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Abstract

The Pfaffian of an oriented graph is closely linked to Perfect Matching. It is also naturally
related to the determinant of an appropriately defined matrix. This relation between Pfaffian
and determinant is usually exploited to give a fast algorithm for computing Pfaffians.

We present the first completely combinatorial algorithm for computing the Pfaffian in
polynomial time. Our algorithm works over arbitrary commutative rings. Over integers, we
show that it can be computed in the complexity class GapL; this result was not known before.
Our proof techniques generalize the recent combinatorial characterization of determinant
[MV97] in novel ways.

As a corollary, we show that under reasonable encodings of a planar graph, Kasteleyn’s
algorithm [Kas67] for counting the number of perfect matchings in a planar graph is also
in GapL. The combinatorial characterization of Pfaffian also makes it possible to directly
establish several algorithmic and complexity theoretic results on Perfect Matching which
otherwise use determinants in a roundabout way.

We also present hardness results for computing the Pfaffian of an integer skew-symmetric
matrix. We show that this is hard for ]L and GapL under logspace many-one reductions.

1 Introduction

The main result of this paper is a combinatorial algorithm for computing the Pfaffian of an
oriented graph. This is similar in spirit to a recent result of Mahajan & Vinay [MV97] who give
a combinatorial algorithm for computing the determinant of a matrix. In complexity theoretic
terms, we establish that computing the Pfaffian of a graph is in the class GapL.

GapL is the class of functions that are logspace reducible to computing the integer determinant
of a matrix. It is known that computing the determinant of a matrix is equivalent to taking
the difference of two ]L functions [Vin91, Dam91, Val92, Tod91]. In other words, GapL is the

1An extended abstract describing most of these results appeared in the Proceedings of the Fifth Annual
International Computing and Combinatorics Conference COCOON 1999, in the Springer-Verlag Lecture Notes
in Computer Science series Volume 1627, pp. 134–143.

2Part of this work was done when this author was supported by the NSF grant CCR-9734918 on a visit to
Rutgers University during summer 1999.

3This work was initiated when this author was visiting DIMACS at Rutgers University during summer 1998.
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class of functions that can be expressed as the difference in the number of accepting paths of
two nondeterministic logspace machines. They define a space analog of the important counting
classes GapP and ]P.

Pfaffians are intimately connected to determinants. For example, it is known that the square
of the Pfaffian of a graph is equal to the determinant of a related matrix. This is, however, not
adequate to imply our GapL algorithm as we do not know if GapL is closed under square roots
(of positive integers).

One of the motivations for this work is to understand the complexity of Perfect Matching.
Perfect Matching is not known to be in NC, but is known to be in RNC [MVV87]. This result
has been recently improved by Allender & Reinhardt [AlRe98] who show that Perfect Matching
is in the class SPL (non-uniformly). (SPL is that subclass of GapL where functions take the
value 0 or 1. Refer to [AlRe98] for details.) Interestingly, Allender & Reinhardt make use of
the Mahajan-Vinay clow sequences [MV97] critically to establish their result. We hope that
our combinatorial characterization of Pfaffian will be a key in resolving the vexed question of
the complexity of Perfect Matching. This is indeed our main motivation for this work.

Pfaffians arise naturally in the study of matchings; the pfaffian of an oriented graph is just the
sum over all possible perfect matchings except that each matching has an associated sign as
well, dictated by the orientation. This gives it a flavour similar to that of a determinant. In
the absence of the sign, they would calculate the number of perfect matchings in a graph, a
problem that is well-known to be complete for ]P [Val79]. Also, in the case of special graphs, it
is known that the graph may be oriented in such a way that all the terms of the pfaffian turn
out to be positive. This obviously means there would be no cancellation and hence the pfaffian
would count the number of perfect matchings in the underlying graph. Such orientations of
graphs are called Pfaffian orientations.

It is easy to construct graphs which do not admit a pfaffian orientation;K3,3 is one such graph. A
celebrated result of Kasteleyn [Kas67] proves that all planar graphs admit a pfaffian orientation.
This result was subsequently improved by [Lit74] who showed that all K3,3-free graphs admit
a pfaffian orientation. Finding such an orientation was shown to be in NC by Vazirani [Vaz89].
In this paper, we partially improve Vazirani’s result to show that for planar graphs presented
by reasonable encodings, a pfaffian orientation can be found in L. Combining this with our
combinatorial algorithm for pfaffians, we thus show that under reasonable encodings of planar
graphs, the problem of counting the number of perfect matchings in a planar graph is in GapL
as well. The problem of extending our result to K3,3-free graphs remains to be investigated.

In section 2, a few preliminaries and definitions are stated. In section 3, we set up the combina-
torial framework for pfaffians. Section 4 focuses on the combinatorial algorithm for computing
Pfaffians. We show in section 5 that finding pfaffian orientations of planar graphs is in L, and
hence counting the number of perfect matchings in a planar graph, is in GapL. In section 6 we
show that computing the Pfaffian of an integer skew-symmetric matrix is hard for both ]L and
GapL.
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2 Preliminaries & Definitions

Let D be an n × n matrix. Sn is the permutation group on {1, 2, . . . , n} (denoted [n]). The
permanent and determinant of D, per(D) and det(D), are defined as,

per(D) =
∑

σ∈Sn

∏

i

diσ(i) det(D) =
∑

σ∈Sn
sgn(σ)

∏

i

diσ(i)

where sgn(σ) is −1 if σ has an odd number of inversions, +1 otherwise. An equivalent definition
of the sign of a permutation is in terms of the number of cycles in its cycle decomposition.

We associate with the matrix D the graph GD, which is the complete directed graph on n
vertices (with self-loops), having the matrix elements as edge weights. Every permutation
σ ∈ Sn can be decomposed into a set of cycles in GD. The cycles are non-intersecting (i.e.
simple), disjoint and they cover every vertex in the graph, i.e. these are cycle covers. The
sign of a cycle cover is defined in terms of the number of even length cycles constituting it. The
sign is +1 if there are an even number of such cycles, else it is −1.

A clow in GD is a walk that starts at some vertex (called head), visits vertices larger than the
head any number of times, and returns to the head. This cycle in GD is not always a simple
cycle. Formally,

Definition 1 [MV97]

1. A clow is an ordered sequence of edges C = 〈e1, e2, . . . , em〉 such that ei = 〈vi, vi+1〉 and
em = 〈vm, v1〉, v1 6= vj for j ∈ {2, 3, . . . , m} and v1 = min{v1, . . . , vm}. The vertex v1

is called the head of the clow and denoted h(C). The length of the clow is |C| = m, and
the weight of the clow is wt(C) =

∏m
i=1wt(ei). [Note: C = 〈e〉 where e = 〈v, v〉, i.e. a

self-loop, is also a clow, of length one.]

2. A clow sequence is an ordered sequence of clows C = (C1, . . . , Ck) such that h(C1) <
. . . < h(Ck) and

∑k
i=1 |Ci| = n.

Pfaffians were introduced by Kasteleyn [Kas67] to count the number of dimer coverings of a
lattice graph. We define matchings and Pfaffians more formally.

Definition 2 Given an undirected graph G = (V,E) with V = {1, 2, . . . , n}, we define

1. A matching M, is a subset of the edges of G such that no two edges have a vertex
in common. That is, M ⊆ E(G) such that e1, e2 ∈ M, e1 = (i1, j1), e2 = (i2, j2) and
i1 = i2 ⇔ j1 = j2.

2. A matchingM is a perfect matching if every vertex i ∈ V (G) occurs as the end-point
of some edge in M.

Thus a perfect matching is a partition of the vertices of G into n
2 unordered pairs, where each

pair is an edge. We will in the sequel prove our results for graphs with integer weights on edges,
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although our results can easily be seen to hold over arbitrary commutative rings. The weight
of a matching is the product of the weights of its constituent edges.

Given an undirected graph G, assign orientations to edges of G to get a directed graph ~G. The
Tutte Matrix associated with ~G is the skew-symmetric adjacency matrix defined as

As( ~G)ij = w(i, j) if 〈i, j〉 is an edge in ~G

= −w(i, j) if 〈j, i〉 is an edge in ~G
= 0 if (i, j) is not an edge in G

Here w(i, j) refers to the weight of the undirected edge (i, j) in G.

(Note that a skew-symmetric matrix does not automatically give us an orientation unless we
assume that weights are non-negative, i.e. it does not precisely tell us the edge weights in the
underlying undirected graph.)

The pfaffian of a skew-symmetric matrix D, or equivalently, of an orientation of an undirected
graph, is defined as,

Pf(D) =
∑

M
p(M)

where the sum ranges over all perfect matchingsM. In order to define the pfaffian term, p(M),
corresponding to a perfect matchingM, we require a few preliminaries.

Let σ be a permutation in Sn. We can think of σ as representing the matching {〈σ(1), σ(2)〉,
〈σ(3), σ(4)〉, . . . , 〈σ(n − 1), σ(n)〉}. Several permutations correspond to a matching because
the edges in the matching are neither oriented nor ordered (in fact, there are exactly 2

n
2 · (n2 )!

permutations that represent a matching). The standard definition of the sign of a permutation
holds. That is, sgn(σ) is +1 if an even number of transpositions convert σ to the identity
matching, and −1 otherwise. The weight of the permutation is defined as

w(σ) =

n
2∏

i=1

Dσ(2i−1)σ(2i)

Consider a matchingM. Irrespective of which permutation σ one chooses to representM, the
term sgn(σ)w(σ) is invariant. That is, let σ and σ ′ both represent M. If σ differs from σ′ in
one edge being flipped, then the signs of the permutations are different but so are their weights.
If σ and σ′ differ in the arrangement of edges, then the number of transpositions to convert σ
to σ′ is even, and therefore their signs are the same.

So, the pfaffian term corresponding to a matching M is defined to be p(M) = sgn(σ)w(σ),
where σ is any permutation representing M.

The canonical permutation for any matchingM, denoted σM, is the permutation where edges
are from smaller to larger vertices and are listed in increasing order of the smaller vertices in
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each edge, i.e. σM(2l − 1) < σM(2l) for l = 1, . . . , n2 , and σM(1) < σM(3) < . . . < σM(n− 1).
Using these, the pfaffian of the skew-symmetric matrix D may be defined as

Pf(D) =
∑

M
sgn(σM) · w(σM)

where the sum ranges over all perfect matchingsM.

Consider the graph given in Figure 1. Distinct variables are used to represent the edge weights,
still unspecified. The associated matrix D for the graph is

D =




0 a b e
−a 0 c 0
−b −c 0 d
−e 0 −d 0




Possible
Matchings
(1 2) (3 4)
(1 4) (2 3)
(1 3) (2 4)

Terms

+1.a.d
+1.e.c
−1.b.0

Pf(D) = a · d+ c · e− 0 · b
= a · d+ c · e

Each Pfaffian term corresponds to a possible perfect matching in the graph. The non-vanishing
terms correspond to feasible perfect matchings.

2 3

41

e

c

a db

Figure 1: An Example Graph

2 3

41

Figure 2: An Oriented Example Graph

Fig 2 imposes an orientation on the graph in Fig 1. Assuming that all the edge weights are +1,
this amounts to assigning ±1 to the variables, and results in the matrix D given below. Now,
comparing per(D), det(D) and Pf(D), we have

D =




0 −1 1 1
1 0 1 0
−1 −1 0 −1
−1 0 1 0




per(D) = 2
det(D) = 4
Pf(D) = 2

Using Linear Algebra we can prove the following properties of skew symmetric matrices D.

• If D has an odd number of rows, then det(D) = 0.

• If D has an even number of rows, then det(D) = (Pf(D))2.

Let G be a directed acyclic graph with integer weights on its edges, and with three special
vertices s, t+ and t−. Consider a function f defined as,

f =
∑

ρ: s� t+

wt(ρ) −
∑

η: s� t−

wt(η)
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where ρ iterates over all paths from s to t+, η over all s to t− paths, and wt(ρ) or wt(η) is the
weight of the path (i.e. the product of the weights of all the edges on the path). GapL is precisely
the class of functions that can be formulated in this fashion. Stated somewhat differently, GapL
consists of those functions that are the difference of two ]L functions, where ]L is the counting
class for NL. As stated earlier, GapL is the class of languages logspace reducible to computing
the integer determinant. The Mahajan & Vinay GapL algorithm for the determinant [MV97]
formulates the determinant as described above. This GapL algorithm can be used to compute
det(D), viz. [Pf(D)]2. However, this does not immediately yield a GapL algorithm for the
Pfaffian itself, because GapL is not known to be closed under square roots.

Let F1 and F2 be perfect matchings in a graph G. Their superposition, F1 ∪ F2, is the graph
obtained by including all closed walks along edges alternately from F1 and F2. Start at a vertex
and walk along its matched edge in F1. Next, walk along an adjacent edge in F2. If this closes
a cycle, pick an unvisited vertex and start the closed walks on the remaining vertices. Else,
continue walking till there are no more matched edges. F1 ∪ F2 is a cycle cover of G where
each cycle is an alternating cycle and has even length. Note that each cycle in F1 ∪ F2 can be
routed in either of two possible directions. Generalizing Kasteleyn’s notation for cycle covers
on the regular 2-D lattice, we call the two possible routings clockwise and anti-clockwise. By
clockwise routing we mean that routing where the first vertex is the smallest vertex in the cycle
and the first edge of a cycle is picked from F1.

Suppose we impose an orientation on the edges of G to get a directed graph ~G. A cycle C
in F1 ∪ F2, when routed in any particular way, may traverse some edges according to their
orientation in ~G and some edges in a direction opposite to their orientation. C is said to have
an even orientation with respect to ~G if the number of properly oriented edges along any routing
of C is even. Otherwise, C has an odd orientation. As every cycle in the superposition of two
matchings is of even length, the orientation of a cycle is independent of the routing (clockwise
or anti-clockwise).

3 A Combinatorial Setting for Pfaffians

In this section, we build the combinatorial framework for pfaffians using a variant of clow
sequences. We also provide a new characterization for the sign of a pfaffian term. We shall
utilize this characterization in our combinatorial algorithm for computing pfaffians.

We will require a variant of a standard lemma (See Lemma 8.3.1 from [LovPlu86]) for the cases
when the edges have arbitrary integer weights.

Lemma 3 Let ~G be an arbitrary orientation of an undirected graph G. Let F1 and F2 be two
perfect matchings of G. Let k be the number of evenly oriented alternating cycles in F1 ∪ F2.
Then,

p(F1) · p(F2) = (−1)k · w(F1) · w(F2)
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Here w(F ) =
∏
e∈F w(e), where D is the skew-symmetric adjacency matrix of ~G, and if e =

(i, j), and ~G orients the edge (i, j) from i to j, then w(e) = Dij.

Sketch of Proof: F1 ∪ F2 consists of cycles of even length. Consider the case when F1 ∪ F2

consists of just one non-trivial cycle C. Choose the clockwise routing of C. Represent F1 and
F2 by those permutations π and τ respectively, where the edges in C are listed in the order in
which they appear in this clockwise routing, and the other edges are listed identically. Now it
is clear that to go from the permutation π to the permutation τ , we need an odd number of
transpositions. So the signs of these permutations are opposing.

(For instance, let F1 = (1, 2)(3, 4)(5, 6)(7, 8) and F2 = (1, 6)(2, 3)(4, 5)(7, 8). The cycle 123456

in F1 ∪ F2 implies

π =

(
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)
and τ =

(
1 2 3 4 5 6 7 8
2 3 4 5 6 1 7 8

)
.

In order to convert π to τ , 1 has to be moved right over five vertices.)

As regards the weights, the edges for trivial cycles contribute the same to the weights of both
permutations, and so the product is identical to the product of the weights of these edges in the
matchings. A non-trivial cycle contributes the remaining weight with a −1 thrown in for each
edge traversed wrongly. So, if the number of wrongly traversed edges is odd (i.e. the cycle is
oddly oriented with respect to ~G), then the net contribution is a −1 over and above the weights
of the matchings. i.e. w(π) ·w(τ) = −w(F1) ·w(F2). This −1 will nullify the corresponding −1
in the product of the signs. On the other hand, if the number of edges traversed wrongly is
even, then w(π) · w(τ) = w(F1) · w(F2), and the −1 in the sign is not nullified.

So, if the lone non-trivial cycle C in F1∪F2 is oddly oriented, then p(F1) ·p(F2) = w(F1) ·w(F2).
It is when C is evenly oriented that a −1 is introduced, i.e. p(F1) · p(F2) = −w(F1) · w(F2).
Extending this argument, it is evident that if there are several non-trivial cycles in F1 ∪ F2,
then a −1 is introduced by each evenly oriented cycle. This proves the lemma.

The idea is to compute all pfaffian terms of a skew-symmetric matrix D with respect to the
base matching I corresponding to the identity permutation. Consider the matching M and
its superposition with I. Given a skew-symmetric matrix D, select the orientation Gf where
each edge is oriented from its smaller endpoint to its larger endpoint. With respect to this
orientation, we will consider only canonical permutations to represent each matching. Using
Lemma 3, we can show the following.

Corollary 4

sgn(σM) = (−1)k

where k is the number of cycles in M∪ I that are evenly oriented with respect to Gf .
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Proof: From Lemma 3, we have

sgn(σM) · wt(σM) ·wt(σI) = [sgn(σM) · wt(σM)] · [sgn(σI) ·wt(σI)]
= p(M) · p(I)
= (−1)k · wt(σM) · wt(σI)

Therefore, sgn(σM) = (−1)k.

We show another characterization of the sign of the canonical permutation of a partition.

Lemma 5
LetM be a partition of [n] into n

2 unordered pairs and σM be its canonical permutation. Let I
be the base partition corresponding to the identity permutation. LetM∪I have l cycles, and let
C denote the cycle cover obtained by the clockwise routing of each cycle in M∪I. The pfaffian
of a skew-symmetric matrix D is given by

Pf(D) =
∑

M
w(σM) · (−1)|{〈i,j〉 : 〈i,j〉 ∈ C, i<j}| + l

Proof: The standard way to characterize the sign of a pfaffian term is by the number of evenly
oriented cycles. The claim is that the number of cycles plus the number of properly oriented
edges also characterizes the sign.

Let C have k even cycles and m odd cycles with respect to the forward orientation; l = k +m.
Define E = {〈i, j〉 : 〈i, j〉 ∈ C, i < j}, the set of properly oriented edges. Let the contributions
to |E| from each of the even and odd oriented cycles be ei and oj for 1 ≤ ei ≤ k and 1 ≤ j ≤ m.
Thus |E| = ∑k

i=1 ei +
∑m
j=1 oj . Note that each ei is even and each oj is odd. Thus |E|+ l =∑k

i=1 ei +
∑m
j=1 oj + k + m =

∑k
i=1 ei +

∑m
j=1(oj + 1) + k ≡ k mod 2. Now the result follows

from Corollary 4.

Corollary 6
Let M be a partition and I be the identity permutation. The sign of M in the pfaffian is,

sgn(σM) = (−1)|FE|+|BO|+l

where l is the number of cycles in M∪I, C is the orientation of M∪I with each cycle routed
in the clockwise sense and, FE and RO are sets of edges of M defined as,

FE = {〈i, 2j〉 : 〈i, 2j〉 ∈ M∩ C, i < 2j }
RO = {〈i, 2j − 1〉 : 〈i, 2j − 1〉 ∈ M∩ C, i > 2j − 1 }
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Proof: Lemma 5 tells us that we need to keep track of the parity of properly oriented (i.e.
forward) edges in the clockwise routing of cycles in M∪I. Instead here, let us focus on the
edges of M alone, and hold an edge of M responsible for the following I edge. Each edge of
M contributes 0, 1 or 2 forward edges to M∪ I. For instance, suppose the clockwise routing
encounters edge 〈i, 2j−1〉 fromM, where i < 2j−1. Then it also encounters the edge 〈2j−1, 2j〉
from I, and both these edges are properly oriented. The other cases can be argued similarly.

Edge of M as in C condition no. of forward edges in C
〈i, 2j − 1〉 i < 2j − 1 2

〈i, 2j − 1〉 i > 2j − 1 1

〈i, 2j〉 i < 2j 1

〈i, 2j〉 i > 2j 0

So, to evaluate the parity of forward edges, it suffices to keep track of the edges for the middle
two cases, and none for the first and last cases. The sets FE and RO precisely do this.

We need a variant of clows called pclows4 for our combinatorial setting for pfaffians.

Definition 7

• A pair of edges E = (e1, e2) is a p-edge if for some i ∈ [1, n] either,

1. e1 = 〈i, 2j〉 and e2 = 〈2j, 2j-1〉, or

2. e1 = 〈i, 2j-1〉 and e2 = 〈2j-1, 2j〉.
• A pclow is a clow with its ordered sequence of edges being P = 〈E1, E2, . . . , Em〉
where each Ei is a p-edge. The length of the pclow is 2m. A pclow traversal begins
from its smallest vertex (called the head).

• A pclow sequence is an ordered sequence of pclows, P = 〈P1, . . . , Pk〉 with heads
in strictly increasing order, and with

∑k
i=1 |Pi| = n.

• Define the sign of a pclow sequence to be the parity of the number of evenly
oriented pclows (with respect to Gf ).

• The weight of a p-edge E = (e1, e2) is the weight of the edge e1 in its forward
direction, i.e. if e1 = (i, j), its weight is wij if i < j and wji otherwise. The second
edge, e2, always contributes a 1 to the weight of E. The weight of a pclow is the
product of the p-edge weights. The weight of a pclow sequence is the product of
the weights of its pclows.

Thus, if a pclow sequence P actually represents a perfect matching M, then its weight is
w(σM), and its sign is the sign of σM. The results of Lemma 5 and Corollary 6 generalize to
pclow sequences as well; Lemma 5 tells us that the sign of a pclow sequence is the parity of the
number of pclows in it plus the number of edges traversed in the forward direction.

4Pclows expand to Pfaffian Closed Walks and p-edge stands for pfaffian-edge.
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. . .
2j-1 2ji

Figure 3: Selecting 〈i, 2j − 1〉 from i.

2j-1 2ji . . .

Figure 4: Selecting 〈i, 2j〉 from i.

Figures 3 & 4 indicate the cases when a pair of consecutive edges are p-edges. Using pclow
sequences, we prove a novel and powerful characterization of the Pfaffian. This provides the
basis for our combinatorial algorithm for computing pfaffians.

Theorem 8

Pf(D) =
∑

W: pclow sequence

sgn(W) ·wt(W)

Proof: Pclow sequences that are cycle covers are the superposition of the base matching with a
perfect matching. We need to show that pclow sequences that are not cycle covers do not con-
tribute to the summation. We establish an involution on the set of pclow sequences. Non-cycle
covers get mapped onto non-cycle covers of opposite signs. The fixed points of the involution
are the cycle covers.

Our technique would be to pair a pclow sequence with another having the same set of edges but
with an opposite sign. Consequently, they cancel each other’s contribution to the summation.

Note that all pclows are, by definition, even in length. However, a given sequence could have
an odd length simple cycle in a pclow as shown in Fig 5 & 6. To pair such sequences, pick the
pclow with the smallest head that has an odd simple sub-cycle. Walk down this pclow from its
head, until you realize that you have gone around an odd cycle. Simply reverse the orientation
of all the edges in this cycle. This defines a new pclow sequence. Conversely, starting with the
new sequence, our mapping will consider the same (sub-)cycle and reversing its edges will give
us the old pclow sequence; so they pair. Their total contribution is zero, since reversing an odd
number of edges changes the parity of the number of properly oriented edges and so contributes
a negative sign. The pclows in Figures 5 & 6 are an example of the above bijection.

We are left with pclow sequences in which all sub-cycles in all pclows are even. Let P =
〈P1, . . . , Pk〉 be such a pclow sequence. Pick the smallest i such that Pi+1 to Pk are disjoint
simple cycles. If i = 0, then P is a cycle cover and P maps onto itself. Else, traverse Pi till one
of the following happens,

1. We hit a vertex that meets one of Pi+1 to Pk.

2. We hit a vertex that completes an even length simple cycle in Pi.

Let v be this vertex. Note that, these two conditions are mutually exclusive because of the way
we have traversed Pi. We never hit a vertex that simultaneously satisfies both the conditions.
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Figure 5: Pclow with odd sub-cycle Figure 6: Pclow with odd sub-cycle reversed

Case 1: Suppose v touches Pj . The successor edge of v in Pi must be from the base matching
(read ahead to see why). Let w be this vertex. If v is a odd numbered vertex, then w is v + 1;
otherwise, w is v − 1. Either, the predecessor or the successor of v in Pj has to be w. (If w
had been the predecessor of v in Pi, then we would have stopped our traversal at w itself.) The
orientation of the (v, w) edge in Pj gives rise to two cases.

1. If the edge in Pj is from v to w: (v,w) is identically oriented in Pi and Pj . We simply
stick Pj into Pi at v. Formally, map P to a pclow sequence

P ′ = 〈P1, . . . , Pi−1, P
′
i , Pi+1, . . . , Pj−1, Pj+1, . . .Pk〉

P ′i is obtained from Pi by inserting into it the simple cycle Pj at the first occurrence of
v. Figure 7 illustrates this case.

2. If the edge in Pj is from w to v: (v,w) has opposite orientations in Pi and Pj . We cannot
stick Pj into Pi as is, beause then Pi would lose the alternating property; it would use two
edges from the base matching consecutively. So first reverse the orientation of all edges
in Pj , and then insert this pclow into Pi. Figure 8 shows the mapping.

Pi
w

v

h v

w

Pj

h’

w

v
h

h’

P’i

Figure 7: Pi and Pj have (v,w) oriented the same way.

Case 2: Suppose v completes a simple cycle P in Pi. P must be disjoint from all the later
cycles. We modify the pclow sequence P by plucking out P from Pi and introducing it as a new
pclow. P ’s position will be to the right of Pi as Pi’s head would be smaller than P ’s. However,
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Pi
w

v

h
Pj

v

w

h’
h

v

w

h’

iP’

Figure 8: Pi and Pj have (v,w) oriented differently.

one additional change may be necessary. The definition of a p-edge demands that the out-going
edge from the head be a matched edge. This may not be so with P , in which case P is not
a valid pclow. However, merely reversing the orientations of all the edges in P gives a valid
pclow, which we then insert into an appropriate position.

We need to argue the correctness of these mappings. It should be clear that the new sequences
map back to the original sequences and hence the mapping is an involution. We now show
that the mapped pclow sequences have opposing signs, and as their weights are identical, they
cancel each other’s contribution.

Recall that the sign is characterized by the number of pclows and the number of properly
oriented edges. In finding the mapped sequences, we change the parity of the number of pclows.
The parity of the number of properly oriented edges remains unchanged, because the reversal of
a pclow or an even length sub-cycle preserves this. Thus, the mapped pclow sequences indeed
have opposing signs.

Pclow sequences arising from the superposition of the identity permutation with some perfect
matching map onto themselves. These are the sole survivors.

The above theorem and proof appear similar to Theorem 1 in [MV97]. After all, pclow sequences
are a subclass of clow sequences, and so one would expect that the cancellative involution over
clow sequences described in [MV97], or perhaps a slight modification, may be the desired
involution over pclow sequences. However, this is not the case. The definitions of the sign and
the weight of a pclow sequence are quite different from the corresponding definitions in [MV97],
and for this setting we need an altogether different involution. The major departure is reflected
in the way odd sub-cycles are handled.
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4 A Combinatorial Algorithm for Pfaffians

In this section we describe a combinatorial algorithm for computing the Pfaffian. We construct
a layered directed acyclic graph HD with three special vertices s, t+ and t−. We show that,

Pf(D) =
∑

ρ: s � t+

wt(ρ) −
∑

η: s � t−

wt(η)

In this model of computation, all s � t+ (s � t−) paths of positive (negative) sign are in 1-1
correspondence with pclow sequences of positive (negative) sign.

HD has the vertex set, {s, t+, t−} ∪ {[p, h, u, i]|p ∈ {0, 1}, h, u ∈ [1, n], i ∈ {0, . . . , n − 1} }. A
path from s to [p, h, u, i] indicates that in the pclow sequence being constructed along this path,
p is the parity of the pclow sequence, h is the head of the current pclow, u is the current vertex
on the pclow and i is the number of edges seen so far. A s � t+ (s � t−) path corresponds to
a pclow sequence having a positive (negative) sign.

HD has n layers and layer i has vertices of the form [ , , , i]. The edges from layer (2j-1) to
layer 2j are fixed and independent of D. The edges in HD are:

1. 〈s, [0, h, h, 0]〉 for h = 2i− 1, where i ∈ [1, n2 ]; edge weight is 1.

2. 〈[p, h, u, 2i], [p̄, h, v, 2i+ 1]〉, v > h, v > u, i ∈ [0, n2 − 1]; edge weight is duv.

3. 〈[p, h, u, 2i], [p, h, v, 2i+ 1]〉, v > h, v < u, i ∈ [0, n2 − 1]; edge weight is dvu.

4. 〈[p, h, 2j− 1, 2i− 1], [p̄, h, 2j, 2i]〉 if 2j − 1 > h, 2i < n; edge weight is 1.

5. 〈[p, h, 2j, 2i− 1], [p, h, 2j− 1, 2i]〉 if 2j − 1 > h, 2i < n; edge weight is 1.

6. 〈[p, h, h+ 1, 2i− 1], [p̄, h′, h′, 2i]〉 if h′ > h, h′ is odd, 2i < n; edge weight is 1.

7. 〈[0, h, h+ 1, n− 1], t−〉 and 〈[1, h, h+ 1, n− 1], t+〉 if h = 2i− 1, i ∈ [1, n2 ]; edge weight is 1.

Theorem 9
Given a n × n skew symmetric matrix D, let HD be the graph described above. Then,

Pf(D) =
∑

ρ: s � t+

wt(ρ)−
∑

η: s � t−

wt(η)

Proof: We show a one-to-one correspondence between s � t+ (s � t−) paths and pclow
sequences of positive (negative) sign. Then, from Theorem 8 the result is immediate.

We utilize our characterization of the sign of a pfaffian term as stated in Lemma 5.

Let W = 〈P1, . . . , Pk〉 be a pclow sequence. Let hi be the head of pclow Pi, ni the number of
forward edges in Pi, pi = (i +

∑i
j=1 nj)mod(2) the parity of the pclow sequence 〈P1, . . . , Pi〉,

and mi the total number of edges of the pclow sequence 〈P1, . . . , Pi〉. The path we construct
forW goes through the vertices [pi, hi+1, hi+1, mi]. We use an inductive argument to prove our
result.
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Suppose, after traversing 〈P1, . . . , Pi〉, we are at the vertex [pi, hi+1, hi+1, mi]. In order to
establish the inductive argument, it suffices to show that starting the traversal of Pi+1 from
this vertex, we will correctly reach [pi+1, hi+2, hi+2, mi+1].

Let Pi+1 = 〈hi+1, v1, . . . , vl〉. As Pi+1 is a valid pclow, there is an edge from [pi, hi+1, hi+1, mi] to
[pi, hi+1, v1, mi+1] inHD. As we traverse Pi+1, there will be vertices of the form [p, hi+1, vj, mi+
j] where p is the parity of pi and the number of forward edges upto vj in Pi+1. When we reach
the last vertex vl = hi+1 + 1 of Pi+1, we would have changed signs as many as ni+1 − 1 times.
The last edge of any pclow is always wrongly oriented and we reach [pi+1, hi+2, hi+2, mi+1].
Lemma 5 tells us that this is the proper way to calculate the sign of a pclow.

At layer n, depending on whether pn is +1 or −1, HD will have an edge to t+ or t−.

To show the other direction, consider a path s � t+. If we were to list out the path, it will be a
non-decreasing sequence with respect to the second component of each vertex. Segments having
the same second component correspond to a pclow whose head is the second component. The
number of parity changes along this segment will exactly equal the number of forward edges
along the path plus one. This generates a pclow sequence corresponding to the s � t+ path
and of even orientation parity. Similarly, each s � t− path corresponds to a pclow sequence of
odd orientation parity.

Using simple dynamic programming techniques we can evaluate Pf(D) in polynomial time. The
algorithm proceeds in n stages, where in the ith stage we compute the sum of the weighted paths
from s to any vertex x in layer i. Layer n has vertices t+ and t−, and we compute the difference
of the weighted paths from s to t+ and t−. This algorithm looks at an edge in HD once and
hence is a polynomial-time algorithm (O(n4) ring operations).

It is clear that we can parallelize the above computation and thus computing pfaffian is in NC.
Over integers, we can design an NL machine which nondeterministically traces out paths in HD;
the number of its accepting (rejecting, respectively) paths precisely computes

∑
ρ: s � t+ wt(ρ)

(
∑
η: s � t− wt(η) respectively). This is a GapL algorithm for computing the pfaffian. For

more details about the efficient parallel implementations and the GapL implementation, see
Sections 6.1 and 6.2 in [MV97], where similar algorithms for counting all clow sequences (with
a somewhat different definition of sign and weight) is described. Thus, the main results of this
section are:

Theorem 10 Computing the pfaffian of a skew-symmetric matrix over integers is in GapL.

Theorem 11 The Pfaffian of a skew-symmetric n× n matrix over any commutative ring can
be computed by an arithmetic circuit with O(n4) gates and depth O(logn). The gates of the
circuit are of two types: (1) unbounded fanin gates computing ring addition, and (2) bounded
fanin gates computing ring multiplication. Alternatively, the pfaffian can be computed by an
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OROW PRAM performing O(n6) work and running in O(log2 n) parallel time, assuming unit
cost per ring operation.

5 Finding admissible orientations for Planar graphs

Counting the number of perfect matchings in a graph requires:

1. Finding an admissible orientation of the graph.

2. Computing the Pfaffian of the associated matrix.

We know how to do the latter from the previous section. We also know that the general problem
of counting the number of perfect matchings in a graph is ]P-Complete. In this section, we
show that by restricting ourselves to planar graphs, we can find admissible orientations to them
in GapL. This means that counting perfect matchings in planar graphs is in GapL.

Definition 12 [Kas67] Given a skew symmetric matrix D,

1. An orientation of D is an assignment of signs to its matrix elements.

2. The orientation parity of a cycle is the number of edges that are correctly oriented with
respect to the underlying orientation on D.

3. An orientation is admissible if every superposition cycle has odd orientation parity.

Admissible orientations ensure that each pfaffian term is positive, and we end up computing
the number of perfect matchings in the graph. We show that an admissible orientation for a
planar graph can be found in GapL using a variant of Kasteleyn’s algorithm.

Lemma 13
Finding an admissible orientation of a planar graph is logspace reducible to the problem of

evaluating a parity tree.

Proof: We assume that the planar graph is so encoded that the faces seen so far form a simple
connected component (i.e. each face has at least one edge not shared with the earlier faces).5

This is required by Kasteleyn’s algorithm [Kas67] to uncover an admissible orientation, which
we now describe without proof. Start with any face and do the following,

1. Orient all unoriented edges except one arbitrarily.

2. For the last edge, pick an orientation so that the cycle has odd orientation parity when
traversed clockwise.

5One way of finding such an ordering of the faces, given any planar embedding, is described in [LovPlu86];
construct a spanning tree in the dual graph, and then enumerate the vertices of the dual in the order of their
distance from the tree center.

15



3. Continue if there are unoriented faces remaining. Pick an adjoining face such that this
face together with the other oriented faces form a simply connected region. Go to step 1.

Planar graphs have the property that no edge is common to more than two faces. We utilize
this property in our logspace reduction.

Suppose we are given the faces of the input planar graph. We can order them in many ways
as per the requirements of Kasteleyn’s algorithm. Fix one such ordering of the faces, say
C1, C2, . . . , Ck. With respect to this ordering and Kasteleyn’s scheme, each face can be uniquely
associated with an edge that has to have a specific orientation in order to maintain odd orien-
tation parity. We denote such an edge as the critical edge for the face with respect to the
face ordering. Figure 9 provides an illustration of critical edges associated with faces.

Consider a cycle Ci in Fig 9. There can be three types of edges on Ci that determine the
orientation of its critical edge.

1. Non-critical edges whose orientations were fixed in cycles Cj , j < i.

2. Critical edges from the earlier cycles Cj , j < i.

3. Unoriented (or fresh) edges other than the critical edge of Ci.

e1

C1

e1

e2 C2 e2

e3

C i

e3

e4

e5

Ck. . . . . .

dependent edge
critical edge

Figure 9: Critical Edges associated with each cycle

We have reformulated the problem of finding an admissible orientation to a planar graph to
one of finding the orientations of critical edges so that each face has an odd number of properly
oriented edges. Let us pick a cycle and find the orientation for its critical edge.

• Non-critical edges: As their orientations are fixed, we need know the parity of those
among them that are properly oriented.

• Fresh edges: We orient these clockwise, and hence we need to know the parity of
such edges.
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• Critical edges: The orientations of these are fixed in earlier cycles. The difference
being that we need to recompute them. Once computed, we take their parity.

Computing the orientation of the critical edge of a cycle requires us to know the parity of the
properly oriented edges in the cycle. During this computation, on encountering a critical edge
of an earlier cycle, its orientation is the outcome of another parity computation on the edges
constituting its cycle. This structure repeats along every critical edge to give us a computation
graph. We shall show that this graph is actually a tree where every internal node is a parity
node. Figure 10 illustrates this structure.

non-critical edges

...

... ...

critical edges

e1 e2

e3

Figure 10: Parity Tree for finding the orientation of critical edges on cycles

Let ej be the critical edge of an earlier face Cj appearing in face Ci (i.e. j < i). Finding ej ’s
orientation requires us to do a parity on the properly oriented edges in Cj . Consider some
other critical edge el also appearing in Ci. The computation path from Ci along the parity
node corresponding to el will never encounter ej . This is because our input is a planar graph,
and hence an edge is common to at most two faces. Therefore, all paths from a parity node are
non-intersecting, and we have our parity tree.

We need to show that this is a logspace reduction. Note that we are assuming that the input is
nicely encoded. Determining whether the current edge of a face is critical, non-critical or fresh
can be easily done in logspace by scanning the preceding input. Therefore, given a parity node
of the tree, we can identify the incoming arcs to it within logspace.

We deviate from Kasteleyn’s scheme of identifying the critical edge on a cycle. We make the
first unoriented edge on a cycle as the critical edge. By doing this, things are simpler because
we now do not need to spend valuable computational resources to identify the last edge on the
cycle.
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We now show that parity tree evaluation itself is not a problem of high complexity; in fact

Lemma 14
Parity Tree Evaluation can be done in logspace.

Proof: Parity is associative and commutative. Evaluating the parity of a sequence of elements
requires one to remember only the parity of the elements seen so far. Hence, the parity tree
can be collapsed. The parity of the leaves is therefore that of the tree. Systematically finding
these leaves can be done by a logspace machine.

From Theorem 10 and lemmas 13 and 14, we have

Theorem 15
Given a planar graph G, counting the number of perfect matchings in G can be done within

GapL.

6 Hardness of the Pfaffian

We complete our tour of computing the Pfaffian of an integer skew-symmetric matrix by pin-
pointing its hardness. We show that this problem is ]L-Hard and GapL-Hard.

Theorem 16 Computing the pfaffian of a skew-symmetric integer matrix is hard for #L. (In
fact, all entries of the matrix are from {0,+1,−1}.)

Proof: We will show a reduction from the following canonical #L-complete problem.

Instance: A directed acyclic graph G, with vertices numbered {0, 1, 2, . . . , n} and all edges
directed from i to j, j > i.

Question: Find the number of paths from vertex 0 to vertex n in G.

The following is a reduction from the above problem to that of counting perfect matchings.
(Chandra, Stockmeyer and Vishkin [CSV84] describe a reduction from directed s, t connectiv-
ity to testing for the existence of a perfect matching, and attribute part of the construction
independently to Feather and Pippenger. The reduction below is essentially the same, and is
easily seen to be parsimonious.) Construct an undirected graph H from G as follows.

• Retain vertex 0 and replace each i, 1 ≤ i ≤ n − 1 by two vertices 2i− 1 and 2i.

• Replace vertex n with a new vertex 2n − 1.

• For any edge 〈i, j〉 in G, insert an edge 〈2i, 2j− 1〉 in H .
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Claim 17 Paths in G from 0 to n are in 1-1 correspondence with perfect matchings in H.

Claim 18 The forward orientation on H (i.e. all edges H are oriented to go from a smaller to
a larger vertex), denoted Hf , is a pfaffian orientation.

Claim 19 Computing the pfaffian of the skew-symmetric adjacency matrix of H f is hard for
#L.

Claim 17 is easy to see. There is only one way to convert a 0 to n path in G into a matching
in H and vice-versa. Claim 19 basically rephrases Claim 18. We shall prove Claim 18.

Let M be a matching in H . Consider the following scheme for choosing a permutation to
represent M.

• List the edges of the path in G corresponding to M.

• List these out in the order in which they appear in G.

• List the remaining edges of M in increasing order of vertices.

• Sort the complete list of edges based on the first vertex of each edge.

To illustrate, consider the graph G shown in Figure 11 with n = 8. The path in G corresponding
to the matching in H is 0 → 2 → 4 → 7 → 8. The matched edges listed in sequence for the
path are 0-3, 4-7, 8-13, 14-15. Appending the remaining edges and then sorting the whole
list based on the smaller vertex of each edge, we get the sequence 0-3 1-2 4-7 5-6 8-13 9-10
11-12 14-15. This is the permutation chosen for the matching.

0

5 7

8

9

10

11

12

13

14
2

31

64 15

1 4 5 6
7 83

0
2

G

H

Figure 11: Example for the reduction from st-path to perfect matchings

As all the edges are forward going, the sign of the permutation comes only from transpositions.
How many transpositions are needed to reach identity? Look only at the destination vertices
of the path edges. Each one of these will need to be moved over an even number (maybe, 0)
of non-path edge vertices. Therefore, moving each one of these destination vertices to their
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correct place requires on the whole an even number of transpositions. Hence the sign of the
permutation, and therefore the sign of each pfaffian term, is positive.

Theorem 20 Computing the pfaffian of a skew-symmetric integer matrix is hard for GapL. (In
fact, all entries of the matrix are from {0,+1,−1}.)

Proof: We use a construction that is similar to the one in Theorem 16. The canonical GapL-
complete problem from which we show the reduction is,

Instance: A directed acyclic graph G, with vertices numbered {0, 1, 2, . . . , n, n + 1} and
all edges directed from i to j, j > i.

Question: Find p− q, where
p = The number of paths in G from vertex 0 to vertex n + 1.
q = The number of paths in G from vertex 0 to vertex n.

(Without loss of generality, we can assume that there is no edge from n to n + 1.)

We construct the undirected graph H as in Theorem 16 with a few changes.

• Vertex 0 goes to 0 and each i ∈ {1, 2, . . . , n− 1} goes to 2i− 1 and 2i.

• Vertex n goes to 2n− 1, vertex n+ 1 goes to 2n+ 1 and introduce a new vertex 2n.

• Include edges as in the construction of Theorem 16.

• Introduce 2 new edges, e = 〈2n− 1, 2n〉 and f = 〈2n+ 1, 2n〉. Note that the edge f
is not forward.

The orientation of H that we will use is: all edges of H except f are forward edges. A matching
M in H will be represented by the permutation using the same scheme as in Theorem 16 except
for the edges e and f . Any matching will use precisely one of e or f . This edge is enumerated
last in the permutation depending on its orientation.

For instance, consider the situation when n = 8 and the matching in H corresponds to the
positive path 0-2-4-7-9. We can list the matching M and the permutation σM chosen to
represent it as,

M = 0-3 4-7 8-13 14-17 1-2 5-6 9-10 11-12 15-16
σM = 0-3 1-2 4-7 5-6 8-13 9-10 11-12 14-17 15-16

Let a negative path be 0-2-4-7-8. The corresponding matching and permutation are,

M′ = 0-3 4-7 8-13 14-15 1-2 5-6 9-10 11-12 17-16
σM′ = 0-3 1-2 4-7 5-6 8-13 9-10 11-12 14-15 17-16
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Every 0 to (n+1) path in G gives a matching as earlier plus the forward edge e. The additional
transpositions required here are for moving 2n+1 right over edge e, i.e. two extra transpositions.
Therefore, the pfaffian term is positive.

On the other hand, every 0 to n path in G also gives a matching as earlier plus the reverse
edge f . We get back the identity with just one additional transposition, the one to rewrite the
vertices of f forward. Therefore, the pfaffian term is negative.

7 Discussion

We have shown that given a “reasonable” encoding of a planar graph, counting the number of
perfect matchings in it is in GapL. However, accepted versions of “reasonableness” differ. What
would be more satisfying is to know the complexity of counting the number of perfect matchings
in a graph, given that the graph is planar. A relaxed version of this would also give some planar
embedding of the graph, though not necesarily one suitable for the above algorithm.

A related question that immedately arises is: what is the complexity of planarity testing itself?
Can this be done in GapL? The best known result so far is that planarity testing can be done
on a CRCW PRAM in O(logn) time [RR94], and hence is in AC1.

Of course, the big question still remains open: what exactly is the complexity of both the
decision and counting versions of perfect matchings?
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