Electronic Colloquium on Computational Complexity, Report No. 28 (1999)

On the Performance of WEAK-HEAPSORT

Stefan Edelkamp'® and Ingo Wegener?

! Institut fiir Informatik, Albert-Ludwigs-Universitit,
Am Flughafen 17, D-79110 Freiburg;
eMail: edelkamp@informatik.uni-freiburg.de
2 Lehrstuhl 2, Fachbereich Informatik
Universitdt Dortmund, D-44221 Dortmund
wegener@ls2.cs.uni-dortmund.de

Abstract. Dutton (1993) presents a further HEAPSORT variant called
WEAK-HEAPSORT, which also contains a new data structure for pri-
ority queues. The sorting algorithm and the underlying data structure
are analyzed showing that WEAK-HEAPSORT is the best HEAPSORT
variant and that it has a lot of nice properties.

It is shown that the worst case number of comparisons is nflogn] —
2Mosnl 4 p — [logn] < nlogn + 0.1n and weak heaps can be generated
with n — 1 comparisons. A double-ended priority queue based on weak-
heaps can be generated in n + [n/2] — 2 comparisons.

Moreover, examples for the worst and the best case of WEAK-HEAP-
SORT are presented, the number of Weak-Heaps on {1,...,n} is deter-
mined, and experiments on the average case are reported.

1 Introduction

General sequential sorting algorithms require at least [log(n!)] = nlogn —
nloge + O(logn) ~ nlogn — 1.4427n key comparisons in the worst case and
[og(n!)] — £2M°8(")1 < Tlog(n!)] — 1 comparisons in the average case. We as-
sume that the time for all other operations should be small compared to the time
of a key comparison. Therefore, in order to compare different sorting algorithms
the following six criteria are desirable:

1. The sorting algorithm should be general proposed, i.e., objects of any totally

ordered set should be sorted.

The implementation of the sorting algorithm should be easy.

3. The sorting algorithm should allow internal sorting, i.e., beside the space
consumption for the input array only limited extra space is available.

4. For a small constant ¢ the average case on key comparisons should be less
than nlogn + cn.

5. For a small constant ¢’ the worst case on key comparisons should be less
than nlogn + ¢'n.

6. The number of all other operations such as exchanges, assignments and other
comparisons should exceed the number of key comparisons by at most a
constant factor.

o

ISSN 1433-8092

BUCKETSORT and its RADIXSORT variants (Nilsson (1996)) are not gen-
eral as required in Property 1.

Given n = 2% traditional MERGESORT performs at most nlogn —n + 1
key comparisons, but requires O(n) extra space for the objects, which violates
Property 3. Current work of J. Katajainen, T. A. Pasanen, and J. Teuhola (1996),
J. Katajainen and T. A. Pasanen (1999), and K. Reinhardt (1992) shows that
MERGESORT can be designed to be in-place and to achieve promising results,
i.g. nlogn—1.3n+0O(logn) comparisons in the worst case. However, for practical
purposes these algorithms tend to be too complicated and too slow.

INSERTIONSORT (Steinhaus (1958)) invokes less than E?:_f [log(i+1)] =
log(n!) + n — 1 key comparisons, but even in the average case the number of
exchanges is in ©(n?) violating Property 6.

SHELLSORT (Shell (1959)) requires as an additional input a decreasing
integer sequence hi,...,h; = 1. According to these distances of array indices
traditional INSERTIONSORT is invoked. The proper choice of the distances is
important for the running time of SHELLSORT. In the following we summarize
the worst case number of operations (comparisons and exchanges). For n =
2% Shell’s original sequence (2%,...,2,1), leads to a quadratic running time. A
suggested improvement of Hibbard (1963) achieves O(n®/2) with the analysis
given by Papernov and Stasevich (1965). Pratt (1979) provided a sequence of
length @(log” n) that led to @(nlog® n) operations. Sedgewick (1986) improves
the O(n®/?) bound for sequences of maximal length O(logn) to O(n*/?) and in

a joint work with Incerpi (1985) he further improves this to O(n'*t¢/V1987) for a
given € > 0. Based on incompressibiliy results in Kolmogorov complexity, a very
recent result of Jiang, Li and Vitdnyi (1999) states that the average number of
operations in (so-called p pass) SHELLSORT for any incremental sequence is in
Q(pn'+1/P). Therefore, SHELLSORT violates Properties 4. and 5.

QUICKSORT (Hoare (1962)) consumes ©(n?) comparisons in the worst case.
For the average case number of comparisons V' (n) we get the following recurrence
equation V(n) =n—14+1 3 (V(k—1)+V(n—k)). This sum can be simplified
to V(n) = 2(n + 1)H,, — 4n, with H, = Y ", 1/i, and to the approximation
V(n) =~ 1.386nlogn — 2.846n + O(logn).

Hoare also proposed CLEVER-QUICKSORT, the median-of-tree variant of
QUICKSORT. In the worst case we still have ©(n?) key comparisons but the
average case number can be significantly reduced. A case study reveals that
the median of three objects can be found in 8/3 comparisons on the average.
Therefore, we have n — 3 + 8/3 = n — 1/3 comparisons in the divide step
leading to the following recurrence for the average case V(n) = n — 1/3 +
(2)71 Yoiei(k—=1)(n—k)(V(k—1)+ V(n—k)). This sum simplifies to V(n) =
Z(n+1)Hy_y— {5n+ 223 4+ 252 ~ 1.188nlogn —2.255n + O(logn) (Sedgewick
(1977)). No variant of QUICKSORT is known with nlogn + o(nlogn) compar-
isons on average (cf. van Emden (1970)). Hence, it violates Properties 4. and 5.

The worst case case number on key comparisons in HEAPSORT indepen-
dently invented by Floyd (1964) and Williams (1964) is bounded by 2nlogn +
O(n). For the generating phase less than 2n — 2 comparisons are required.

BOTTOM-UP-HEAPSORT (Wegener (1993)) is a variant of HEAPSORT
with 1.5n logn+0(n) key comparisons in the worst case. The idea is to search the

path to the leaf independently to the place for the root element to sink. Since the
expected depth is high this path is traversed bottom-up. Fleischer (1991) as well
as Schaffer and Sedgewick (1993) give worst case examples for which BOTTOM-
UP-HEAPSORT requires at least 1.5nlogn — o(nlogn) comparisons. Based on
the idea of Tan Munro (cf. Li and Vitanyi (1992)) one can infer that the average
number of comparisons in this variant is bounded by nlogn + O(n).

MDR-HEAPSORT proposed by McDiarmid and Reed (1989) performs less
than nlogn + ¢n comparisons in the worst case and extends BOTTOM-UP--
HEAPSORT by using one bit to encode on which branch the smaller element
can be found and another one to mark if this information is unknown. The
analysis that bounds ¢ in MDR-HEAPSORT to 1.1 is given by Wegener (1993).
WEAK-HEAPSORT is more elegant and faster. Instead of two bits per element
WEAK-HEAPSORT uses only one and the constant ¢ is less than 0.1.

In order to ensure the upper bound nlogn + O(n) on the number of compar-
isons, ULTIMATE-HEAPSORT proposed by Katajainen (1998) avoids the worst
case examples for BOTTOM-UP-HEAPSORT by restricting the set of heaps to
two layer heaps. It is more difficult to guarantee this restricted form. Katajainen
obtains an improved bound for the worst case number of comparisons but the
average case number of comparisons is larger as for BOTTOM-UP-HEAPSORT.
Here we allow a larger class of heaps that are easier to handle and lead to an
improvement for the worst case and the average case.

There is one remaining question: How expensive is the extra space con-
sumption of one bit per element? Since we assume objects with time-costly
key comparisons we can conclude that their structure is more complete than
an integer, which on current machines consumes 64 bits to encode the interval
[—25% — 1,253 — 1]. Investing one bit per element only halves this interval.

The paper is structured as follows. Firstly, we concisely present the design,
implementation and correctness of the WEAK-HEAPSORT algorithm with side
remarks extending the work of Dutton (1993). Secondly, we determine the num-
ber of Weak-Heaps according to different representation schemas. Afterwards we
prove that there are both worst and best case examples that exactly meet the
given bounds. Finally, we turn to the use of Weak-Heaps as a priority queue.

2 The WEAK-HEAPSORT Algorithm

2.1 Definition Weak-Heap and Array-Representation
A (Max-) Weak-Heap is established by relaxing the heap condition as follows:

1. Every key in the right subtree of each node is smaller than or equal to the
key at the node itself.

2. The root has no left child.

3. Leaves are found on the last two levels of the tree only.

An example of a Weak-Heap is given in Figure 1. The underlying structure
to describe the tree structure is a combination of two arrays. First, we have the
array a in which the objects are found and second, the array of so-called reverse
bits represents whether the tree associated with a node is rotated or not.

K
3 @@éé}

Fig. 1. Example of a Weak-Heap.

For the array representation we define the left child of index i as 2i +
1 — r; and the right child as 2i + r;. Thus by flipping the value of r; we ex-
change the indices of the right and left children. The subtree of i is there-
fore rotated. For example, one array representation according to Fig. 1 is a =
[14,11,9,13,8,10,12,7,0,4,5,2,1,6,3]andr =[0,1,1,1,1,1,1,0,1,1,1,1,1,1,1].

The successors of a node on the left branch of the right subtree are called
grandchildren. For the example of Figure 1 the grandchildren of the root are
labeled by 11, 13, 7 and 3. The inverse function Gparent (x) (for grandparent)
is defined as Gparent (Parent(x)) in case z is a left child and Parent (x) if
z is a right one. Gparent(x) can be calculated by the following pseudo-code
while(odd(z) = r,/2) x + z/2 followed by return z/2 with an obvious in-
terpretation of odd.

2.2 Generating Phase

Let y be the root of a tree T' and x be a node with a, > a, for all z in the left
subtree of T" and let the right subtree of T and y itself be a Weak-Heap. Merging
z and y gives a new Weak-Heap according to the following case study. If a, > a,
then the tree with root z and right child T" is a Weak-Heap. If, however, ay > a,
we swap a, with a; and rotate the subtrees in T'. By the definition of a Weak-
Heap it is easy to see that if the leaves in T are located only on the last two
levels merging = with y results in a Weak-Heap. The pseudo-code according to
merge is given by if (a, < ay) swap(az,ay); ry < 1—ry

In the generating phase all nodes at index i for decreasingi =n—1,...,1 are
merged to their grandparents. The pseudo-code for the so-called WeakHeapify
procedure can be specified as: for i € {n —1,...,1} Merge(Gparent(i),i).

Theorem 1. WeakHeapify generates a Weak-Heap according to its definition.

Proof. Assume that there is an index y, such that Merge (Gparent (y) ,y) does
not return a Weak-Heap at = Gparent(y). Then choose y maximal in this
sense. Since all nodes w > y with Gparent (w) = z have led to a correct Weak-
Heap, we have a, > a, for all z in the left subtree of root y. On the other hand
y and its right subtree already form a Weak-Heap. Therefore, all preconditions
of merging x with y are fulfilled yielding a contradicting Weak-Heap at root x.

One reason why the WEAK-HEAPSORT algorithm is fast is that the gener-
ating phase requires the minimal number of n — 1 comparisons.

Note that the Gparent calculations in WeakHeapify lead to several shift
operations. This number is linear with respect to the accumulated path length
L(n), which can recursively be fixed as L(2) = 1 and L(2¥) = 2- L(2¥~!) +k. For
n = 2% this simplifies to 2n — logn — 2. Therefore, the additional computations
in the generating phase are in O(n).

2.3 Sorting Phase

Similar to HEAPSORT we successively swap the top element ag with the last
element a,, in the array, n —1 > m > 2, and restore the defining Weak-Heap
conditions in the interval [0...m — 1] by calling an operation MergeForest (m):

First of all we traverse the grandchildren of the root. More precisely, we
set an index variable z to the value 1 and execute the following loop: while
2z +r, < m) x < 2z + ry. Then, in a bottom-up traversal, the Weak-Heap
conditions are regained by a series of merge operations. This results in a second
loop: while(z>0) Merge(0,2); x + z/2;

Theorem 2. MergeForest generates a Weak-Heap according to its definition.

Proof. After traversing the grandchildren set of the root, x is the leftmost leaf
in the Weak-Heap. Therefore, the preconditions to the first Merge operation are
trivially fulfilled. Hence the root and the subtree at 2 form a Weak-Heap. Since
the Weak-Heap definition is reflected in all substructures for all grandchildren y
of the root we have that y and its right subtree form a Weak-Heap. Therefore
we correctly combine the Weak-Heaps at position 0 and y and continue in a
bottom-up fashion.

2.4 The WEAK-HEAPSORT Algorithm

WEAK-HEAPSORT combines the generating and the sorting phase. It invokes
WeakHeapify and loops on the two operations swap(0,m) and MergeForest (m).
Since the correctness has already been shown above, we now turn to the time
complexity of the algorithm. (The few lacking minor arguments in the proof are
given in the appendix.)

Theorem 3. Let k = [logn]. The worst case number of key comparisons of
WEAK-HEAPSORT is bounded by nk — 2F + n — 1 < nlogn + 0.086013n.

Proof. The calls MergeForest(i) perform at most Z?:_; [log(i +1)] = nk — 2k
comparisons (and at least E?;; [log(i+1)] — 1 = nk — 2F —n — 2 comparisons).
Together with the n — 1 comparisons to build the Weak-Heap we have nk — 2% +
n — 1 comparisons altogether. Utilizing basic calculus we deduce that for all n
there is an z in [0,1] with nk —2F + n — 1 = nlogn +nz —n2°+n -1 =
nlogn + n(z — 2° + 1) — 1 and that the function f(z) = z — 2% + 1 takes it
maximum at g = —Inln2/In2 and f(z¢) = 0.086013. Therefore, the number
of key comparisons in WEAK-HEAPSORT is less than nlogn + 0.086013n.

Merge(0,1)

Merge(0,2)

Merge(1,3)

Merge(0,4)

Fig. 2. Backward Analysis of WEAK-HEAPSORT.

3 The Number of Weak-Heaps

Let W (n) be the set of roots of complete subtrees in the Weak-Heap of size n.

Theorem 4. If the input of WEAK-HEAPSORT is a random permutation of
the elements {1,...,n}, then every possible and feasible Weak-Heap occurs with
the same probability. Moreover, there are n! /2|W(")| different Weak-Heaps rep-
resented as a binary tree.

Instead of a formal proof (cf. Appendix) in Fig. 2 we give a simple example
illustrating the idea of the backward analysis: For n = 5 we find two roots of
complete subtrees (these nodes are double-encircled). In the first step swapping
the top two elements leads to a dead end, since the generated Weak-Heap be-
comes infeasible. No further operation can move the (deepest) leaf to the leftmost
branch as required for a correct input. Swapping 2 and 5 in the second step anal-
ogously leads to an infeasible Weak-Heap. Only in the following steps (according
to roots of complete subtrees) both successor Weak-Heaps are feasible.

On the other hand, the assignments to reserve bits uniquely determines which
cases in Merge have been chosen in the generating phase.

Theorem 5. There are n! different array-embedded Weak-Heaps.

4 The Best case of WEAK-HEAPSORT

This section proves Dutton’s conjecture (1992) that an increasing sequence of
input elements leads to the minimal number of key comparisons.

For the best case it will be necessary that in every invocation of MergeForest
the special path P to the leaf node terminates at the last position of the array.
Subsequently, by exchanging the current root with the element at this position
the path is pruned by one element. Fig. 1 depicts an example for this situation.

Therefore, by successively traversing the 2 + r; successors from index 1 on-
wards we end up at index n — 1. Hence r; has to coincide with the binary
encoding (bg .. .bo)2 of n — 1. More precisely, if rlazi) = by fori e {1,...,k},
then n — 1 is the last element of the special path. In case of the input a; = ¢ for
i €{0,...,n—1}, WeakHeapify leads to o = 0 and r; = 1 for j ¢ P. Moreover,
for r; with j € P we get the binary representation of n — 1 as required (cf.
Appendix). In other words, Heap(n) defined as

1 1
TGparent(n—l),n—l ° TGparent(n—?),n—Z ©...0

bo n—1 n_1, OT n—1 n—1 o...

Gparent(| %= 1),| %] Gparent(| 5= 1-1),[511

b1 1

T n— n— oT n— n— 0...0
Gparent(| 252), 252 Gparent(| 252] -1),[251 -1

[e]

br_2 br—1
o
Gparent(L;c;_llJ), _272__11 To,1

correctly determines the transpositions according to the generating phase,
where 771 is the transposition of 7 and j if a is odd and the identity, otherwise.

As an example consider Heap(15) = (14 3)1(13 6)}(12 1)} (11 5)!
(10 2)1(9 4)1(8 0)1(7 3)°(6 1)(5 2)'(4 0)}(3 1)}(2 0)I(1 0)'.

We now consider the second largest element n — 2 and assume that n — 2 has
the binary encoding (¢; ... co)a-

Lemma 6. Let a; = i for i € {0,...,n — 1} be the input for WEAK-HEAP-
SORT. After the generating phase the element n — 2 will be placed at position
25| with i* = max{i | bi—1 ® c;—1 = 1}. Moreover, for j < i < i* we have

2]

a[[%5+]] > o[%5
Proof. If by = 1 then n — 1 is a right child and n — 2 is a left child. Hence,
Parent(n—2) = Gparent(n—1) and Gparent(n—2) = Gparent(Gparent(n—1)).

Therefore, n — 2 will be finally located at position Gparent(n —1) = | %+
Moreover, the key n — 2 at | %1% is larger than | %7 | + 1 located at n — 1.

Therefore, for j < i < * we have @ n=1] > G n=1) @S required.
23 21
For the other case we first consider n — 1 # 2*. If by = 0 then n — 1 is as
long a left child as n — 2 is a right child. Therefore, n — 2 will be a left child at
Z?C_QIJ with ¢* = max{i | bi_1 ® ¢;_1 = 1}. Since Gparent(Gparent(n — 1)) =
Gparent(| %=t |) = Gparent(| %2]), n — 2 will finally be located at | 2=t].

Now let n — 1 = 2*_ In this case Gparent(n — 1) is the root. Since for all i we

have Parent(| %:2|) = Gparent(| %:2]), the element n — 2 will eventually reach

21
position 1 = | 21

An element can escape from a Weak-Heap subtree structure only via the
associated root. Since we have by = 1, the position Gparent(n — 1) will be
occupied by n — 1 and for all elements on P we know that the key at position
[251] is equal to maz{{| %]} U {k | k € rT(| %)} = (252 + 2071, with
rT'(x) denoting the right subtree of z. Therefore, for all j < i < i* we conclude

that the key at | 5%] is larger that at [%+ |. Since a a1 | = n—2, this condition
2i*

also holds at 7 = *.

Lemma 7. After the initial swap of position 0 and n-1 MergeForest invokes

the following set of transpositions CaseB(n) := 7209% o o Tg,’“fleac’“‘l.

NEYREE
Proof. Lemma 6 proves that all swaps of position L”Zjlj with position 0 with
j < i* are executed, since at the root we always find a smaller element of the
currently considered one. We also showed that the maximum element n — 2
is located at |[Z=]. Therefore, no further element can reach the root. This
corresponds to the observation that only for j > i* we have bj_; ® ¢;_; = 0.

For the example given above we have CaseB(15) = (0 7)1(0 3)1(0 1)°.

The proof of the following two results
Lemma 8. Heap(n)o (0 n—1) = (Gparent(n —1) n—1) o Heap(n).
Lemma 9. Heap(n — 1)~ o (Gparent(n —1) n—1)o Heap(n) = CaseB(n)™!.
is technically involved and can be found in the appendix.
Lemma 10. Heap(n)oSwap(0,n—1)oCaseB(n)oHeap(n—1)"" =idg, . n 13-

Proof. By right and left multiplication with Heap(n — 1) and Heap(n —1)~! the
equation Heap(n) o Swap(0,n — 1) o CaseB(n) o Heap(n — 1)™' = idgo,.. -1}
can be transformed into Heap(n — 1)t o Heap(n) o Swap(0,n—1) o CaseB(n) =
id{o,....,n—1}- By Lemma 8 this is equivalent to Heap(n —1)"' o (Gparent(n —
1) n—1)o Heap(n) o CaseB(n) = idy,... n—1}.- Lemma 9 completes the proof.

Continuing our example with n = 15 we infer n —1 = 14 = (b ba by bg)2 =
(1 110sandn—2=13=(cs3 ¢ ¢1 cg)o = (1 1 0 1)5. Furthermore,
Heap(14)~" = (1 0)'(2 0)'(3 1)°(4 0)'(5 2)'(6 1)'(7 3)'(8 0)'(9 4)'(10 2)!
(11 5)'(12 1)*(13 6)*. Therefore,

(1 0)(2 0)(4 0)(5 2)(6 1)(7 3)(8 0)(9 4)(10 2)(11 5
(14 3)(13 6)(12 1)(11 5)(10 2)(9 4)(8 0)(6 1)(5 2)(

)(12 1)(13 6)
4 0)(3 1)(2 0)(1 0)

Inductively, we get the following result

Theorem 11. The best case of WEAK-HEAPSORT is met given an increasing
ordering of the input elements.

5 The Worst case of WEAK-HEAPSORT

The worst case analysis, is based on the best case analysis. The main idea is that
the special path misses the best case by one element. Therefore, the Merge calls in
MergeForest (m) will contain the index m — 1. This determines the assignment
of the reverse bits on P: If n — 2 = (by...bo)2 and if Tlnzz) = b;_1 for all

i €{1,...,k} then n — 2 is the last element of P.

An appropriate example fulfilling this property, is the input a; = i + 1 with
i €{0,...,n—2} and a,—1 = 0. After termination of WeakHeapify we have ro =
0,r;j=1forj ¢ P,rp_1 =0, rp_o =1, and rins2) = bi—1 for i € {1,...,k}.

The transpositions Heap(n) of the Weak-Heap generation phase are:

1 1 1

TGparent(n72),n72 ° TGparent(n72),n72 ° TGpa,rent(n72),n72 ©...0

T 2 2, OT) 2 2
Gparent(| %5= 1), %57~ Gparent(| "5~]-1),[%57=] -1
b1 1

T _ g OT . n_ o...
Gparent(| %52]),[%52 Gparent(L2—22J—1),L2—22J—1

0...0

o

bk—2 bk—l
T ne n—2 | O
Gparent(Lyc—_zlJ)vbk—% 0.1

Unless once per level (when the binary tree rooted at position 1 is complete)
we have [log(n + 1)] instead of [log(n + 1)] — 1 comparisons. If n — 1 is set to
n—2 Lemma 6 remains valid according to the new input. Therefore, we conclude

Lemma 12. The first invocation of MergeForest (with the above input) leads

: iy br_1 ek
to following set of transpositions CaseW (n) = 75, » orbo®0 o otk

0.1ng2) ® 0T mot 1y -
The following two results are obtained by consulting the best case analysis.

Lemma 13. Heap(n)o (0 n—1)=(n—2 n —1) o Heap(n).

Lemma 14. CaseW (n) = Swap(0,n — 2) o CaseB(n — 1).

Since the definitions of Heap(n) are different in the worst case and best case
analysis we invent labels Heapy(n) for the best case and Heap,,(n) for the worst
case, respectively.

Lemma 15.
Heap,(n) o Swap(0,n — 1) o CaseW (n) o Heapy,(n —1)"' = (n —2 n—1).

Proof. According to Lemma 13 the stated equation is equivalent to

(n—2 n—1)o Heap,(n) o CaseW (n) o Heap,(n —1)"1 = (n—2 n—1).
The observation Heap,,(n) = Heapp(n — 1) and Lemma 14 results in (n —

2 n—1)o Heapy(n — 1) o Swap(0,n — 2) o CaseB(n — 1) o Heapy(n — 2)~! =

(n —2 n — 1), which is equivalent to Lemma, 10 of the best case.

Inductively, we get (cf. Appendix)

Theorem 16. The worst case of WEAK-HEAPSORT is met with an input of
the form ap_1 < a; < a1, 1 € {0,...,n — 3}.

As an example let n = 16, n — 2 = 14 = (b3
a.ndn—3:13—(03 Cy C1 60)22(1 1 01
(14 3)'(13 6) (12 1)'(11 5)'(10 2)%(1
(3 D2 0)(1 0)t, Swap(O 16) = (0
and Heap(15)! = (1 0)(2 0)!(3 1)°
(10 2)1(11 5)*(12 1)'(13 6)l. Then
Heap(15)~1 = (14 15).

by b1 b0)2 = (1 11 0)2
)2. Further let Heapw(16) =
(7:3)°(6 '(5 2)'(4 0)!
seW (16) = (0 14)°(0 7)*(0 3)",
(6 DX(7 3)'(8 0)'(9 4)!
16) o Swap(0,16) o CaseW (16) o

6 The Average case of WEAK-HEAPSORT

Let d(n) be given such that nlogn+d(n)n is the expected number of comparisons
of WEAK-HEAPSORT. Then the following experimental data show that d(n) €
[0.47, —0.42]. Moreover d(n) is small for n ~ 2* and big for n ~ 1.4 - 2%,

n][1000] 2000] 3000] 4000] 5000] 6000] 7000 8000
ewp(n)||-0.462]-0.456|-0.437|-0.456-0.445|-0.429|-0.436|-0.458
n|[9000[10000[11000] 12000] 13000] 14000] 15000] 16000
dewp(n)||-0.448]-0.437]-0.432]-0.430|-0.436]-0.443|-0.449]-0.458
n|[17000] 18000] 19000] 20000] 21000] 22000] 23000] 24000
dewp(n)||-0.458]-0.449]-0.443|-0.437|-0.433]-0.431]-0.436|-0.427
n|[25000[26000] 27000] 28000] 29000] 30000
dewp(n)||-0.431]-0.437|-0.436-0.440|-0.440|-0.447

There was no significant difference between the execution of one trial and the
average of 20 trials. The reason is that the variance of the number of comparisons
in WEAK-HEAPSORT is very small: At n = 30000 and 20 trials we achieved a
best case 432657 and a worst case of 432816 comparisons.

According to published results of Wegener (1992) and own experiments WEAK-
HEAPSORTrequires approx. 0.81n less comparisons than BOTTOM-UP-HEA P-
SORT and approx. 0.45n less comparisons than MDR-HEAPSORT.

7 The Weak-Heap Priority-Queue Data Structure

A priority queue provides the following operations on the set of items: Insert to
enqueue an item and DeleteMaz to extract the element with the largest key value.
To insert an item v in a Weak-Heap we start with the last index x of the array
a and put v in a,. Then we climb up the grandparent relation until the Weak-
Heap definition is fulfilled. Thus, we have the following pseudo-code: while (z #
0) and (agparent(s) < @z) Swap(Gparent(z),z); ro = 1 —ry; & <Gparent(z).
Since the expected path length of grandparents from a leaf node to a root is
approximately half the depth of the tree, we expect at about log n/4 comparisons

10

in the average case. The argumentation is as follows. The sum of the length of
the grandparent relation from all nodes to the root in a weak-heap of size n = 2*
satisfy the following recurrence formula: S(2!) = 1 and S(2%) = 25(2%—1) +2k-1
with closed form of nk/2 + n such that the average length is at about k/2 + 1.

A double-ended priority queue, deque for short, extends the priority queue
operation by DeleteMin to extract the smallest key values. The transformation
of a Weak-Heap into its dual in |(n — 1)/2| comparisons is performed by the
following pseudo-code:

for i = {size—1,...,|(size — 1)/2] + 1} Swap(Gparent(i),i) followed by
for i = {|(size — 1)/2],...,1} Merge(Gparent(i),)

By successively building the two heaps we have solved the well-known min-
max-problem in the optimal number of n + [n/2] comparisons.

Each operation in a general proposed priority queue can be divided into
several compare and exchange steps where only the second one changes the
structure. We briefly sketch the implementation. Let M be a Max- Weak-Heap
and M' be a Min- Weak-Heap on a set of n items a and a’, respectively. We
implicitly define the bijection ¢ by a; = a;(i). In analogy we might determine
¢' for M'. The conditions a; = a;ﬁ(i) and a; = ag ;) are kept as an invariance.
Swapping j and k leads to the following operations: Swap a; and ay, exchange
¢(5) and ¢(k), set ¢'(¢(4)) to j and set ¢' (¢(k)) to k. We see that the invariance is
preserved. An analogous result is found if a swap-operation on M’ is considered.

In an object-oriented approach the connection of the two weak-heaps is sim-
ply done by a link from one of the weak heap to its dual. That is a weak heap
structure is defined as a template of a item class T" with an array a of instances
in T that are associated with a single reverse bit the array ¢ for the mapping,
a pointer to its dual representation, a bit for the type (0 for a min weak-heap,
1 for a max weak heap respectively) its maximal and actual size. Therefore, the
dual can be found by cloning the original, flipping the type, and transforming it
with respect to the new ordering.

8 Conclusion

Weak-Heaps are a very fast data structure for sorting in theory and practice. The
worst case number of comparisons for sorting an array of size n is bounded by
nlogn+0.1n and empirical studies show that the average case is at nlogn+d(n)n
with d(n) € [-0.47,—0.42]. Let k = [logn]. The exact worst case bound for
WEAK-HEAPSORT is nk — 2¥ + n — k and appears if all but the last two
elements are ordered whereas the exact best case bound of nk — 2% +1 is found if
all elements are in ascending order. On the other hand the challenging algorithm
BOTTOM-UP-HEAPSORT is bounded by 1.5nlogn + O(n) in the worst case.
Its MDR-HEAPSORT variant consumes at most nlogn + 1.1n comparisons.
Therefore, the sorting algorithm based on Weak-Heaps can be judged to be the
fastest HEAPSORT variant and to compete fairly well with other algorithms.

11

References

1

10.

11.

12.

13.

14.
15.

16.
17.
18.
19.

20.
21.

22.

23.

24.

25.

26.

27.

R. D. Dutton. The weak-heap data structure. Technical report, University of
Central Florida, Orlando, FL 32816, 1992.

R. D. Dutton. Weak-heap sort. BIT, 33:372-381, 1993.

R. Fleischer. A tight lower bound for the worst case of Bottom-Up-Heapsort.
Algorithmica, 11(2):104-115, 1994.

. R. W. Floyd. ACM algorithm 245: Treesort 3. Communications of the ACM,

7(12):701, 1964.

T. N. Hibbard. A empirical study of minimal storage sorting. Communications of
the ACM, 6(5):206-213, 1963.

C. A. R. Hoare. Quicksort. Computer Journal, 5(1):10-15, 1962.

J. Incerpi and R. Sedgewick. Improved upper bounds on shellsort. Journal of
Computer and System Sciences, 31:210-224, 1985.

T. Jiang, M. Li, and P. Vitdnyi. Average complexity of shellsort. In ICALP’99,
volume 1644 of LNCS, pages 453-462, 1999.

J. Katajainen. The ultimate heapsort. In Proceedings of the Computing: the 4th
Australasian Theory Symposium, Australian Computer Science Communications
20(3), pages 87-95, 1998.

J. Katajainen, T. Pasanen, and J. Teuhola. Practical in-place mergesort. Nordic
Journal of Computing, 3(1):27-40, 1996.

J. Katajainen and T. A. Pasanen. In-place sorting with fewer moves. Information
Processing Letters, 70(1):31-37.

M. Li and P. Vitdnyi. An Introduction to Kolmogorov Complezity and Its Appli-
cations. Text and Monographs in Computer Science. Springer-Verlag, 1993.

C. J. H. McDiarmid and B. A. Reed. Building heaps fast. Journal of Algorithms,
10:352-365, 1989.

S. Nilsson. Radiz Sorting € Searching. PhD thesis, Lund University, 1996.

A. Papernov and G. Stasevich. The worst case in shellsort and related algorithms.
Problems Inform. Transmission, 1(3):63-75, 1965.

V. Pratt. Shellsort and Sorting Networks. PhD thesis, Stanford University, 1979.
K. Reinhardt. Sorting in-place with a worst case complexity of nlogn — 1.3n +
O(log n) comparisons and enlogn + O(1) transports. Lecture Notes in Computer
Science, 650:489-499, 1992.

W. Rudin. Real and Complex Analysis. McGraw-Hill, 1974.

R. Schaffer and R. Sedgewick. The analysis of heapsort. Journal of Algorithms,
15(1):76-100, 1993.

R. Sedgewick. The analysis of quicksort programs. Acta Inform., 7:327-355, 1977.
R. Sedgewick. A new upper bound for shellsort. Journal of Algorithms, 2:159-173,
1986.

D. Shell. A high-speed sorting procedure. Communications of the ACM, 2(7):30—
32, 1959.

H. Steinhaus. One hundred problems in elemantary mathematics (Problems 52,85).
Pergamon Press, London, 1958.

M. H. van Emden. Increasing the efficiency of QUICKSORT. Communications of
the ACM, 13:563-567, 1970.

I. Wegener. The worst case complexity of McDiarmid and Reed’s variant of
BOTTOM-UP HEAPSORT is less than nlogn + 1.1n. Information and Com-
putation, 97(1):86-96, 1992.

I. Wegener. BOTTOM-UP-HEAPSORT, a new variant of HEAPSORT, beating,
on an average, QUICKSORT (if n is not very small). Theoretical Computer Science,
118:81-98, 1993.

J. W. J. Williams. ACM algorithm 232: Heapsort. Communications of the ACM,
7(6):347-348, 1964.

12

Appendix

Theorem 3

It remains to show

1LY ", i2t=(n—1)2"" +2
2. 30 [logil =nk—2% +1
3. f(z) =z — 2% + 1 is bounded by .086013 for z € [0, 1].

Proof. 1. We prove the result by induction for which the base case is trivial. For
the step case we have 370 i2¢ = (n+1)2"H 4 (n — 1)27+! 42 = p27+2 42
2.

[log n]—1

Z[log ’L-| = Z 4201 + |'10g n'| (TL _ 2|—log n]—l)
=1 i=1
1 [log n—1] .)
:5(Z 7,21)+n|'10gn‘| _Eﬂogn_]2|—10g"-|
i=1
L 1
= 5((logn] — 2)2M°8 "1 4 2) + nflogn] — §flog7ﬂ2flogn1

1 1
=3 [logn] gllogn] _ gflogn] 4 1 4 nflogn] — 3 Mogn] oflogn]

=n[logn] — 218" 4 1.

flx)=z—e"2 1.

fl() =1-¢€"""%In2
=1-2%In2.

f"(z) = —2"(In2)>.

For an extrema we require f'(z¢) = 0 such that

1-2%1n2=0
gm0 — L
In2
zoln2=In1-Inln2
~ Inln2
T0o=" In2 °

Moreover, f(0) = f(1) = 0 and for z € [0,1] we have f"(z) < 0. Therefore,
T is maximal.

13

Theorem 4

We have to prove that there are n!/ 2iW () different Weak-Heaps represented as
a binary tree, all equally likely to be generated.

Proof. W.l.o.g. let the keys be given by 0,...,n — 1. Let K* be the set of config-
urations of Heapify after Merge (Gparent(j),j) for j = n —1,...,4 has been
executed. Therefore, K™~! corresponds to a permutation {1,...,n} as an input
of the algorithm.

We deterimine s; such that s; feasible predecessor configurations are found
in K?. We have two cases. In case (a) we have AGparent (i) > %is such that

Merge (Gparent (i) ,1i) leaves the elements untouched. In the other case we have
AGparent (i) < 1 and swap the two elements as well as the associated subtrees.

Ifin K i+1 the operation Merge (Gparent (i),i) leads to a configuration in
K" then there is an index j such that the key a; in K* is equal to agparent(i)
in K1, Undoing the Merge Operation for this given j in both cases leads to
AGparent (1) >aqforalli+1 <1< mn-—1, since this condition was valid in

K for all i <1 < n — 1. Nevertheless, for some j the backwardly generated
Weak-Heaps are infeasible since it can happen that in one of the two cases (a)
and (b) the initial configuration K™~! may not be reachable.

We distinguish two cases: i € W(n) and ¢ ¢ W(n). In the first case we
have two predecessor configurations. This corresponds to the possibility that
Merge (Gparent (i),i) can have caused an exchange of keys or not. The struc-
ture of the tree is not changed such that all initial configurations K™~ ! are
reachable as before.

In case i ¢ W(n) there exists only one feasible predecessor configuration,
either the one given by case (a) or the one given by (b). The reason is that roots
of incomplete subtrees appear on a single path P only. The deeper nodes on P
cannot undo a once performed rotation to the subtrees of the higher ones.

We summarize, that the number of feasible predecessor configurations s; in
case i € W(n) equals 2 and in case ¢ ¢ W(n) we have one predecessor.

Therefore, if we consider the configuration tree generated by any feasible
configuration in K' then H?:_ll s; = 2W(| initial configurations are found at
the leaves.

Introduction Best Case Analysis

It remains to show that in case of the input a; = i for i € {0,...,n — 1},
WeakHeapify leads to ro =0 and ; = 1 for j ¢ P. For r; with j € P we get the
binary representation of n — 1.

Proof. 1o = 0, since Merge(i,) sets bits of the second parameter only.

By definition of the Gparent relation all indices j € {|2%5%] +1,...,n —
1} of height zero have different grandparents. According to the ordering all
these elements are swapped with their grandparent and the reverse bits are set.
Moreover, left children of nodes are going to be the grandparents of their right
counterparts. Therefore, the condition a; > a; for j > ¢ for the nodes in height

14

zero leads to the desired property that in height one the key at grandparent
nodes will also dominate the keys of nodes themselves. For this invariance to
hold for all heights we further have to prove that all key values in a given
height are of ascending order. Since the key values at nodes of the next height
are swapped with their right children on the height next to be considered the
ascending ordering is preserved.

For the elements j on P the subtrees are not necessarily complete. In this
case, the nodes lack a new value from their right child, leading to higher values
located at their grandparents. Therefore, if during the Weak-Heap generation
phase the right son on P is missing the reverse bit will not be set.

Lemma 8
We have to show that Heap(n) o (0 n—1) = (Gparent(n—1) n—1)o Heap(n).

Proof. We propagate (Gparent(n—1) n—1) through the chain of transpositions
in Heapi(n). Define 7}, i € {n —1,...,1}, established by 7, = (Gparent(n —
1) n — 1) when combining (Gparent(i) i) and 7. It remains to show that
=0 n-1).

First consider elements of height zero. In this case 7;) = (Gparent(n—1) n—
1) equals the first transposition in Heapi(n). Therefore, set 75| = (Gparent(n—
1) n—1). For the elements k € {n —2,...,| 25| — 1} we observe no collision
of 757,y = 7,1 with (Gparent(k) k).

Now consider height one. For the element at |25 | we encounter a collision
if and only if by = 1. In this case set 7* | = (Gparent(|251]) n —1), else set

—1
[

= 7,_;. There is no collision of transposition 7, ; with (Gparent(k) k)

*

e
for the elements k € {| 25| +1,...,[271] — 1}

Iterating this process we observe that in height i = 2,..., [log(n — 1)] the
transposition 7* is changed only at | 27 | for which we have b;_; = 1. Therefore,
we deduce

-1
TE‘L_lJ = (Gparent(LHQTJ) n—1) for 4 =min{i|b;_1 =1}

-1
TE‘L_” = (Gparent(|_n27j) n—1) for iy =min{i> i |bi_1 =1}
2°2

' ~1
= Tf‘n__lj = (Gparent(Ln—.J) n—1) for j=maz{i|bi_1 =1}
27 27

By definition of Gparent we have

rllmod2=1
n
2

n—1 Gparent(| 251]) if b; = J
| mod 2=0

Gparent([TJ) = | L if by = t

Therefore, Gparent(| %% |) = | %= with j* = min{j > i | bj_1 = 1}. Since

21 29
Gparent(|) = Gparent(1) = 0, this completes the proof.

n—1
23

15

Lemma 9

We have to prove Heap(n — 1)~! o (Gparent(n — 1) n — 1) o Heap(n) =
CaseB(n)™1.

Proof. In height zero (Gparent(n —1) n — 1) can be eliminated, since it is
also located at the front of Heap(n). All elements (Gparent(k — 1) k— 1) with
ke{n—-2,...,|252] — 1} appear in Heapi(n) and in Heapi(n — 1) and can be
nullified.

Now consider height 1. If by = 1 than we have [251] = |252], such that
(Gparent(|251]) [251]) and (Gparent(|252]) [252]) are identical. There-
fore, this transposition is applied 1 = by @ ¢o times.

If bp = 0, then |25t # |252] = | 252] + 1. Thus (Gparent(|"52]) [%52])
and (Gparent(|25] +1) |25%]| + 1) are the same. Therefore, this transpo-
sition is applied 1 & ¢g = 2 times and can be omitted. On the other hand
(Gparent(|251]) [251]) appears 1 = by @ ¢o times in Heapi(n —1)*, but not
in Heapi(n).

In both cases (Gparent(|%5-]) |%5*]) is applied only once and is propa-
gated according to the previous lemma to the end of Heapi(n) where it forms
the last element of (CaseB(n)) 1. Subsequently, for the following elements
ke {[22t] +1,..., 2] — 1} the pairs (Gparent(k — 1) k — 1) are iden-
tical in Heapi(n) and Heapi(n — 1)~! and can be omitted.

For the heights i = 2,...,|log(n — 1)| and b;—; = 1 or ¢;—1 = 0, we have
252] = (252, ie., (Gparent(|%2)) |%52)) and (Gparent(|%52)) |%5:2))
are identical. It appears b;_; +c¢;_1 times which as an exponent for transpositions
is equivalent to b;_1 @ ¢;—; times.

If by = 0 and ¢;_y = 1, then (Gparent(|%:]) |2+]) is found in
Heapi(n — 1) but not in Heapi(n), resulting in 1 = b; & ¢; appearences. Then
(Gparent(|252]) [25L1]) is carried to the end of Heapi(n) and constitutes the

ith element of CaseB(n)~'. Since (Gparent(| %:2]) |%:2]) and (Gparent(| %2 |+

2t 2t 2t
1) [%] +1) are now identical, they can be omitted, such as (Gparent(k) k)
for any k until encountering the next height.

Theorem 11

We have to prove that the best-case of WEAK-HEAPSORT is achieved given
an increasing ordering of the elements.

Proof. W.l.o.glet a; =1 for all i € {0,...,n—1}. For the base case let the input
of WEAK-HEAPSORT be given by ag =0 and a; = 1, 19 = 0 und 1 = 0. After
the generation phase we have ag = 1 and a; = 0, 79 = 0 und 7, = 1. After the
final swap we terminate with the best case number of one comparison.

Lemma 10 describes the transformation from a presorted array of lenth n to
an array of length n — 1. By induction we have the best-case for the array of
lenth n — 1 and |log(n + 1)] — 1 comparisons in the nth iteration.

16

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

