-valued
function 7 defined on {0, 1,...,n—1} where 7n(7) is the value of z;.) If an input is given,
then starting from start we go along a path in the graph, in the following way. When
we are at a non-sink node v then we look at the value of the variable var(v) and leave
the node along the edge e where the value of val(e) is the same as the value of this
variable. Since the graph is acyclic and finite, this way we will reach a sink-node w.
out(w) will be the output of the branching program at the given input. The number
of edges along the path determined this way by the input is the computational time
of the branching program at the given input. The maximal computational time for
the set of all inputs (that is, the maximal length of all paths arising from an input
in the given way) is the length of the branching program. The size of the branching

program is the number of nodes of G.



Definition. Assume that X is a subset of {0,...,n — 1}. N4 (X) will denote the
number of all pairs z,y € X, £ < y so that z +y € X.

Theorem 1. For all positive integer k, if ¢ > 0 is sufficiently small and n is
sufficiently large then there is no branching program B with n inputs, of length at
most kn and of size at most 2°™, which for all inputs  computes the parity of N (Xp)
where X, = {1 € {0,1,...,n — 1}n(z) = 1}}

In the proof we will use the following lemma, Lemma 1, which is a consequence of
Lemma A of [A] (called Lemma 9 in that paper) as we will explain below. The reader
who is not familiar with the details of the proofs in [A] may accept the statement of
Lemma 1 without a proof. (In this case Lemma A is not needed.) The remaining part
of the paper, strating with Lemma 2 is self contained. We give first the definitions
needed to understand the statement of Lemma 1.

Definition. 1. An input (of a branching problem with n input variables) is a
function x defined on {0,1,...,n — 1} with values in {0,1}. A partial input is a
function n defined on a subset of {0,1,...,n — 1} with values in {0, 1}.

2. Assume that x is an input and 7 is a partial input. Then x !  will denote the
input which is identical to 7 on domain(n) and identical to x on domain(y)\domain(n).

3. If 6 € {0,1} and B is a branching program, then H(B,d) will denote the set of
all inputs n so that the output of B at input n is 4.

Lemma 1. For all positive integer k if o1 > 0 is sufficiently small with respect to k,
oo > 0 is sufficiently small with respect to o1, € > 0 is sufficienlty small with respect
to oa, n is sufficiently large with respect to €, B is a branching program with n inputs,
of length at most kn and of size at most 2™, § € {0,1} so that |H(B,5)| > 2"~!, then
there exist a x € H(B,d), A € (02,01), p € (02,01), W; C{0,1,....,.n—1},1=1,2,
and sets of partial inputs Y;, 1 = 1,2 defined on W;, so that

(1) forallt e Wi and j € Wy we havet < j,

(2) W] =|Wa| = pn,

(3) [|vi| > 2¢n2,

(4) pitor >2),

(5) forall my € Y1, na € Ya, we have (x 1m1) 12 € H(B,9).

Proof. We start with the following lemma proved in [A]. Originally it was formu-
lated for random access machines, however in the case when the possible contents of

the input registers form a set with two elements (that is, « = 2 with the terminology
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used there), then the notion of random access machines is identical to the notion of
(2-way) branching programs. In the main theorem of [A] about the element distinct-
ness problem, we assumed that a > n?. However this assumption was not used for all
of the lemmata in its proof so we are able to use a lemma from this proof without any
modification. (There is a slight difference between the notation of the two papers: in
[A] an input is a function defined on the set {1,...,n} while in the present paper it is
defined on {0,1,...,n —1}.)

Definition. Assume that B is a branching program with n input variables. An input
n is visible if each variable z;, ¢ = 0,1,...,n — 1 occurs as var(e) for some edge e on
the path determined by the computation at 7.

Remark. 1. For the proof of Theorem 1 we may assume that every input is visible,
since it is easy to modify a branching program in a way that first the program reads
the value of each variables and then it continues with the original computation. This
way the length and the size of the program is increased only by n. Therefore we may
assume throughout the proof of the lemma that every input is visible.

For the understanding of the statement of Lemma A below, the following concepts,
defined in [A], are needed: 7 a partition of the time interval, core(F,x), stem(F,x),

rstate, F.

Lemma A. For all positive integer k, if o > 0 is sufficiently small with repsect to
k and € > 0 is sufficiently small with respect to o, n is sufficiently large with respect
to €, B is a branching program with n input variables, of length at most kn, and of
size at most 2°, and G is a set of visible inputs then the following holds. There exist
k> o, 1, Fs, f1, fo, H with the following properties:
(6) H C G and |H|>2"""|G|
(7) Fi, F> are disjoint subsets of T
(8) forallt=1,2andj=3—11if x,6 € H, and stem(F;,x) = stem(F;,¢), then
core(Fj,x) = core(F},¢§)
(9) |core(F;,x)| > «k™n forall x € H andt=1,2, wheret =1 — 53—10,
(10) rstateX’UFi = fiforall xy ¢ H,i1=1,2.

1
(11) & < 27Ilsel®

Remarks. 1. Property (11) was not included in the original statement of the lemma
in [A] but its proof clearly implies it. The exact form of the upper bound on « is not
important for us, we will use only that k < oy for some o7 > 0 which is sufficiently
small with respect to k.

2. We have changed the notation of the original lemma (by substituting x for \)

to make it more compatible to the notation of Lemma 1.
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We may prove Lemma 1 from Lemma A in a similar way as Theorem 4 of [A]
was proved by using Lemma A. Some parts of the proofs are almost identical, so in
this case we will refer only to the proof in [A]. As we pick the values of the various
parameters in Lemma 1 we will tell what will be the values of the parameters of
Lemma A when we use it to prove Lemma 1.

Assume that k& is given (we will apply Lemma A with the same value of k). Now we
pick o1 and o3 so that oy is sufficiently small with respect to k and o5 is sufficiently
small with respect to o;. Let 0 = 303. Let € > 0 be sufficiently small with respect
to oy and n be sufficiently large with respect to € and let B be a branching program
of length at most kn and of size at most 2°®. (¢, B and n are the same in the two
lemmata.) We pick § € {0,1} so that |H(B,d)| > 2"~!. (We will write H for H(B,§).)
Let G = H in Lemma A. Now we pick &, F1, F5, f1, fo, H according to Lemma A.

With the same argument as in the proof of Theorem 4 in [A] (the only change is
that we replace ¢y by %) we get that there is a ¥ € H so that

(12) assume that s; = |core(F}, x)|, and Y; is the set of all partial inputs n defined
on core(F;, %) so that x1n € H. Then |Y;| 2%2_"”2‘”.

(This is the analogue of (28) in [A].) The same way as it is done in [A] (using
Lemma 2 of [A]) at the end of the proof of Theorem 4, we may also prove that

(13) for allm; € Y;, i =1,2 we have (X1m)ln € H.

We will need the following observation to conclude the proof. Let core(F;, x) = Si.
For any i = 1,2 and for any X C S;, there is an Y;(X) C Y; so that n(z) = ((z) for
all n,¢ € Y;(X), z € S;\X, and |V;(X)| > %2_”"2”{'. Indeed, we may partition the
elements of Y; into disjoint classes according to the values of its elements on the set
S;\X. Since there are at most 2°~1X classes, at least one class must contain at least
275+IX1|V;| elements. Y;(X) will be such a class.

By (9) we have [S;| > «™n for i = 1,2. Let [3x"n] = r. Let z; be the rth smallest
element of S; and assume e.g. that z; < z3. Let W be the set of the r smallest
elements of S1 and let Wy be the set of the r largest elements of S3. Let Y¥; = E(WZ)
for ¢ = 1,2. According to our previous observation we have |Y;| > %2|Wi|_“". By
the definitions of r, z;, and W;, condition (1) is satisfied by Wi and W,. We claim
that the other requirements of the lemma are also met by the following choice of the
various parameters. We pick two partial partitions (; € Y7, (5 € Y5 in an arbitrary
way. Let x = (x1(1) 12, A = 26, p = [Wiln~! = |[Wa|n™t, (Wi, Y; have been already
defined).

We have already seen that (1) is satisfied.

(2) is a consequence of the definition of x and the following facts: |[W;| = [£7],

1
k < 2711°89l% "5 — 35y and oy is sufficienlty small with respect to o7.
(3) |Y'Z| > %2|Wi|—nn > 2|Wi|—}\n — 2p,n—}\n.

7



(4). By the definition of r = |W;| = un we have un = [3x"n] and so p > K7 =

H3) = 3301 Therefore b > (3)1% b (3) 01 80) 222 (Here we
used that by 13, both x and A > 0 are sufficiently small with respect to k.)

(5) is a consequence of (13) and the defintions of x and Y;. These definitions imply
that (x 17m1)1m2 = (X 1n}) 1 ns where n! = n; U (ils,—w: € V. Q.E.D.(Lemma 1).

Definitions. 1. Assume that A is an n by n matrix over the field F and f is a
real valued function defined on (0,1]. We say that the matrix A is f-rigid, if for each
g=1,...,n and for each g by g submatrix B of A we have that the rank of B is at
least f(Z)n.

2. Suppose that A = (ai,j)?z_ol,jzo is an n by n matrix over the field F'. We say that
A is a Hankel matrix if for all 7,5, k,l € {0,...,n —1}, 1+ j = k4 [ implies a; ; = ag,1.

The proof of Theorem 1 is based on the following two lemmata.

Lemma 2. For all positive integers k, if 01 > 0 is sufficiently small with respect
to k, oo > 0 is sufficiently small with respect to o1, € > 0 is sufficiently small with
respect to oo and n is sufficiently large with repsect to € then the following holds.
Assume that the function f is defined on (0,1] by f(z) = zltToor ifz € (02,01) and
f(z) = 0 otherwise. If there is an n by n Hankel matrix A over F5 so that A is f-rigid
over Fy, then there is no branching program B with n inputs, of length at most kn
and of size at most 2°™, which for all inputs n decides the parity of N, (X,) where

X, ={i€{0,1,..,n—1} | n(i) = 1}

Lemma 3. There is a § > 0 so that for all v > 0 if the function g(z) is defined
by g(z) = dz|logz|~? if z € (v, %) and g(z) = 0 otherwise, then for each sufficiently
large positive integer n there is an n by n Hankel matrix A over F5, so that A is

g-rigid.

We will prove Lemma 3 in the next section, more precisely we will prove (Theorem
2) that a random matrix A taken with uniform distribution on the set of all Hankel
matrices meets the requirements of the lemma with high probability.

Definitions. 1. Assume that 7 is a function with values in {0,1} defined on
{0,1,...,n — 1}. u, will denote the n-dimensional vector (7(0),...,n(n — 1))

2. The inner products of the n-dimensional vectors u,v will be denoted by (u,v).

3. Assume that 4 = {aid}?:_ol,j:o is an n by n matrix. A will denote the n by n
matrix that we get from A by keeping every entries of A below the main diagonal
and replacing all of the other entries by 0. In other words A= {b; ; ?:_01’]':0’ where
bij=aij;foralli>jandb;; =0foralli<j,¢=1,..,n,7=1,..,n.
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Lemma 4. For all positive integers k, if o1 > 0 is sufficiently small with respect
to k, oo > 0 is sufficiently small with respect to o1, € > 0 is sufficiently small with
respect to oy and n is sufficiently large with repsect to €, then the following holds.
Assume that the function f is defined on (0,1] by f(z) = it moor if z € (01,02) and
f(z) = 0 otherwise. If A is an f-rigid n by n matrix A over F,, then there is no
branching program B with n inputs, of length at most kn and of size at most 2™,
which for all inputs n computes A(un, Un).

Remark. We use the matrix A instead of A in the expression <u,7/1,u,7> at the
conclusion of the lemma, since over a field of characteristic 2 and for a symmetrix
matrix A, almost all of the terms of A(u,,uy,) will have 0 coefficients.

Proof. Assume that contrary to our statement there is a branching program B with
the given properties which computes <Au,’,un>. We apply Lemma 1 with the given
values of k,01.02,€,n and with the given B. According to Lemma 1 there exist § €
{0,1}, x € H(B,6), A\, p € (02,01), W3, Y5, 4 = 1,2 with the properties listed in Lemma
1. Let v = (vp,...,vn—1) be an n dimensional vector over F; defined in the following
way. For all ¢ ¢ W1 U W3 let v; = x(2) and for all € W7 U W, let v; = 0. We define
a vector w(é) = <wé£), ...,wSZl) for all £ in Y71 UY5. If ¢ € domain({) then wl(-g) = ¢(2),

if ¢ ¢ domain(¢) then wz(-g) = 0. Let g; be the following function defined on Y;: for all
£€Yi, g:(¢) = <A('U-|—'LU(£)), 'U-|—'w(£)>. Since the functions g; take at most two different
values there are Y] C Yj so that |Y/| > 2|Yj|, and g; is constant on Y} for i = 1,2.
Assume now that {; € Y/, & € Y] and let n = (x1&1) 1&>. By Lemma 1, n € H and
therefore <Aux,ux> :<Aun,un> = </1('U 4 qp(é) —I—w(&),v +qp(é) —I—w(&)) :—</~lv,v> +
g1 (fl)—l—gg(fg)—l—@ﬁiw(&l),w(52)>—|—<fiw(52),w(51)>. </1ux,ux> and </1v,'u> do not depend
on the choices of ¢, £;. By the definition of Y{ and Y3, g1(&1) 4 g2(&2) is constant on
Y/ xY]. These facts imply that <Aw(51),w(52)> + <Aw(52),w(51)> as a function of &1, &
is also constant on Yy x Y. (1) and the definition of A implies that (Aw(é2) w (1)) is
identically 0 on Y x Yy, therefore (Aw(¢1) w(¢)) is constant on Y} x Yy. Let V; be
the vectorspace all F, valued functions defined on {0,...,n — 1}, and let V;, 7 = 1,2
the subspace of functions that vanish outside W;. The dimension of V; is un. We may
assume that Y;, Y/ C V. Let ¢; be the natural embedding of V; into V; and let 75 be
the orthogonal projection of V; onto V,. B will be the linear map of V4 into V, defined
by Bz = myAuiz. For all ¢ € Vi, & € Vi we have <Aw(51),w(52)> = (B¢1,&). If we
fix the bases in both V] and V5 which consist of those functions which take the value
1 at exactly one point and 0 everywhere else, then the matrix of B is a submatrix
of A consisting of those entries whose column numbers are in W; and row numbers
are in Ws. By (1) this submatrix of A is identical to the corresponding submatrix of
A. Therefore by the f-rigidity of A, the rank of B is at least /,LH'ﬁn. We apply
Lemma 5 (below) with V4, Vo, m — pun, X — Y/, Y — Y] and B. (3) implies that
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Y/| > 1|Y;| > 2#n=2n~1 Therefore, according to Lemma 5, the fact that (Bz,y)
is constant on ~1(Y1) X y2(Y2) implies that 2(un — An) + pltw™En < 2un. This is
however impossible since by (4), pltToor > 2. Q.E.D.(Lemma 4)

The following lemma in more general forms are proved in [BRS], [Tha|, [BST]. To

make the paper more self contained we provide here a proof.

Lemma 5. Assume that V7, V3 are m-dimensional vectorspaces over the field F,,
X CV,Y CVW,, |X| >2™, |Y| > 2™ and B is a linear map of V; into V3 so that
the rank of B is at least r. If m1 + may + r > 2m then the function (Bz,y), z € X,
y €Y is not constant on X X Y.

Let 2y be an arbitrary but fixed element of X and let X' = {z —zp|z € X }. Clearly
|X| = |X'| and if (Bz,y) is constant on X x Y then (Bz,y) is identically 0 on X' x Y.
Therefore it is enough to prove that the assumptions of the lemma imply that (Bz,y)
is not identically 0 on X x Y. Assume that contrary to our assertion it is identically 0.
Let H be the subspace in V; generated by X and G be the subspace in V, generated by
Y. We have (BH,G) = 0, that is the subspaces BH and G are orthogonal. Therefore
dim(BH) 4 dim(G) < m, where dim(WW) denotes the dimension of the subspace W.
Since the rank of B is at least r we have that dim(BH) > dim(H)— (m —r). We have
dim(H)— (m —r)+4dim(G) < m. The lower bound on the sizes of the sets X,Y imply
the following lower bound on the dimensions of the subspaces generated by them:
dim(H) > mq, dim(G) > ms. This simply follows from the fact that a d-dimensional
subspace has 2¢ elements. (The lower bounds on dim(H) and dim(G) remain true
even if the field has characteristic different from 2, but we assume that the elements
of X and Y have only 0,1 coefficients in suitably chosen basis of V; and V5. See [Tha)
Lemma 7. This is important for the generalization of Theorem 1 for fields with other
characteristics.) We have m; — (m — r) + my < m, that is, m; + my —r < 2m in
contradiction to our assumption. Q.E.D.(Lemma 5)

Proof of Theorem 1. Assume that contrary to our assertion there is a branching
program B with the given parameters which computes the parity of N4 (X). Let
m = [%]. We apply Lemma 4 with n — m, k& — ck where c is a sufficiently large

absoluég constant and ¢ — 5. Assume that o1, 0y are picked with the properties
described in the lemma.

Let g be the function defined in Lemma 3. Applying Lemma 3 with n — m,
v — o0y we get that there is an m by m g-rigid matrix A = (a; ;) over F5. If oy
is sufficiently small with respect to 8, then A will be f-rigid as well. Therefore by
Lemma 4 there is no branching program of size at most 22™ which computes <u<f1, u¢)

in time ckn, for all {, where ( is an F; valued function defined on {0,1,...,m — 1}.

Let D = {t + j| a;; = 1}, X¢ = {1 € {0,1,...,m — 1}|{(?) = 1}. For any pair of
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sets of integers X, Z let Ny(X,Z) the number of pairs z,y, z < y so that z € X,
y € X and z +y € Z. The satement of Lemma 4 in our case is that the parity
of Ny(X¢,D) cannot be decided by a branching program with the given restrictions
on its parameters. We show that this problem can be reduced to the problem of
determining the parity of Ny (X,) for a suitably chosen n € Func(n,2), in a way
which can be implemented by a linear time branching program. Therefore our indirect
hypothesis will contradict to Lemma 4. 7 is defined in the following way. We define
first two sets Uq,Us. Ur = 2m + X¢, Uy = 4m + D. Let n be the unique element
of Func({0,1,...,n — 1},{0,1}) so that X, = U; UU,. Clearly “z,y € X¢, z < y
and z +y € D” implies that “2m +z € X,,2m +y € X, 2m+z < 2m + y
and (2m + z) + (2m + y) € X,”. Conversely assume that z,w € X,, z < w and
z+w € X,. It is easy to see that this implies z,w € {2m,...,3m — 1} and therefore
z—=2m,w—2m € X¢, z —2m < w — 2m and (z — 2m) + w(—2m) € X;. therefore
Ny (X¢, D) = Ni(Xy). Morever each value of 7 can be computed by in constant time
by a branching program in (the size of the program must be increased only by a factor

of two, since the extra memory needed for this step is only one bit). Q.E.D.(Theorem

1)

2. Random Hankel matrices. In this section we show that with a positive
probability all large submatrices of a random Hankel matrix have relatively large
ranks.

Definition. The field with g elements will be denoted by Fj.

Theorem 2. There exists a ¢ > 0 so that for all co > 0, if n is sufficiently large
then the following holds: Assume that A = {a;;},t1=0,..,n—1,5=0,...,n—1
is a random n by n Hankel matrix over F,, taken with uniform distribution on the
set of all such matrices. Then with a probability greater than %, A has the following
property:

(14) Suppose S = {sq,...,84-1}, T = {to,...,t4—1} are subsets of {0,...,n — 1} with
q elements, where cyn < q, and B = (as,+,), 4 = 0,...,q—1, j =0,...,qg — 1 is the
submatrix of A consisting of those entries whose row numbers are in S and column

numbers are in T. Then the rank of B is at least c1|log(£)|™2q.

n

Lemma 6. Assume that t > 10 is a positive integer and U,V are sets of integers
with |U| = |V| = t2. Then there are U' C U, V' C V, so that |U'| = |V'| = t and
U+ V| > 1%

11



Proof. We will pick pairs u;,v;, u; € U, v; € V sequentially and we will have
U' = {uy,...,us}, V! = {v1,...,v:}. Assume that U; = {uq,...,u;}, Vi = {v1,...,v;}.
We will pick u;, v; so that the number |U;4V;|—|U;—1+4V;_1]| is maximal for: = 2, ..., ¢.
(u1,v1 are arbitrary.) We show that this definition implies that for all i > [£] + 1 we
have that either |U;—y + Vi_1| > %tQ or |U; + Vi| — |Ui=1 + Vie1| > % which clearly
implies the lemma. Indeed, assume that z > [%1 + 1 but |U;—1 + Vieq| < %t2. This
latter inequality implies that for each fixed u;, j = 1,...,2 — 1 there are at least %tQ
elements v of V so that u; + v ¢ U;,—1 + Vi—_1. Let W, be the set of all such elements
v. Clearly W; C V\V;_1. We have that E;;ll W5l > (i — 1)%t2 > %%t2 tha.
Therefore there is a v € V\V;_; which is contained in at least %t2 sets W;, and so
(v + Ui—1)\(Uiz1 + Viza)| > %t. Let v; = v and let w; be an arbitrary element of
U\U;-1. (Choosing u; in a similar way as w; we may improve the constant % in the
conclusion of the lemma.) We have that (U, +V;|—|U;—1+Vi—1| > |(vi+Ui—1)\(Ui=1 +
Vi-1)| > 3t. Q.E.D.(Lemma 6)

Definitions. 1. func(n,2) will be the set of all functions defined on {0,...,n — 1}
with values in F5. func([l,n),2) will denote the set of all functions defined on the
interval [I,n) = {[,...,n — 1} with values in F5.

2. Assume that nj,ny are positive integers, f € func(n; + ny — 1,2). Then
diag(f,n1,n2) will be the n; by ny matrix (d; ;),7=0,...,n1 — 1,5 =0,1,...,np — 1,
where d; ; = f(i + 7).

3. Assume that nq,ng, k1, ks, are positive integers, ny > ki1, no > ko f € func(ks +
ky — 1,2) and g is taken with uniform distribution from the set func([k1 + k2,n1 +
ny —1),2). ®(nq,ny, f) will be a random variable whose value is diag(f U g,n1,n2)
(where fUg is the unique common extension of f and g to [0,n1 +n2 —1)). ®(n1,n)
will denote the random variable whose value is diag(h,n1,n2) where h is taken with
uniform distribution from the set func(ny + ny — 1,2).

4. Suppose A = (a;;), 1 =0,...,n1 —1, j =0,1,...,ny — 1, is an ny by n, matrix
and S C {0,1,...,n; — 1}, T C {0,1,...,ny — 1}. Then sub(A4,5,T) will denote the |5
by |T'| matrix consisting of those entries of A which have row numbers in S and in

column numbers in 7.

Lemma 7. Assume that ni,na,k1,ks are positive integers, k1 < ni, ka < na,
f is a function on {0,1,...,k1 + ko — 1} with values in F», S C {0,1,...,n1 — 1},
T C{0,1,...,ny — 1} and |(S N {k1,....,n1 — 1}) + (T N {ka,...,n2 — 1})| > m. Then
with a probability of at least 1 — 2™™ the following holds:

the rank of the matrix sub(®(n1,n2, f),S,T) is greater than the rank of the matrix
sub(®(n1,n2, f),SN{0,1,....,k1 — 1}, TN {0,1,....,k — 1}).

12



Remark. If we define random Hankel matrices over an arbitrary field F' so that the
random entries of the Hankel matrices are picked from a finite subset D of F' with
uniform distribution, then our Lemma remains true if we substitute 1 — d™™ for the
probability 1 —27™. (Naturally we also have to modify the definition on ®(nq,ns, f)

since in this case f is a function whose values are in the set D.)

Proof. Let ®(ni,na,f) = (¢ij), 1 = 0,..,n1 —1, j = 0,...,ny — 1. For each
7 =0,1,2,...1et S; = Sn{0,1,...,5}, T, =TnA{0,1,...,5}. Foreachi€ S,j €T,
w; ; will be a function defined on T}, by w; j(z) = ¢; 5 for all z € T;. Let r be rank
of the matrix sub(®(n1,nsa, f), Sk; -1, Tko—1). 7 is the dimension of the vectorspace
generated by the functions w; g,—1, ¢ € Sk, —1. Suppose that S C Sk,—1, |,§| =7 SO
that the set of functions W = {w; x,—1|i € S} are linearly independent.

According to the definition of ®(n1,ns, f), we have to randomize a function g with
values in F which is defined on the interval [kq + k2, n1 + ny — 1). We randomize the
values of g sequentially for each z € [k1 + k2,n1 + no — 1) N (S + T'). Assume that
z € [k1+k2,n1+ny—1)] and g(y) has been randomized already for all y < z. Suppose
that for a suitably chosen : € SN{ky,...,n1 — 1} and 5 € T'N{ky,...,ny — 1} we have
1+ 7 = z. By the assumption of the lemma this will happen for at least m different
values of z. Therefore it is enough to show, that for such an z the following holds with
a probability of at least %: the function w; ; is linearly independent from the set of
functions H = {w; |l € S}. (Such an independence obviously implies that the rank of
the matrix sub(®(n1,ns, f),S,T) is greater than |S| = r.) Before the randomization
of g(z) the funcion w; ; is known in every point of T} with the exception of j. Since
there are two possibilities for the value of w; ; at j we have two functions u, v so the for
the randomization of g(z) we have that P(w; ; = u) = P(w; ; = v) = % Consequently
it i1s enough to show that at least one of the two vectors u, v is linearly independent
from the set H. Indeed, if both are linearly dependent, then their difference is also
linearly dependent on them, that is, v —v = ) _zv,ws ; where, v, # 0 for at least
one s € S. We show that this is impossible. Indeed v — v 1s a function on 7; which
is zero everywhere but at j and (v — v)(j) = 1. Consequently j > ky implies that
the restriction of v — v to T%,—1 is 0. Therefore we get that 2565% VsWs,ky = 0.
The functions w, i, are linearly independent so we have v, = 0 for all s € S, in

contradiction to our assumption. Q.E.D.(Lemma 7)

Lemma 8. Assume that for each 7 = 1, 2, Il(j), e Il(j), is a partition of the interval
[0,...,n) into pairwise disjoint subintervals, ) $) C {0,1,...,n — 1} and |[(S) N
Ii(l)) +(S® n Ii(2))| > m; for all i = 1,...,l. Then for any positive integer r the
probability that the rank of sub(®(n,n), S, 5(2)) is not greater than | —r is at most

Y2 i |1 <4 < L < 4 < U
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Remark. If we define the random Hankel matrix ®(n,n) over an arbitrary field F
in the way described in the Remark after Lemma 7, then our Lemma remains true if

we substitute |D|7™t 7 7™ for 27™i T "™ir in the last expression of the Lemma.

Proof. Assume that for all j = 1,2, z € Ii(j), y € Ii(i)l implies z < y, and
assume further that for all j = 1,2, 7 = 1,...,1, Ii(j) = [bj,i,bji+1). Let Si(j) =
S n Ui:l I,(cl) = SU) N [0,b;:41), and let ®; = sub(®(n,n), Si(l), 552)). If the rank
of X = sub(®(n,n),SM),5?)) is not greater than I — r then there are r integers

1 <41 <... <1, < sothat the rank of ®;, and ®;,,
show that for each fixed 71, ..., 7, the probability of this event is at most 27 ™1 =+~ ™ir

is the same fort =1,...,7. We

which clearly implies the statement of the lemma. Suppose that i1,...,7, are fixed.
According to the definition of ®(n,n) we randomize an h € func(2n — 1,2). We pick
the values of h on [2n — 1,2) sequentially. Asume that for some ¢t € {1,...,r} the
values of h(0), ..., h(bi, 1 + bs, 2) — 1 has been already fixed. We define a function f on
the set {0,...,h(bi, 1 + bi, 2) — 1}, by f(y) = h(y) for all y = 0,...,h(b;, 1 + bs, 2) — 1.
Now we randomize the values of h(z) for all z = b;, , +b;, ... b4,y + b5y, — 1.
We apply Lemma 7 for this part of the randomization with n; — beyq 5, kj — b, ;
for j =1,2, § — S,gl), T — 5,52), m — m,;, and for the function f defined above.
We get that the probability of the event rank(®;, ,) = rank(®;,) is less than 27™.
This implies that the probability of “ rank(®;, ,) = rank(®;,) forall ¢t = 1,...;7” is
at most 27™ 7 "™ Q.E.D.(Lemma 8)

Lemma 9. Assume that n,q, R,t are positive integers, 2 < ¢ < n and R < [£]
Suppose further that A = {a; ;},1=0,..,n—1,5 =0,....,n— 1 is arandomn by n
Hankel matrix over F,, taken with uniform distribution on the set of all such matrices.
Let p be the probability of the following event:

(15) for all S C [0,n),T C [0,n), |S| = |T| = q the rank of the matrix sub(4, S,T)

is at least R.
n\ > Q
>1— 9—$(Q-R+1)¢?
P= (Qt> <Q—R+l>

Then
Remark. This lemma remain also true with some modifications over an arbitrary

where Q = [£].

field if we randomize the Hankel matrix A according to the distribution described
in the remark after Lemma 7. Namely we have to substitute |D|_%(Q_R+1)t2 for

2-5(Q-R+1)?” i the last expression of the lemma.

Proof of Lemma 9. We will define a function F on the set of all ordered pairs
(X1, X2) with X; C {0,...,n — 1}, for j = 1,2, | X1| = |X2| = q. Each value of the
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function will be a pair (Z;, Zs) so that Z1, 7, C {0,...,n— 1} and |Z:| = |Z2] = [£]t.
The defintion is the following. Assume that the pair (X;,X,) is given with the
described properties. For each 7 = 1,2 we pick pairwise disjoint subsets Kl(j), o Kg)
of X;, where @ = [%], so that |Kl-(j)| =t2forall j =1,2:=1,...Q and z € Ki(j),
y € Ki(,j) implies z < y for all j =1,2,1 <14 <i < Q. (By the definition of @ this is
possible.)

Assume now that an 7 =1, ..., Q is fixed. We apply Lemma 6 with U — Ki(l), V —
Ki(2). Let U’, V' be the sets whose exitence is stated in Lemma 6 and let Ji(l) =U,
J® = V' Finally let Z;, = Y2, J for j = 1,2 and let F((X1,X5)) = (Z1, ).
Clearly Zi,Z meets the requirements described before the actual definition of F.
They also have the following additional properties:

(a) for all 7 = 1,2 Jl(j), e g) is a partition of Z;, |J;| =t forall i =1,...,Q,

(b)forallj=1,2,1<i<i<QzeJ? yeJ? imples z <y,

(c) forall j =1,2and i =1,...,q we have Ji(l) + Ji(2) > %tQ.

Assume now that a (Z;,Z;) € range(F). We estimate the probability pz, z, of
the following event: the rank of the matrix sub(A4, Z1, Z) is smaller than R.

We apply lemma 8 with [ — @, Ii(j) — Ji(j), SM - 7y, 8 &5 7y m; — %tQ,
r -+ @ — R+ 1. We get that pz z, is at most (Q_%+1)2_(Q_R+1)%t2. There-
fore, using that |Z;| = Qt, we get that the probability that the rank of the matrix
sub(A, Z1,Z5) is smaller than R for at least one (Z1,Z>) € range(F) is at most
|range(.7:)|(Q_%_H)2_(Q_R+1)%t2 < (5t)2(Q—%+1)2_(Q_R+1)%t2' For each pair S, T,
with the properties given in the lemma, if F((S,T)) = (Z1,Z3), then Z; C S, Z, C T
and this implies that rank(sub(A4, S,T)) > rank(sub(A4, Z1, Z;)) so we have the same
upper bound on the probability that the rank of sub(A4,S,T) is smaller than R.
Q.E.D.(Lemma 9).

Proof of Lemma 2. Assume that 6 > 0 is sufficiently small and ¢; > 0 is sufliciently
small with respect to 6, and ¢ > 0. Suppose further that n is sufficiently sufficiently
large and can < ¢ < n. We apply Lemma 9 with n, ¢, R = cl|10g(%)|_1q, t =
[6='|log(£)[]. We get that the probability that rank of sub(A4,S,T) is at least R

is at at least p > 1 — (gt)2(Q_%+1)2—%(Q—R+1)t2 where @ = [;£]. We show that

(Q"t)2(Q_%+1)2—%(Q—R+1)t2 is at most % by giving upper bounds in its factors. We
will use that if 0 < a < % and n is sufficiently large, and z < an then (;n) < e2anlog o
Let'y:%,and)\:Qth. Clearly ¢ < y<1land 1 <A <1

(St) — ( }‘tnl ) <e2'y>\t_1nlog('y_1}\_1t) — e27At_1n(log'y_1+log }\_1-|-logt).
yAtT S —

Using that t 'logy ™! =6, 1logA\™! <t 'log2 <t ! <6 andt 'logt <t~ 3 <
6z we get that
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(5)2 < 647>‘(9+9+9%)" < 2%’)')\71 if 6 is sufficiently small.

(Q—%—l) <2Q = YAt n < 235727 it 6 is sufficiently small.

2—%(Q—R+1)t2 < 2—§Qt2 _ 2—§~y>\t—2t2n _9—37An

These inequalities imply that (St)Q(Q_%+1)2—%(Q—R+1)t2 < 935 YA+ 55 7An—gyAn <
9—(5—1)vAn ~ % if n is sufficiently large, (here we use that ¢ < 7 and % < A).
Q.E.D.(Theorem 2)
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