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Abstract

We show that the minimum distance of a linear code (or equivalently, the weight of the
lightest codeword) is not approximable to within any constant factor in random polynomial
time (RP), unless NP equals RP. Under the stronger assumption that NP is not contained in
RQP (random quasi-polynomial time), we show that the minimum distance is not approximable

to within the factor 218" ™, for any € > 0, where n denotes the block length of the code. We
also show that the minimum distance is not approximable to within an additive error that is
linear in the block length of the code, unless NP equals RP. Our results hold for codes over
every finite field, including the special case of binary codes. In the process we show that the
nearest codeword problem is hard to solve even under the promise that the number of errors
is (a constant factor) smaller than the distance of the code (even if the code is asymptotically
good). This is a particularly meaningful version of the nearest codeword problem.

Our results strengthen (though using stronger assumptions) a previous result of Vardy who
showed that the minimum distance is NP-hard to compute exactly. Our results are obtained by
adapting proofs of analogous results for integer lattices due to Ajtai and Micciancio. A critical
component in the adaptation is our use of linear codes that perform better than random (linear)
codes.
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1 Introduction

In this paper we study the computational complexity of two central problems from coding theory:
(1) The complexity of approximating the minimum distance of a linear code and (2) The complexity
of error-correction in codes of relatively large minimum distance.

An error-correcting code C over a g-ary alphabet 3 of block length n, is a collection of strings
from ¥". The Hamming distance between two strings x,y € ¥", denoted A(x,y), is the number of
coordinates in which x and y differ. The (Hamming) weight of a string x is wt(x) = A(x,0). The
(minimum) distance of the code, denoted A(C), is the minimum over all pairs of distinct strings
x,y € C of the Hamming distance between x and y. The information content of the code is the
quantity log, |C|, which counts the number of message symbols that can be encoded by an element
of C. If ¢ is a prime power, and F, denotes the finite field on ¢ elements, then by setting ¥ = F, it
is possible to think of ¥ = ' as a vector space. A code over F, is linear if it is a linear subspace
of X" = . For such a code, the information content is just its dimension as a vector space and
the minimum distance equals the weight of the lightest non-zero codeword. It is customary to refer
to a linear code of block length n, dimension & and minimum distance d as an [n, k, d], code. We
use an k£ X n matrix A € ]Féan of rank k to define a linear code Cpo = {xA | x € Ff;} of length n
and dimension k.

1.1 The Minimum Distance Problem.

Three of the four central parameters associated with a linear code, namely n, k£ and ¢, are evident
from its matrix representation. The minimum distance problem (MINDIsT) is that of evaluating
the fourth — namely — given a matrix A € qu“ *? find the minimum distance of the code Ca =
{xA | x € ]Fg} It is easy to see that a code with minimum distance d can unambiguously correct
any error vector of weight Ld%j or less. (For details on the computational complexity of the error
correction problem see the next paragraph.) Therefore, computing the minimum distance of a code
is obviously related to the problem of evaluating its error correction capability. The central nature
of this parameter makes this a fundamental computational problem in coding theory. The problem
gains even more significance in light of the fact that long ¢g-ary codes chosen at random give the best
parameters known for any ¢ < 46 ! (in particular, for ¢ = 2). Such a choice is expected to produce
a code of large distance, but no efficient methods are known to lower bound the distance of a code
produced in this manner. A polynomial time algorithm to compute the distance would be the ideal
solution to this problem, as it could be used to construct good error correcting codes by choosing
a matrix at random and checking if the associated code has a large minimum distance. No such
algorithm is known. The complexity of this problem (can it be solved in polynomial time or not?)
was first explicitly questioned by Berlekamp, McEliece and van Tilborg [7] in 1978 who conjectured
it to be NP-complete. This conjecture was finally resolved in the affirmative by Vardy ([16]) in
1997. ([16] also gives further motivations and detailed account of prior work on this problem.)
We examine the approximability of this parameter and show that it is hard to approximate the
minimum distance to within any constant factor, unless NP = RP (i.e., every problem in NP
has a polynomial time probabilistic algorithm that always reject No instances and accepts YES
instances with high probability). Under the stronger assumption that NP does not have random

!For squares ¢ > 49, linear AG codes can perform better than random ones [15] and are constructible in polynomial
time. For any ¢ > 46 it is still possible to do better than random codes, however the best known procedures to
construct them run in exponential time [17].



quasi-polynomial time? algorithms (RQP), we get that the minimum distance of a code of block
I for any constant € > 0. (This factor
is a naturally occurring factor in the study of the approximability of optimization problems — see
the survey of Arora and Lund [4].) Our methods adapt the proof of the non-approximability of
the shortest lattice vector problem (SVP) due to Micciancio [14] which in turn is based on Ajtai’s

proof of the hardness of SVP [3].

length n is not approximable to within a factor of 9log!!~

1.2 The Error Correction Problem.

In the process of obtaining the inapproximability result for the minimum distance problem, we also
shed light on the general error-correction problem for linear codes. Informally, the error-correction
problem addresses the computational complexity of recovering a codeword from a “received word”
that is close to the codeword in Hamming distance. The simplest formulation of the error-correction
problem is the Nearest Codeword Problem (NCP) (also known as the “maximum likelihood de-
coding problem”). Here, the input instance consists of a linear code given by its matrix A € ]FZ;X”
and a received word x € F; and the goal is to find the nearest codeword y € Ca to x. The NCP is
a well-studied problem: Berlekamp et al. [7] showed that it is NP-hard; and more recently Arora,
Babai, Stern and Sweedyk [2] showed that the distance of the received word to the nearest codeword
is hard to approximate to within a factor of log!! =V n oy any € > 0, unless NP C QP (deterministic
quasi-polynomial time).

However the NCP only provides a first cut at understanding the error-correction problem. It
shows that the error-correction problem is hard, if we try to decode every linear code for arbitrary
amounts of error. In contrast, the positive results from coding theory show how to perform error-
correction in specific linear codes for a small amount of error relative to the distance of the code.
Thus the hardness of the NCP may come from one of two factors: (1) The problem attempts to
decode every linear code and (2) The problem attempts to recover from too many errors. Both
issues have been raised in the literature [16], but only the former has seen some progress [6]. One
problem that has been defined to study the latter phenomenon is the “Bounded distance decoding
problem” (BDD, see [16]). This is a special case of the NCP where the error is guaranteed (or
“promised”) to be less than half the minimum distance of the code. This case is motivated by the
fact that within such a distance, there may be at most one codeword and hence decoding is clearly
unambiguous. Also this is the case where many of the classical error-correction algorithms (for say
BCH codes, RS codes, AG codes etc.) work in polynomial time.

To compare the general NCP, and the more specific BDD problem, we introduce a parame-
terized family of problems that we call the Relatively Near Codeword Problem (RNC). For real p,
RNC is the following problem:

Given a generator matrix A € ]]3“2C X of a linear code Ca of minimum distance d, an integer ¢
with the promise that ¢ < p-d, and a received word x € Fy, find a codeword within distance ¢
from x. (The algorithm may fail if the promise is violated, or if no such codeword exists. In other
words, the algorithm is expected to work only when the amount of error that occurs is limited in
proportion to the error that the code was designed to tolerate.)

Both the nearest codeword problem (NCP) and the bounded distance decoding problem (BDD)
are special cases of RNC(”): NCP = RNC(*) while BDD = RNCGE). Till recently, not much was
known about RNC( for constants p < oo, leave alone p = % (i.e., the BDD problem). No finite
upper bound on p can be easily derived from the Arora et al.’s NP-hardness proof for NCP [2]. (In

2f(n) is quasi-polynomial in n if it grows slower than 21°8° 7 for some constant c.



other words, their proof does not seem to hold for RNC® for any p < 00.) It turns out, as observed
by Jain et al. [10], that Vardy’s proof of the NP-hardness of the minimum distance problem also
shows the NP-hardness of RNC®) for p = 1 (and actually extends to some p = 1 — o(1)).

In this paper we significantly improve upon this situation, by showing NP-hardness (for random
reductions) of RNC® for every p > % bringing us much closer to an eventual (negative?) resolution
of the bounded distance decoding problem.

1.3 Results and Techniques.

The main result of this paper (see Theorem 15) is that approximating the minimum distance
problem within any constant factor is hard for NP under polynomial reverse unfaithful random
reductions (RUR-reductions, [11]), and approximating it within 90" "9 n s hard under quasi-
polynomial RUR-reductions. These are probabilistic reductions that maps NoO instances always
to No instances and YES instances to YES instances with high probability. The probability a
YES instance is not mapped to a YES instance is called the soundness error and in all reductions
presented in this paper it can be made exponentially small in a security parameter s in poly(s)
time. Although not a proper NP-hardness result (i.e., hardness under deterministic polynomial
reductions), hardness under polynomial RUR-reductions also gives evidence of the intractability
of a problem as the existence of a (random) polynomial time algorithm to solve the hard problem
would imply NP = RP (random polynomial time), i.e. every problem in NP would have a prob-
abilistic polynomial algorithm that always rejects NoO instances and accepts YES instances with
high probability. Similarly, hardness for NP under quasi-polynomial RUR-reductions implies that
the hard problem cannot be solved in RQP unless NP C RQP (random quasi-polynomial time).

In order to prove these results, we first study the “Relatively Near Codeword Problem” and
show that the optimization version of RNC®) is hard to approximate to within any constant factor
v for any p > 1/2 unless NP = RP (see Theorem 9). In particular RNC is hard to approximate
to within v = 1/p. This problem immediately reduces to approximating the minimum distance of a
code within 7 = 1/p. This gives a first inapproximability result for the minimum distance problem
within some constant factor v > 1. We then use tensor product constructions to “amplify” the
constant and prove the claimed hardness results for the minimum distance problem.

The hardness of approximating the relatively near codeword problem RNC® for p>1/21s
obtained by adapting a technique of Micciancio [14], which is in turn based on the work of Ajtai [3]
(henceforth Ajtai-Micciancio). They consider the analogous problem over the integers (rather than
finite fields) with Hamming distance replaced by Euclidean distance. Much of the adaption is
straightforward; in fact, some of the proofs are even easier in our case due to the difference. The
main hurdle turns out to be in adapting the following combinatorial problem considered and solved
by Ajtai-Micciancio:

Given an integer k construct, in poly(k) time, an integer d, a lattice £ in Z* with
minimum distance d and a vector v € Z* such that a (Euclidean) ball of radius p - d
around v contains at least 2% vectors from £ (where p < 1 and € > 0 are some constants
independent of k).

In our case we are faced with a similar problem with Z* replaced by ]F"'qC and Euclidean distance
being replaced by Hamming distance. The Ajtai-Micciancio solution to the above problem involves
number-theoretic methods and does not translate to our setting. Instead we show that if we
consider a linear code whose performance (i.e., trade-off between rate and distance) is better than
that of a random code, and pick a random light vector in Fy, then the resulting construction has



the required properties. We first solve this problem over sufficiently large alphabets using high
rate Reed-Solomon codes. (This construction has been used in the coding theory literature to
demonstrate limitations to the “list-decodability” of Reed-Solomon codes [12].) We then translate
the result to small alphabets using the well-known method of concatenating codes [8].

Finally, we extend our methods to address some problems relating asymptotically-good codes.
We show that even for such codes, the Relatively Near Codeword problem is hard, unless NP
equals RP (see Theorem 17). We then translate this to a result (see Theorem 22) showing that the
minimum distance of a code is hard to approximate to within an additive error that is linear in the

block length of the code.

2 Notations and problem definition

All vectors will be assumed to be row vectors. For a vector v € F} and set § C Fy, let A(v,5) =
minywes{A(v,w)} be the (Hamming) distance between v and 5. For vector v € F} and positive
integer 7, let B(v,r) = {w € F}|A(v,w) < r} be the ball of radius r centered in v. Given
a generator matrix A € ]F]qcxn, we consider the linear code Co = {xA | x € F’q“} of distance
A(Ca) = min{wt(xA) | x # 0}.

In order to study the computational complexity of coding problems, we formulate them in
terms of promise problems. A promise problem is a generalization of the familiar notion of decision
problem. The difference is that in a promise problem not every string is required to be either a
YES or a No instance. Given a string with the promise that it is either a YES or NO instance, one
has to decide which of the two sets it belongs to.

The following promise problem captures the hardness of approximating the minimum distance
problem within a factor 7.

Definition 1 (Minimum Distance Problem) For prime power ¢ and v > 1, an instance of
GAPDIST, 4 is a pair (A,d), A € F¥*™ and d € Z7F, such that

o (A,d)is a YEs instance if A(Cp) < d.
e (A,d) is a No instance if A(Ca) > v - d.

In other words, given a code A and an integer d with the promise that either A(Ca) < d
or A(CA) > 7 -d, one must decide which of the two cases holds true. The relation between
approximating the minimum distance of A and the above promise problem is easily explained. On
one hand, if one can compute a y-approximation d' € [A(Ca),7 - A(Ca)] to the minimum distance
of the code, then one can easily solve the promise problem above by checking whether d’ < v -d or
d' > 7 -d. On the other hand, assume one has a decision oracle O that solves the promise problem
above®. Then, the minimum distance of a given code A can be easily approximated using the
oracle as follows. Notice that O(A,n) always returns YEs while O(A,0) always returns No. Using
binary search, one can efficiently find a d such that O(A,d) = YEs and O(A,d — 1) = No. This
means that (A, d) is not a No instance and (A,d — 1) is not a YES instance*, and the minimum
distance A(Ca) must lie in the interval [d,~ - d].

Similarly we can define the following promise problem to capture the hardness of approximating
RNC() within a factor 5.

By definition, when the input does not satisfies the promise, the oracle can return any answer.
*Remember that the oracle can give any answer if the input is neither a YES instance nor a No one. So, one would
be wrong to conclude that (A,d — 1) is a No instance and (A, d) is a YES one.



Definition 2 (Relatively Near Codeword Problem) For prime power ¢, p >0 andvy > 1, an

instance of GAPRNC%@?I is a triple (A, v,t), A € F¥*" v € F? and t € Z™, such that t < p-A(Ca)
and’®

o (A,v,t)is a YEs instance if A(v,Ca) < L.
e (A,v,t)is a No instance if A(v,Ca) > 7.

It is immediate that the problem RNC() gets harder as p increases. It is hardest when p = o
in which case we obtain the promise problem associated to approximating the nearest codeword
problem:

Definition 3 (Nearest Codeword Problem) For prime power ¢ and v > 1, an instance of
GAPNCP, , is a triple (A,v,t), A € ]Fé“xn, veF, andt € Z7T, such that

o (A,v,t)is a YES instance if A(v,Ca) < 1.
e (A,v,1)is a No instance if A(v,Ca) > 7 -1.

The promise problem GAPNCP,, , is NP-hard for every constant v > 1 (cf. [2]%), and this result
is critical to our hardness result(s).

3 Hardness of the relatively near codeword problem

As outlined in Section 1, our reduction relies on the construction of a linear code Ca and a Hamming
sphere of radius r < p-A(Ca) (for some p < 1) containing exponentially (in the block length) many
codewords. Obviously, it must be p > % because any sphere of radius r < A(Ca)/2 can contain at
most one codeword. We now prove that for any p > % it is actually possible to build such a code and
sphere. After the development of this combinatorial tool, we prove the hardness of approximating
the relatively near codeword problem by reduction from the nearest codeword problem.

3.1 Construction of the combinatorial tool

We first show how to construct a linear code and a sphere (with radius smaller than the minimum
distance of the code) containing a number of codewords exponential in the alphabet size. Then,
we use code concatenation to derive a similar result for fixed alphabet in which the number of
codewords in the sphere is exponential in the block length of the code.

Lemma 4 For any € € (0,1), there exists an algorithm that, on input a prime power q, outputs,
in poly(q) time, three integers [, m,r > 0 and a matriz A € F;nxz such that

e tlhe linear code defined by A has minimum distance A(Ca) > 2(1 — €)r,

o the expected number of codewords inside a random sphere B(v,r) (v chosen uniformly at
random from ]F‘é) is at least ¢°l7°] /4.

5Strictly speaking, the condition t < p - A(CA) is a promise and hence should be added as a condition in both the
YEs and NoO instances of the problem.

%To be precise, Arora et al. [2] present the result only for binary codes. However, their proof is valid for any
alphabet. An alternate way to obtain the result for any prime power is to use a recent result of Histad [9] who states
his result in linear algebra (rather than coding-theoretic) terms. We will state and use some of the additional features
of the latter result in Section 5.



Proof: Let r = [¢°], l = ¢ and m = ¢ — [2(1 — ¢)r]. We let A be a generating matrix of the
[¢, m,q—m+1] extended Reed-Solomon code (cf. [5, 13]). For example, let the rows of A correspond
to the polynomials z* (for i = 0,...,m — 1) evaluated on all elements of F,.

Clearly, A can be constructed in time polynomial in ¢ and the minimum distance satisfies

ACaA)=qg—m+1=2(1—¢)r] +1>2(1—€)r.

Now, lets bound the expected number of codewords in B(v,r) when v is chosen uniformly at
random in F}. First of all notice that

Exp[|Ca N B(v,r)]] = Z Pr {x € B(v,r)}
ver] ecy VEF
= Z Pr {v € B(x,r)}
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where in the last inequality we have used the monotonicity of (1 — 1/¢)? and ¢ > 2. Finally,
combining the two inequalities we get

Exp [|[Ca N B(v,7)]] g~20-972=07 14

veFRd

v

= qET/4 = qELq€J /4.

O

From the previous lemma, it immediately follows that there exists a sphere B(v,r) containing
at least qELq€J/4 codewords from Cp. However, while the lemma asserts that A and r can be
easily computed, it is not clear how to effliciently determine the center of the sphere. Let p =
Exp [|B(v,r7)NCa|] be the expected number of codewords in the sphere when the center is chosen
very
uniformly at random from ]E‘é. It is fairly easy to find spheres containing a number of codewords
not much bigger than p. In fact, by Markov’s inequality Pryeri(|B(v,7) N Ca| > ap) < 1/a



when v is chosen uniformly at random from F}. It turns out that if v is chosen uniformly at
random from B(0,r) (instead of the whole ]F‘é), then a similar lower bound can be proved. Namely,
Pryeso,n(IB(v,7)NCal < dp) < é. In fact, this is just a special case of the following quite general
fact.

Fact 5 Let G be a group, H C G a subgroup and S C G an arbitrary subsel of G. Lel p be the
expected size of H N Sz when z is chosen uniformly at random from G (here Sz denotes the set
{s-z|s€S8}). Choose x € S~ = {s7! | s € S} uniformly at random. Then for any é < 1,

Pr {|HNSz| < éu} <6.
reS—1

Proof: First, we compute the expectation

p = Exp[[HnNSz]
2€G
= D Priyes:)
yeH
[H]-]5]
G|

Now, pick y € H uniformly at random and independently from z (which is chosen uniformly at
random from S~!). We notice that

Hze S~ lye Hiy=a"12}
|S]-[H]

Pr{zy = 2}
x7y

|H N Sz|
[H|-]5]°

Moreover, since H is a subgroup, Hy = H and |Sz N H| = |Szyn Hy| = |S(zy) N H|. Therefore,
denoting by I(z) be the indicator variable that equals 1 if |[SzN H| < éu and 0 otherwise, we can
write

Pr{[Sen H| <ép} = Pr{[S(zy)n H| < ép}
T Yy

= Y Priey=2}1(2)

)

z€G
B Z |Szn H|-I(2)
2 IS
< G| -6p _
[H|-[S]
O
Applying Fact 5 on group G = (F7,+), subgroup H = (Ca,+) and the set S = B(0,r) we
immediately get the following corollary to Lemma 4. Notice then that if we set v = z then

Sz =v+B(0,r)=B(v,r).

Corollary 6 For any € € (0,1) there exists a probabilistic algorithm that on input a prime power
q, oulpuls in lime polynomial in q integers l,m,r > 0, a matriz A € FZ“XI and a veclor v € Fé
such that



o A defines a linear code with minimum distance A(Ca) > 2(1 — €)r,

o for every § < 1, the probability that |B(v,r)N Ca| is smaller than §q°L9°) is al most 46.

It is important to notice that in the previous lemma one must use arbitrarily large alphabets
in order to get arbitrarily many codewords in the ball. We would like to prove a similar result in
which the alphabet size can be kept fixed and only the block length of the code increases. This can
be easily accomplished using the standard construction of concatenating codes [8]. The idea is to
apply Corollary 6 to a sufficiently large extension field Fje and then represent each element of Fye
as a sequence of elements of IF,.

Lemma 7 For ¢ € (0,1) and finite field F,, there exists a probabilistic polynomial time algorithm
that on input integers k,s € Z™, oulputs, in poly(k,s) time, integers l,m,r € ZT, a matriz
A€ Fg”d and a vector v € Fé such that

o A(Ca)>2(1—¢)r

o The probability that B(v,r) contains less than q* codewords is at most q=*°.

Proof: Let ¢ be an integer such that ec|¢*°| > k + s+ 2 and ¢’ = ¢° is polynomial in s and k. For
example, let ¢ = [6_1 -max{logq(k +s+2),1}].

Apply Corollary 6 to prime power ¢’ = ¢° to obtain integers /', m’, v/, matrix A’ € IE“;C”IXII and
vector v/ € ]Fé', such that A(Car) > 2(1 —€)r’, and for all § < 1 the probability that |B(v’,r")NCa/|
is smaller than ¢ - (q’)ﬁl(q’)eJ is at most 46. In particular, when 6 = ¢~(572) with probability at least
1—4-¢=6+2) >1_¢=5 we have

|B(VI, 7./) N CA’l > qceLq“J /qs—I—Q > qk+3—|—2/qs+2 — qk.

So, the sphere B(v',r') contains the required number of codewords with sufficiently high prob-
ability. It only remains to reduce the alphabet size from ¢° to ¢. This can be done concatenating
the code Ca with a [¢°, ¢, ¢ — ¢°71] linear Hadamard code. Details follow.

Recall that Fyc is a c-dimensional vector space over F,. Fix a basis by,...,b. € Fsc of Fye over
F, and let ¢;: F,e — F, be the coordinate functions such that z = Y7, ¢;(z)b;. Notice that the
¢;’s are linear, i.e., ¢;(az 4+ by) = ag;(z) + bo;(y) for all a,b € F, and z,y € Fye. For all = € Fye,
let now h(z) be the sequence of all F,-linear combinations of the ¢;(z),

h(z) = (Z amb,-(x))
ai,...,ac€Fq

=1

and extend h to ng componentwise

h(ﬂ?l, ey ch) = h(a:l), h($2), . ',h(ﬂqu).

Notice that h:Fpe — F? is linear, h(0) = 0 and wt(h(z)) = ¢~ (¢ — 1) for all @ # 0. Therefore
wi(h(w)) = ¢ 1(g—1)-wt(w) and A(h(w1),h(w2)) = ¢ (¢—1)- A(wy, wz). We now define Ca
as the concatenation of Cas and £, i.e.,

Ca = h(Car) = {h(w) :w € Ca}.



Further, let v = A(v'), 7 = ¢¢ (¢ —1)-#, 1 = ¢°-1' and m = ¢-m'. A generating matrix
A € FZ”’XV for Co can be easily obtained replacing each element a in A’ by the corresponding
matrix [h(a-b1) | ... h(a-b.)] € Fo e

We claim that these settings satisfy the requirements of the lemma. Notice first that since
wt(h(w)) = ¢° (¢ — 1) - wt(w), we have A(Ca) = ¢° (¢ — 1) - A(Cas) > 2(1 — €)r. Further,
|Ca N B(v,7)| = |Car N B(v',7")| and thus the probability that B(v,r) contains fewer than ¢*
codewords is at most ¢—*. O

In the next subsection we will use the codewords inside the ball B(v, r) to represent the solutions
to a nearest codeword problem. In order to be able to represent any possible solution, we need first
to project the codewords in B(v,r) to the set of all strings over F, of some shorter length. This
is accomplished in the next lemma by another probabilistic argument. Given a matrix T € ]FfJXk
and a vector y € ]F‘Zq, let T(y) = yT denote the linear transformation from Fé to ]F‘é“. Further, let

T(S)={T(y) |y € 5}.

Lemma 8 For any e € (0,1) and finite field F, there exists a probabilistic polynomial time algo-
rithm that on input (1k, 1°) outputs integers I, m,r, matrices A € F;T“Xl, and T € FéXk and a vector
v € qu such that

1. A(Ca) > 2(1 —¢)r.
2. T(B(v,mr)NCa) = ]F’éC with probability al least 1 — ¢=°.

Proof: Run the algorithm of Lemma 7 on input (12k+5+1, 15t1). Let I,m,r, A, v be the output of
the algorithm and define S = B(v,7) N Ca. The first property directly follows from the previous
lemma. Moreover, with probability at least 1 — ¢~(t1) we have |S| > ¢***t571. Choose T ¢ ]F‘f;(k
uniformly at random. We want to prove that with very high probability T(S) = quc_ Choose
a vector t € ]F’}qC at random and define a new function T'(y) = yT 4 t. Clearly T'(5) = ]F‘}qC
iff T(S) = FF. Notice that the random variables T'(y) (y € ) are pairwise independent and
uniformly distributed. Therefore for any vector x € F’q“, (y) = x with probability p = ¢7*.
Let Nx be the number of y € 5 such that T/(y) = x. By linearity of expectation and pairwise
independence of the T/(y) we have Exp [Ny] = |S|p and Var[Ny] = |S|(p — p?) < |S|p. Applying

Chebychev’s inequality we get
Pr{Nx =0} < Pr{|Nx — Exp[Nx]| > Exp[Nx]}

Var [ Ny]

< 3
Exp [ Ny]

< < gty
151p =

Therefore, for any x € F’q“, the probability that T'(y) # x for every y € S is at most g~ (kts+1)

By union bound, with probability at least 1 — ¢~ (571), for every x € ]Ff; there exists a vector y € §
such that T(y) = x. Adding up the error probabilities, we find that with probability at least
1= (g6t 4 g=GHy > 1 — ¢, T(S) = F%, proving the second property. O

3.2 The reduction

We can now prove the inapproximability of the relatively near codeword problem.
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Theorem 9 For any p > 1/2, v > 1 and any finite field F,, GAPRNC({’(} is hard for NP under
polynomial RUR-reductions. Moreover, the error probability can be made exponentially small in a
securily parameter s while maintaining the reduction polynomial in s.

Proof: Let n be an integer strictly bigger than 1/(2p — 1) and let 4" = (p + 1)y. We prove the
hardness of GAPRNC&% by reduction from GAPNCP./ ,.

Let (C',v',t') be an instance of GAPNCP.,, with C’ € F’;X”. We want to map it to an
instance (C, v, 1) of GAPRNC({Q. Invoking Lemma 8 on input (1¥,1%) and e = 1 —(141/n)/(2p) €
(0,1), we obtain integers I, m,r, a generating matrix A € F;”Xl of a linear code with minimum
distance A(Ca) > 2(1 = €)r = ((1+ 1/n)/p)r, a matrix T € F** and a vector w € F, such that
T(Ca N B(w,7)) = F¥ with probability at least 1 — ¢,

Notice that ATC' € F7*" defines a linear code whose codewords are a subset of Ccr. Define
C by pasting nt’' copies of A and r copies of ATC':

C=[A,...,A, ATC',...,ATC']
N—— —

—
nt! r

Define vector v as the concatenation of nt’ copies of w and r copies of v':
v=[w,...,w, v/,..., V]
S— S———
nt! T
Finally, let ¢ = (n+4 1)t'r. The output of the reduction is (C,v,1).

First notice that (regardless of the input instance (C’,v’, 1)), we can establish ¢t < p-A(Cc) as
follows:

v

p-A(Cc) prt’ - A(Ca)

141
> pnt’(7+ /77) T
p
= (n+Di'r=1t.
We now prove that if (C’,v’, ') is a YES instance of GAPNCP.,,, then (C,v,t) is a YES
instance of GAPRNCS‘Z, and if (C’,v',t') is a No instance of GAPNCP., ,, then (C,v,?)is a No

instance of GAPRNC%;.
Assume (C’,v', ') is a No instance, i.e., the distance of v/ from C¢r is greater than 4't’. For all
x € F" we have

v'qo

A(xC,v) r- A(x(ATC), V')

r-A(v',Cor)

r-yt

r(n+ Dyt =1

proving that (C,v,?)is a No instance. (Notice that No instances get mapped to No instances
with probability 1, as required.)

Conversely, assume (C’,v',1') is a YEs instance, i.e., there exists x such that A(xC’,v’) < ¢'.
Let y = zA be a codeword in Ca such that A(y,w) < r and yT = x. We know such a codeword
will exists with probability at least 1 — ¢~°. In such a case, we have

A(zC,v) = nt'A(zA,w)+ rA(zATC',v')
< pt'r 4t =,

VoIV oIV
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proving that (C,v,¢)is a YES instance. O

Remark 10 The reduction given here is a randomized many-one reduction (or a randomized Karp
reduction) which fails with exponentially small probability. However it is not a Levin-reduction: i.e.,
given a witness for a YES instance of the source of the reduction we do nol know how to obtain a
witness to YES instances of the target in polynomial time. The problem is that given a solution x to
the nearest codeword problem, one has to find a codewordy in the sphere B(w,r) such that yT = x.
Our proof only asserts that with high probability such a codeword exists, but it is not known how
to find it. This was the case also for the Ajtai-Micciancio hardness proof for the shortest vector
problem, where the failure probability was only polynomially small.

As discussed in the introduction, hardness under polynomial RUR-reductions easily implies the
following corollary.

Corollary 11 For any p > 1/2, v > 1 and any finite field F,, GAPRNC(WFE is not in RP unless
NP = RP.

4 Hardness of the Minimum Distance Problem

In this section we prove the hardness of approximating the Minimum Distance Problem. We first
derive an inapproximability result to within some constant bigger than one by reduction from
GAPRNC%;. Then we use direct product constructions to amplify the inapproximability factor to

any constant and to any factor 218" "7 7 (e >0).

4.1 Inapproximability to within some constant

The inapproximability of GApDIsST, , to within a constant v € (1,2) immediately follows from the
hardness of GAPRNC%{W).

Lemma 12 For every v € (1,2), and every finite field F,, GapDist,, is hard for NP under
polynomial RUR-reductions with exponentially small soundness error.

1

Proof: The proof is by reduction from GAPRNC%?. Let (C,v,t) be an instance of GAPRNC%Q
and assume without loss of generality that v does not belong to code generated by C. (One can
easily check whether v € Cc by solving a system of linear equations. If v € Cc then A(v,Cc) =0
and (C,v,?)is a YES instance.) Define the matrix

[¢]

We now prove that if (C,v,?)is a YES instance of GAPRNC%?, then (C’,t) is a YES instance
of GapDistT, 4, and if (C,v,?) is a No instance of GAPRNC%Z;, then (C’,t) is a No instance of
GAPDIST, 4. Recall that in either case A(Cc) > yt.

Assume (C,v,1)is a YES instance, i.e., there exists a x such that A(xC,v) < t¢. Then, xC —v
is a non-zero vector of the code generated by C’ of weight at most ¢.

Conversely, assume (C,v,?)is a No instance and let y = xC + av be any non-zero vector of C'.
If @ =0 then y = xC is a non-zero element of Ca and therefore wt(y) > ¢ (using the promise).
On the other hand, if @ # 0 then wt(y) = wt((a™'x)C — v) > 7t as A(v,Cc) > 7t. O
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4.2 Inapproximability to within bigger factors

To amplify the hardness result obtained above, we take the direct product of the code with itself.
We first define direct products.

Definition 13 For i € {1,2}, let C; be a linear code generated by A; € qu“ixni. Then the direct
product of C; and Cy, denoted Ciy @ Cy is a code over Fy of block length niny and dimension kik,
whose codewords, when expressed as matrices in Fy;2*™  are the set {ATXA X € F’;Z’Xkl}. A
generating matriz for the code C1 @ Co can be easily defined as the matric Ay ® Ag € ]Fgln?x}clk?
(5:)

whose rows (when expressed as matrices) are given by (A(QjQ))T . Agjl) where A;

A; and j; € {1,...,k;} for i € {0,1}.

is the j;th row of

Notice that the codewords of C; ® Cy are matrices whose rows are codewords of C; and columns
are codewords of Cy. In our reduction we will need the following fundamental property of direct
product codes.

Proposition 14 [13] For linear codes C; and Cy of minimum distance dy and dy, their direct
product is a linear code of distance did,.

Proof: We now show that for any non-zero matrix X, AgXAl has at least dydy non-zero entries.
Consider first the matrix XA;. Since this matrix is non-zero, there must be some row which is
non-zero. Since every row is a codeword from Cy, this implies that this row must have at least dy
non-zero entries. Thus X A; has at least d; non-zero columns. Now consider the matrix AT (XA ).
At least dy columns of this matrix are non-zero and each (being a codeword of Cy) must have at
least d, non-zero entries. This completes the claim.

Finally, we verify that the minimum distance of C; ® C3 is exactly dids. To see this consider
vectors x; € ]Fé” such that x;A; has exactly d; non-zero elements. Then notice that the matrix
M = AgxgxlAl is a codeword of C; ® Cy. Expressing M as (X2A2)T(X1A1) we see that its ¢th
column is zero if the 7th coordinate of x4 A1 is zero and the jth row of M is zero if the jth coordinate
of x9A4 is zero. Thus M is zero on all but n — d; columns and n — dy rows and thus at most did;
entries are non-zero. O

We can now prove the following theorem.

Theorem 15 For every finite field F, the following holds:
o For every real v > 1, GAPDIST, 4 is hard for NP under polynomial RUR-reductions.

o For every € > 0, GAPDIST, , is hard for NP under quasi-polynomial RUR-reductions for
y(n) = 2loe!' " n,

In both cases the error probability is exponentially small in a securily parameter.

Proof: Let 79 be such that GApPDIST,, , is hard by Lemma 12. Given an instance (A,d) of
GAPDIST,, ,, consider the instance (A®!, d') of GapDisT, , where

AP = (- (ABA)BA) -0 A
{

is a generator matrix of

C'=(-((CA®CA)®CA) - ®CA)

~

{
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for an integer parameter [ € Z*. By Proposition 14 it follows that YES instances map to YES

instances and No instances to No instances. Setting | = lloog% yields the first part of the theorem.

Notice that for constant I, the size of A®' is polynomial in A, and A®' can be constructed in
polynomial time.

To show the second part, just set v = 2 and [ = loglze n in the previous reduction. This time
the block length of A®! will be N = n! = 9log'/n \hich is quasi-polynomial in the block length n
of the original instance A. The reduction can be computed in quasi-polynomial (in n) time, and

the approximation factor achieved is

1—¢

y(N) =2l = glog & n = glog' N,

O

As for the relatively near codeword problem, the following corollary can be easily derived from
the hardness result under RUR-reductions.

Corollary 16 For every finite field F, the following holds:

o For every real v > 1, if GAPDIST, 4 is not in RP unless NP = RP.

e For every € > 0, GAPDIST, , is not in RQP for v(n) = 2Nog" "1 ynless NP C RQP.
Y ) o /

5 Hardness results for asymptotically good codes

In this section, we prove that the relatively near codeword problem is NP-hard (under RUR reduc-
tions) even when restricted to asymptotically good codes. To be more formal, we define a restricted
version of GAPRNC where the code is required to be asymptotically good.

For R,é € [0,1], let (R, 6)-restricted GAPRNCS”Z be the restriction of GAPRNC% to instances
(A€ F’q“x” ,v,t)satisfying £ > R-nand t > ¢-n. (Le., the code represented by A is asymptotically-
good with information rate at least ® > 0 and distance rate at least % > 0.) We will show that
(R, 6)-restricted GAPRNC is NP-hard under RUR reductions.

We will then use this result to prove that the minimum distance of a linear code is hard to
approximate additively, even to within a linear addtive error relative to the block length of the
code. To prove this we use the following formalism.

For € > 0 and prime power ¢, let GAPDISTADD,, be the promise problem with instances
(A€ F’;X”,d), with YES instances being those with A(Ca) < d and NO instances being those with
A(CA) > d+ ¢-n. We will show that GApDISTADD is NP-hard under RUR reductions.

5.1 Hardness of error-correction in asymptotically-good codes

We start by showing the hardness of the restricted version of the Relatively Near Codeword problem.

Theorem 17 For every prime power ¢ and every v > 1, there exists a rate R > 0, distance § > 0
and p < 1 such that the (R, 0)-restricted GAPRNCg’fg is hard for NP under RUR-reductions.

The proof of Theorem 17 follows the same sequence of lemmas as the proof of Theorem 9. The
main differences are the following:

14



e In the construction of the combinatorial tool in Section 3.1 we relied on a code of very small
distance. In this section we replace this construction with a construction based on algebraic-
geometry codes (recall that these also perform better than random linear codes) to get a
construction with an asymptotically good code. (See Lemma 18)

¢ When using the hardness result for GAPNCP, we need a result in which the target vectors in
the NO instances are at a linear distance from the code. We observe that a result of Hastad [9]
gives us hardness of NCP with this additional property.

We start with the following lemma which is analogous to Lemma 4.

Lemma 18 For any square prime power q > 49, there exist constants R > 0, a > 0 and ¢ > 0 and
an algorithm that on input integers k and n, oulputs, in poly(k,n) time, three integers [, m,r > 0
and a full rank matriz A € ]FZ“XZ such that

o the linear code defined by A has minimum distance A(Ca) > (1+ €)r,

e the expected number of codewords inside a random sphere B(v,r) (v chosen uniformly at
random from ]F‘é) is at least ¢*,

el/>n,m>R-landr > a-l.

Comment: Apart from the inversion of some quantifiers and a new parameter n, the main differ-
ence when compared with Lemma 4 is in the third condition above where the code C4 is forced to
be asymptotically good. (In achieving this condition, we lose in the first condition where we are
only able to show that the distance of the code is mildly larger than the radius of the dense ball.)

Proof: We prove the lemma for o = %, €=log,2+ % -log, <1 — l) — \/51_1 and R=1-¢— ﬁ

q
Notice that the conditions € > 0, B > 0 hold for ¢ > 49. Let Iy be large enough so that lp - 5§ >

log,,(27lo).

Given k,n let [ = max{n,ly, 46—]“}, m = R-land r = a-l. Notice that these settings already
satisfy the third condition above, i.e., [ > n, m > R -1[, and »r > «a -l. We then construct in
polynomial time in /, a generator matrix A € F;nxz for an algebraic-geometry code (see [15])

satisfying A(Ca) > 1 —m — \/51—1' Notice that

l 1 1 ¢ l
\/6_1:l(l—R—ﬂ_l):l(§+§):5(1—|—€)IT(1+€)

thus satisfying the first condition. It remains to verify the second condition, namely, that the

l—m—

expected number of codewords in a ball of radius r around a randomly chosen vector v is at least
¢". Observe that the expected number of codewords in a random sphere is

V

_ vor l 1y ,m—l
‘]:JE)%I;HB( ,7)NCAll > (T)(q 1)'q

21
>
V27l

We would like to prove that the final quantity above is at least ¢*. Taking logarithms of both sides

((] _ 1)1/2ql(_1/2—5/2_ﬁ)

to base g, it suffices to prove that
1

Va1

l (logq 2+ %logq(l —-1/q)—€¢/2 - ) — %logq(%rl) > k.
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Using the value of €, we find that it suffices to prove
1
[(e/2) — Elogq(%rl) > k.

Using the fact that [ > I, we get that the left hand side above is at least [ which is at least k by
the setting of [ above. This concludes the proof. O

By following the same sequence of claims as used to get from Lemma 4 to Lemma 8, we get an
analogous result for the asymptotically good case.

Lemma 19 For any finite field F,, there exists constants €, R,a > 0 and a probabilistic polynomial
time algorithm that on input (1%,1%,1%) outputs integers I, m,r, matrices A € FE’LXZ, and T € ]F’f;dC
and a vector v € Ffl such that

1. A(Ca) > (14 €)r.
2. T(B(v,r)NCa) = F¥ with probability at least 1 — ¢~*

3 0>n,m>R-landr > a-l.

Finally, we need the hardness of a restricted version of the NCP in order to prove the main
theorem of this section. For g € [0, 1], let F-restricted GAPNCP,, , be the restriction of GaApNCP,, ,
to instances (A € ]F{;X”,v, t) satisfying ¢ > -n. We will need the fact that g-restricted GAPNCP, ,
is NP-hard. This result does not appear to follow from the proof of [2]. Instead we observe that
this result follows easily from a recent and extremely powerful result of Hastad [9],

Theorem 20 ([9]) For every prime p, and for every € > 0, given a system of linear equalions
modulo p with m constraints, it is NP-hard to distinguish instances in which (1 — €)m constraints
can be satisfied, from those in which at most (]l9 + €)m constraints can be satisfied.”

Phrased in coding theoretic terms this amounts to saying that for every prime p and for every

constant 7, by setting € = %, e-restricted GAPNCP,, ,, is NP-hard. The result for general prime

powers ¢ = p* follows immediately (using the fact that instances of GAPNCP, , are also instances
of GAPNCP, 4 and the nearest codeword may as well use coefficients from F,, if both the generator
and target are from F,). This gives the following corollary to Theorem 20.

Corollary 21 For every prime power ¢ and for every constant 7, there exists 3 > 0, such that
B-restricted GAPNCP,, , is NP-hard.

The proof of Theorem 17 now follows analogously to the proof of Theorem 9.

Proof:[of Theorem 17] We will pick parameters I,.J appropriately and then paste I copies of the
code obtained from Lemma 19 next to J copies of a hard instance of restricted GAPRNC. The
result will follow by the setting of the parameters.

Let ¢, R',a > 0 be the constants given by Lemma 19. Let 4" = 2v(14 3/¢). Let 3’ > 0 be

such that §'-restricted GAPNCP,, , is NP-hard (as given by Corollary 21. Let R = R’/ (% + é),

6 = min{a, 5}, and p = 1"{156/4. We will reduce ['-restricted GAPNCP./, to (R,d)-restricted

GAPRNC({Q. Since R,6 > 0 and p < 1, this suffices to prove the theorem.

"Hastad’s result has the further property that every linear equation only involves three variables, but we don’t
need this extra property.
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Let (C' € F’;X”,V’,t’) be an instance of ['-restricted GAPNCP.,. Invoke the algorithm of
Lemma 19 on input (1%,17,1%) to get integers [,m,r, matrices A € mez T € Fle and vector
w € Fé as promised by the lemma. Set J = ”—,] and I = [2‘6” -‘ and let C be the matrix obtained
by pasting I copies of A with J copies of the matrix ATC’. Let v be the vector obtained by
concatenating I copies of w with J copies of v/. Let t = I -r 4 J -t. We claim that (C,v,1)
is a YES (resp. NO) instance of (R, §)-restricted GAPRNCS”Z if (C',v',t")is a YES (resp. NO)
instance of §'-restricted GAPNCP.,/ ,.

We first derive some useful upper bounds on I and J. First, r/t' > a-l/n > « (since [ >n).
Thus J < (r/t)+1 < (r/t')-(1+1/a) = 2. % Also J < (r/t’)+1 <U/(B-n)+1 < 7. Finally,
I <2(t'/r)(JT]e )-I— 1 < 5‘” yielding I < (H_a) < 2. Thus we find that I is upper bounded by a
constant and so is =%. Finally, we also note that the setting yields £ < ‘” <:.

We now verify that Cc is asymptotically-good. Notice that the block length of Ccis -1+ J-
n < 1(I+ Jl—”) < l( + @) (i.e., Block length = O(l)). Thus the information rate is at least

I(G/(Q'ZZW > R'/ (E %) = R as required. Further the ratio of the parameter ¢ to the block

length is % > min{7, %} > min{a, 3’} = §. Thus the instance satisfies the (R, §)-restriction.
Next we verify that the instance has large distance (relative to t). Notice that A(Cc) >

I-A(Ca)>I(1+¢)r. Thus
t < Ir+J-t

ACc) — I(1+eor
1_|_Jtl
- 1+¢
< 1+¢€/2
- 1+ ¢
< p

Finally, we need to verify that YES (NO) instances map to YES (resp. NO) instances. As in
the proof of Theorem 9 we see that if we start with a YES instance of GAPNCP, then A(Cc,v) <
I-r+J-t' =tas required. On the other hand if we start with a NO instance of GAPNCP, then

AlCc,v) > J-4"-1
3

(1+ )71
= (2y. )<
A S T
143
= Q’Yt(llr—l_é)

T +1
> 27t
> -1,

as required. This completes the proof. O

5.2 Inapproximability of Minimum Distance with linear additive error

Finally, applying the reduction from GAPRNC to GAPDIST, given in the proof of Lemma 12, we
derive the following hardness of approximating the minimum distance of a code to within a “linear

17



additive error” (i.e., in codes of block length n, it is hard to approximate the minimum distance to
within an additive factor of en).

Theorem 22 For every prime power q, there exists an € > 0, such that approrimating GAPDISTADD, ,
s hard for NP under polynomial RUR-reductions with exponentially small soundness error.

Proof: By Theorem 17 we have that for some R, § > 0, p < 1 and v > 1 (R, §)-restricted
GAPRNCQ’Z is NP-hard. Assume w.lo.g. that p = %, or else we can use the theorem with
v = min{%,y}. We will prove the theorem for ¢ = (y — 1)§ > 0. Let (C € Ff*",v,1) be an

instance of (R, 6)-restricted GAPRNCQE1 and assume without loss of generality that v does not
belong to code generated by C. Define the matrix C' = [ S ] As in the proof of Lemma 12 we

get that if (C,v,)is a YES instance of GAPRNC? ', then A(-C’) < t and thus (C’,t) is a YEs

v,q 7

instance of GAPDISTADD, 4. Similarly if (C,v,t)is a No instance of GAPRNCl—ql, then we get
that A(Cer) >yt =1t+(y— 1)t > t4+(y—1)én = t + en and thus (C',t) is a No instance of

GAPDISTADD, ,. O

6 Other reductions

We proved that approximating the minimum distance problem is hard for NP under RUR-reductions,
i.e. probabilistic reductions that map NoO instances to NO instances, and map YES instances to
YEs instances with high probability. (This is similar to the hardness proof for the shortest vector
problem in [3, 14].)

An obvious question is whether it is possible to remove the randomization and make the reduc-
tion deterministic. We notice that our reduction (as well as the Ajtai-Micciancio ones for SVP) uses
randomness in a very restricted way. Namely, the only part of the reduction where randomness is
used is the proof of Lemma 8. The construction in the lemma depends only on the input size, and
not the particular input instance we are reducing. So, if the construction succeeds, the reduction
will faithfully map all YEs instances (of the appropriate size) to YEs instances. Therefore, the
statement in Lemma 8 can be easily modified to obtain hardness results for NP under deterministic
non-uniform reductions, i.e. reductions that take a polynomially sized advice that depends only
on the input size®:

Corollary 23 For every finite field F, the following holds:

e Foranyp > 1/2, and v > 1 GAPRNC({% 1s hard for NP under non-uniform deterministic
polynomial reductions.

o Forevery realy > 1, GAPDIST, 4 is hard for NP under non-uniform deterministic polynomial
reductions.

o For every € >0 and y(n) = 21°g(1_€)”, GAPDIST, 4 is hard for NP under non-uniform deter-
ministic quasi-polynomial reductions.

8Since our reduction achieves exponentially small error probability, hardness under non-uniform reductions also fol-
lows from general results about derandomization [1]. However, the ad-hoc derandomization method we just described
is more efficient and intuitive.
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We notice also that a uniform deterministic construction satisfying the properties of Lemma 8
would immediately give a proper NP-hardness result (i.e. hardness under deterministic Karp re-
ductions) for the relatively near codeword problem and the minimum distance problem.

Finally, we notice that all our results rely on the fact that the code is given as part of the
input. Thus it is still concievable that for every error-correcting code, there exists a fast algorithm
to correct errors (say up to the distance of the code), however, this algorithm may be hard to find
(given a description of the code). A result along the lines of the result of Bruck and Naor [6],
showing the hardness of relatively nearby codeword problem even with preprocessing, would be
desirable to fix this gap in our knowledge. We are however unable to extend our techniques (or
those of [6]) to address this problem.
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