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Abstract

We show that deciding square-freeness of a sparse univariate poly-
nomial over Z and over the algebraic closure of a finite field IF), of
p elements is NP-hard. We also discuss some related open problems
about sparse polynomials.

1 Introduction

In this paper we extend the class of problems on sparse polynomials which
are known to be NP-hard.

We recall that a polynomial f € R[X] over a ring R is called t-sparse if it
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is of the form

t
fX) =2 aiX™, (1)
i=1
with some aq,...,a; € R and some integers 0 < ny; < ... < ny.

For a sparse polynomial f € Z[X], given by (1), the input size S(f) of f is
defined as .
S(f) = log(|ain; + 2)
i=1
where log z denotes the binary logarithm.

Let p be a prime number. Denote by (2, the algebraic closure of the finite
field IF), of p elements.

Similarly, for a sparse polynomial f € €,[X] given by (1), the input size S(f)
of f is defined as

S(f) = 3 log (ami +2).

i=1
where IF, C €, is the smallest subfield of 2, containing all coefficients of f.

We recall that a polynomial f € R[X] over the unique factorization domain
R is called square-free if it is not divisible by a square of a non-constant
polynomial.

We also refer to [7] for formal description of NP-hard and other related
complexity classes.

Since the pioneering papers [17, 18, 19] complexity problems on sparse poly-
nomials have been studied quite extensively [6, 8, 9, 10, 11, 12, 13, 15, 16].
Nevertheless many natural questions about such polynomials remain open.

Here we prove that testing square-freeness of sparse polynomials over Z and
over (1, is NP-hard. Besides just being a natural problem, this question has
also been motivated by several other possible links and applications.

First of all we mention the problem of deciding whether a given sparse poly-
nomial over Z has a real root. The existence of multiple roots is a major
obstacle in obtaining efficient algorithms for this problem, see [3].

Another well-known related problem is sparse polynomial divisibility. That
is, given two sparse polynomials f,g € Z[X], decide whether g|f. It has
recently been proved [11] that under the Extended Riemann Hypothesis this



problem belongs to the class co-NP, that is, there exists a short proof of the
property f/ g.

We also discuss such possible applications and mention several new related
problems.

2 Main Results

We consider the following two problems:

SPARSE SQUARE-FREE: Given a t-sparse polynomial f € R[X], decide
whether f is square-free

and

SPARSE_GCD: Given two t-sparse polynomials f,g € R[X], decide whether
degged(f,g) > 0.
First of all we consider the case R = Z.

Theorem 1 Quer Z, SPARSE_SQUARE-FREE and SPARSE_ GCD are equiv-
alent under randomized polynomial time reduction.

Proof. 1t is easy to see that SPARSE_SQUARE-FREE is deterministic poly-
nomial time reducible to SPARSE_GCD. Indeed, f is square-free if and only
if f and f' are relatively prime.

It remains to show that SPARSE_ GCD can be reduced to SPARSE_ SQUARE-
FREE.

Denote by M (s,t) the set of all t-sparse polynomials over Z of size at most
s. Obviously

[M (s, t)] < 27
We show that for all, but at most 2%, pairs a, b € Z the polynomials f +ag
and f + bg are square-free for all relatively prime pairs f,g € M(s,t).
Let us fix a pair f, g € M(s,t) of relatively prime polynomials. The discrimi-
nant Dy ,(Y) of the polynomial f(X)+Yg(X) is a polynomial in Y of degree

at most
max{deg f,deg g} < 2°.

We remark that, because f and ¢ are relatively prime, the bivariate polyno-
mial f(X) + Yg(X) € Z[X,Y] is irreducible over Q.
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Therefore the polynomials f(X)+ Y g(X) and f'(X)+ Yg'(X) are relatively
prime. Recalling the resultant representation

Dyy(Y) =Resx (f(X) +Yg(X), f'(X) +Yg'(X))

we conclude that D ,4(Y) is not identical to zero and thus has at most 2°
zeros. Considering all possible pairs f,g € M(s,t) we see that there are at
most

22:‘,5—1 (22ts _ 1) 98 < 25ts

values of y which are roots of the discriminant Dy ,(Y") for at least one rela-
tively prime pair f, g € M(s,t). Thus the number of pairs a,b € Z such that
they are not roots of all discriminants Dx (Y’) corresponding to all relatively
prime pairs f,g € M(s,t) does not exceed 2195

Now to test whether f,g € M(s,t) are relatively prime we select a random
pair a, b of integers a and b with

0<a<b<20

and test if F' = (f 4+ ag)(f + bg) is square-free.

Indeed, if f and g are not relatively prime then, obviously, F' is not square-
free.

If f and g are relatively prime then it is easy to verify that f+ag and f + bg
are relatively prime as well. Because of the choice of a and b we conclude
that f + ag and f + bg are square-free with probability at least 1+ O(272)
and thus F' is square-free.

It is also easy to check that the size of F' is polynomially bounded in terms
of S(f) and S(g). 0

O

It has been shown in [19] that over Z SPARSE GCD is NP-hard, see also [17,
18]. Therefore, from Theorem 1 we obtain the following statement.

Corollary 2 Quer Z, SPARSE_SQUARE-FREE is NP-hard.
Now we turn to the case R = (.

Theorem 3 Over(),, SPARSE SQUARE-FREE and SPARSE GCD are equiv-
alent under randomized polynomial time reduction.
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Proof. As before, only the reduction of SPARSE_GCD to SPARSE_SQUARE-
FREE is non-trivial.

Denote by M,(s,t) the set of all t-sparse polynomials over IF, of size at most
s. Obviously
| My(s,t)| < q'2".

Using the algorithm of [21] (or one of previously known less efficient algo-
rithms) in probabilistic polynomial time we construct an extension of IF, of
degree N = 6st. As in the proof of Theorem 1, we see that for all, but at most
¢*'2%" pairs a,b € IF ~, the polynomials f + ag and f + bg are square-free
for all relatively prime pairs f, g € M,(s,t).

Now to test whether f,g € M,(s,t) are relatively prime we select a random
pair a,b € IF v and test if

F = (f+ag)(f+bg) (2)

is square-free.

Indeed, if f and g are not relatively prime then, obviously, F' is not square-
free.

If f and g are relatively prime then it is easy to verify that f+ag and f + bg
are relatively prime as well. Because of the choice of a and b we conclude
that f + ag and f + bg are square-free with probability at least

qN _ q2t23st

o =14+0(27°)

and thus F' is square-free.

It is also easy to check that the size of F' is polynomially bounded in terms
of S(f) and S(g). 0

O

It follows from the chain of reductions of [10], which has been used to show
#P-hardness of the counting of rational points on a sparse plane curve over

a finite field, that over (2, the problem SPARSE_.GCD is NP-hard.

Therefore, from Theorem 3 we obtain the following statement.

Corollary 4 Over ),, SPARSE_SQUARE-FREE is NP-hard.



3 Remarks

There are several more possible extensions of our results. First of all the
reduction we describe in Theorems 1 and 3 can be applied to polynomials
given by straight-line programs and to multivariate sparse polynomials.

Our reduction in Theorem 3 uses an extension of the ground field IF,. It
would be interesting to find a reduction over the same field. For polynomial
given by straight-line programs this can be done via considering the norm of
the polynomial (2)

N ) N )
¥(X) = Norm ., F(X) = [T (£(X) +a?g(X)) IT (F(X) + 5" 9(X)) -
i=1 i=1
We see that if f and g are given by straight-line programs of polynomial size
then W also has a straight-line program of polynomial size. On the other
hand, unfortunately ¥ contains a superpolynomial number of monomials.
Indeed, it is easy to show that W(X) is T-sparse with

cplog, t
T < sP08%

where p is the characteristic of IF, and ¢ > 0 is an absolute constant. If p and
t are both fixed then both the sparsity 7" and the S(¥) are polynomial in S(f)
and S(g). However, for sparse polynomial with fixed number of monomials we
do not have the corresponding NP-hardness result for computing ged(f, g).
In both works [10] and [19] the sparsity grows together with the input size,
and thus the final link is missing.

Another interesting related question which probably can be studied by the
method of this paper is deciding irreducibility of sparse polynomials. Un-
fortunately for irreducibility there is no analogue of the discriminant char-
acterization of square-freeness. Nevertheless, it is possible that effective ver-
sions [1, 2, 4, 5, 14, 20, 22] of the Hilbert Irreducibility Theorem (or their
improvements) can help to approach this problem.

Unfortunately we do not know any nontrivial upper bounds for the afore-
mentioned problems. For example, it will be interesting to show that test-
ing square-freeness of sparse univariate polynomials over Z can be done in
PSPACE.

Finally, it is very interesting to study similar questions for sparse integers,
that is, for integers of the form f(2), where f is a sparse polynomial. Sev-
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eral results have been obtained in [18, 19] but many more natural questions
remain open.
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