Electronic Colloquium on Computational Complexity, Report No. 31 (1999)

Towards the Notion of Stability of Approximation for
Hard Optimization Tasks and the Traveling Salesman
Problem

Hans-Joachim Bockenhauer Juraj Hromkovi¢ Ralf Klasing
Sebastian Seibert Walter Unger

{hjb,jh,rak,seibert,quax}@il.informatik.rwth-aachen.de
Lehrstuhl fiir Informatik I (Algorithmen und Komplexitét)
RWTH Aachen, 52056 Aachen, Germany
Fax: ++449 +241 - 8888 216

September 2, 1999

Abstract

The investigation of the possibility to efficiently compute approximations
of hard optimization problems is one of the central and most fruitful areas of
current algorithm and complexity theory. The aim of this paper is twofold.
First, we introduce the notion of stability of approximation algorithms. This
notion is shown to be of practical as well as of theoretical importance, especially
for the real understanding of the applicability of approximation algorithms and
for the determination of the border between easy instances and hard instances
of optimization problems that do not admit polynomial-time approximation.

Secondly, we apply our concept to the study of the traveling salesman prob-
lem. We show how to modify the Christofides algorithm for A-TSP to obtain
efficient approximation algorithms with constant approximation ratio for every
instance of TSP that violates the triangle inequality by a multiplicative constant
factor. This improves the result of Andreae and Bandelt [AB95].

Keywords: Stability of approximation, Traveling Salesman Problem

1 Introduction

Immediately after introducing NP-hardness (completeness) [Co71] as a concept for
proving intractability of computing problems, the following question has been posed:
If an optimization problem does not admit an efficiently computable optimal solu-
tion, is there a possibility to efficiently compute at least an approximation of the
optimal solution? Several researchers [Jo74], [Lo75], [Chr76], [IK75] provided already
in the middle of the seventies a positive answer for some optimization problems. It is
a fascinating effect if one can jump from exponential complexity (a huge inevitable

t of physical work) to pol ial lexity (tractabl t of physical
amount of physical work) to polynomial complexity (tractable amount of p ysical o o0
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work) due to a small change in the requirements — instead of an exact optimal solu-
tion one demands a solution whose cost differs from the cost of an optimal solution
by at most €% of the cost of an optimal solution for some & > 0. This effect is
very strong, especially, if one considers problems for which this approximation con-
cept works for any relative difference ¢ (see the concept of approximation schemes in
[IK75], [MPS98], [Pa94], [BC93]). This is also the reason why currently optimization
problems are considered to be tractable if there exist randomized polynomial-time
approximation algorithms that solve them with a reasonable approximation ratio.
In what follows an a-approximation algorithm for a minimization [maximization]
problem is any algorithm that provides feasible solutions whose cost divided by the
cost of optimal solutions is at most « [is at least 1].

There is also another possibility to jump from NP to P. Namely, to consider the
subset of inputs with a special, nice property instead of the whole set of inputs for
which the problem is well-defined. A nice example is the Traveling Salesman Problem
(TSP). TSP is not only NP-hard, but also the search for an approximate solution
for TSP is NP-hard for every constant approximation ratio.! But if one considers
TSP for inputs satisfying the triangle inequality (so called A-TSP), one can even
design a polynomial-time %—approximation algorithm [Chr76]. The situation is even
more interesting if one considers the Euclidean TSP, where the distances between
the nodes correspond to the distances in the Euclidean metrics. The Euclidean
TSP is NP-hard [Pa77], but for every a > 1 one can design a polynomial-time a-
approximation algorithm [Ar96], [Mi96]. Moreover, if one allows randomization the
resulting approximation algorithm works in n - (logy 7)°®) time [Ar97].2 This is the
reason why we propose again to revise the notion of tractability especially because
of the standard definition of complexity as the worst-case complexity: Our aim is
to try to separate the easy instances from the hard instances of every computing
problem considered to be intractable. In fact, by our concept, we want to attack the
definition of complexity as the worst-case complexity. The approximation ratio of an
algorithm is also defined in a worst-case manner. Our idea is to split the set of input
instances of the given problem into possibly infinitely many subclasses according to
the hardness of their approximability, and to have an efficient algorithm for deciding
the membership of any problem instance to one of the subclasses considered. To
achieve this goal we introduce the concept of approximation stability.

Informally, one can describe the idea of our concept by the following scenario.
One has an optimization problem for two sets of inputs L; and Ly, Ly C Ly. For
L, there exists a polynomial-time J-approximation algorithm A for some § > 1,
but for Ly there is no polynomial-time y-approximation algorithm for any v > 1
(if NP is not equal to P). We pose the following question: Is the use of algorithm
A really restricted to inputs from L;7 Let us consider a distance measure d in Lo
determining the distance d(x) between L; and any given input z € Ly — Ly. Now,
one can consider an input z € Ly — L; with d(z) < k for some positive real k.
One can look for how “good” the algorithm A is for the input x € Lo — L;. If
for every k > 0 and every z with d(z) < k, A computes a 7 s-approximation of

'Even no f(n)-approximation algorithm exists for f exponential in the input size n.

2Obviously, there are many similar examples where with restricting the set of inputs one crosses
the border between decidability and undecidability (Post Correspondence Problem) or the border
between P and NP (SAT and 2-SAT, or vertex cover problem).
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an optimal solution for x (s is considered to be a constant depending on & and §
only), then one can say that A is “(approximation) stable” according to the distance
measure d. Obviously, such a concept enables to show positive results extending the
applicability of known approximation algorithms. On the other hand it can help
to show the boundaries of the use of approximation algorithms and possibly even a
new kind of hardness of optimization problems.

Observe that the idea of the concept of approximation stability is similar to that
of stability of numerical algorithms. Instead of observing the size of the change of
the output value according to a small change of the input value, one looks for the
size of the change of the approximation ratio according to a small change in the
specification of the set of consistent input instances.

To demonstrate the applicability of our new approach we consider TSP, A-TSP,
and, for every real 8 > 1, Ag-TSP containing all input instances with cost(u,v) <
B-(cost(u,x)+cost(z,v)) for all vertices u, v, z. If an input is consistent for Az-TSP
we say that its distance to A-TSP is at most § — 1. We will show that known ap-
proximation algorithms for A-TSP are unstable according to this distance measure.
But we will find a way how to modify the Christofides algorithm in order to obtain
approximation algorithms for A-TSP that are stable according to this distance mea-
sure. So, this effort results in a (3 - 3%)-approximation algorithm for Ag-TSP.3 This
improves the result of Andreae and Bandelt [AB95] who presented a (342 + 20)-
approximation algorithm for Ag-TSP. Our approach essentially differs from that of
[AB95], because in order to design our (3 - 3?)-approximation algorithm we modify
the Christofides algorithm while Andreae and Bandelt obtain their approximation
ratio by modifying the original 2-approximation algorithm for A-TSP.

Note that, after this paper was written, we got the information about the inde-
pendent, unpublished result of Bender and Chekuri, accepted for WADS’99 [BC99].
They designed a 4(3-approximation algorithm which can be seen as a modification
of the 2-approximation algorithm for Ag-TSP. Despite this nice result, there are
three reasons to consider our algorithm. First, our algorithm provides a better ap-
proximation ratio for § < %. Secondly, in the previous work [AB95], the authors
claim that the Christofides algorithm cannot be modified in order to get a stable
(in our terminology) algorithm for TSP, and our result disproves this conjecture.
This is especially of practical importance, since for instances where the triangle
inequality is violated only by a few edge costs, one can expect that the approxima-
tion ratio will be as in the underlying algorithm with a high probability. Finally,
our algorithm is a practical O(n?)-algorithm. This cannot be said about the 4/-
approximation algorithm from [BC99]. The first part of the latter algorithm is a
2-approximation algorithm for finding minimal two-connected subgraphs with time
complexity O(n*). For the second part, constructing a Hamiltonian tour in S? (if
S was the two-connected subgraph), there exist only proofs saying that it can be
implemented in polynomial time, but no low-degree polynomial upper bound on the
time complexity of these procedures has been established.

This paper is organized as follows: In Section 2 we introduce our concept of

3Note that in this way we obtain an approximate solution to every problem instance of TSP,
where the approximation ratio depends on the distance of this problem instance to A-TSP. Following
the discussion in [Ar96] about typical properties of real problem instances of TSP our approximation
algorithm working in O(n?) time is of practical relevance.
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approximation stability. In Section 3 we show how to apply our concept in the study
of the TSP, and in Section 4 we discuss the potential applicability and usefulness of
our concept.

2 Definition of the Stability of Approximation Algo-
rithms

We assume that the reader is familiar with the basic concepts and notions of al-
gorithmics and complexity theory as presented in standard textbooks like [BC93],
[CLRY0], [GJ79], [Ho96], [Pa94]. Next, we give a new definition of the notion of an
optimization problem. The reason to do this is to obtain the possibility to study
the influence of the input sets on the hardness of the problem considered. Let
N = {0,1,2,... } be the set of nonnegative integers, let R be the set of positive
reals, and let RZ® be the set of all reals greater than or equal to a for some a € R.

Definition 1 An optimization problem U is a 7-tuple U = (X, Xp, L, Ly,
M, cost, goal), where

1. X is an alphabet called input alphabet,

2. Yo is an alphabet called output alphabet,

3. L C X7 is a language over X called the language of consistent inputs,
4. Ly C L is a language over Y called the language of actual inputs,

5. M is a function from L to 2¥0, where, for every z € L, M(z) is called the set
of feasible solutions for the input x,

6. cost is a function, called cost function, from J,.; M(z) x L; to R*?,

N

. goal € {minimum, mazimums}.
For every z € L, we define
Outputy (z) = {y € M(x)|cost(y,z) = goal{cost(z,x)|z € M(z)}}

and
Opty(x) = cost(y,z) for some y € Outputy(x).

O

Clearly, the meaning for ¥, 3o, M, cost and goal is the usual one. L may be
considered as the set of consistent inputs, i.e., the inputs for which the optimization
problem is consistently defined. Ly is the set of inputs considered and only these
inputs are taken into account when one determines the complexity of the optimiza-
tion problem U. This kind of definition is useful for considering the complexity of
optimization problems parameterized according to their languages of actual inputs.
In what follows, Language(U) denotes the language L of actual inputs of U. If
the input z is fixed, we usually use cost(y) instead of cost(y, z) in what follows.
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Definition 2 Let U = (X}, Yo, L, L;, M, cost, goal) be an optimization problem.
We say that an algorithm A is a consistent algorithm for U if, for every input
x € Ly, A computes an output A(z) € M(z). We say that A solves U if, for every
x € Ly, A computes an output A(z) from Outputy(z). The time complexity of A is
defined as the function

Timea(n) = max{Timea(z)|z € Ly N X7}

from N to N, where T'ime () is the length of the computation of A on z.
O

Next, we give the definitions of standard notions in the area of approximation
algorithms (see e.g. [CK98], [Ho96]).

Definition 3 Let U = (21,0, L, L1, M, cost, goal) be an optimization problem,
and let A be a consistent algorithm for U. For every = € Lj, the approximation
ratio Ra(x) is defined as

RA(w)zmax{COS“A(x)) Opty (z) }

Opty(z) ’ cost(A(z))
For any n € N, we define the approximation ratio of A as
Ra(n) = max{R4(x)|z € Ly N X7}

For any positive real § > 1, we say that A is a J-approximation algorithm for
U if Ry(z) < ¢ for every z € Lj.

For every function f : N — R>!, we say that A is an f(n)-approximation algo-
rithm for U if Ra(n) < f(n) for every n € N.

O

In what follows, we consider the standard definitions of the classes NPO, PO,
APX (see e.g. [Ho96],[MPS98]). In order to define the notion of stability of approxi-
mation algorithms we need to consider something like a distance between a language
L and a word outside L.

Definition 4 Let U = (31, o, L, L1, M, cost, goal) and U = (%1, Zp, L, L,
M, cost, goal) be two optimization problems with Ly C L. A distance function
for U according to Lj is any function hy, : L — R>? satisfying the properties

1. hr(z) = 0 for every z € Ly, and
2. hy can be computed in polynomial time.
Let h be a distance function for U according to L;. We define, for any r € R,
Ball, p(Ly) = {w € L|h(w) < r}.

Let A be a consistent algorithm for U, and let A be an e-approximation algorithm
for U for some ¢ € R>1. Let p be a positive real. We say that A is p-stable
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according to h if, for every real 0 < r < p, there exists a d, . € R>! such that A is
a 0, .-approximation algorithm for U, = (X1, Zo, L, Ball,,(Lr), M, cost, goal).*
A is stable according to h if A is p-stable according to h for every p € RT. We
say that A is unstable according to h if A is not p-stable for any p € R*.

For every positive integer r, and every function f, : N — R>! we say that A is
(v, fr(n))-quasistable according to h if A is an f,(n)-approximation algorithm
for U, = (31, Lo, L, Ball, ;,(L1), M, cost, goal).

Od

A discussion about the potential usefulness of our concept is given in the last
section. In the next section we show a transparent application of our concept for
TSP.

3 Stability of Approximation Algorithms and TSP

We consider the well-known TSP problem (see e.g. [LLRS85]) that is in its general
form very hard for approximation. But if one considers complete graphs in which
the triangle inequality holds, then we have a %-approximation algorithm due to
Christofides [Chr76]. So, this is a suitable starting point for the application of our
approach based on approximation stability. First, we define two natural distance
measures and show that the Christofides algorithm is stable according to one of
them, but not according to the second one. This leads to the development of a new
algorithm, PMCA, for Ag-TSP. This algorithm is achieved by modifying Christofides
algorithm in such a way that the resulting algorithm is stable according to the second
distance measure, too. In this way, we obtain a (2 (1+r)?)-approximation algorithm
for every input instance of TSP with the distance at most r from Language(A-
TSP), i.e. with cost(u,v) < (14 7) - (cost(u,w) + cost(w,v)) for every three nodes
u,v,w. This improves the result of Andreae and Bandelt [AB95] who achieved
approximation ratio (14 r)? + (1 +r).

To start our investigation, we concisely review two well-known algorithms for A-
TSP: the 2-approximative algorithm 2APPR and the %—approximative Christofides
algorithm [Chr76], [Ho96].

Algorithm 2APPR

Input: A complete graph G = (V, E) with a cost function cost : E — R>? satisfying
the triangle inequality (for every u,v,q € V, cost(u,v) < cost(u,q) + cost(q,v)).

Step 1: Construct a minimal spanning tree T of G. (The cost of T is surely smaller
than the cost of the optimal Hamiltonian tour.)

Step 2: Construct a Eulerian tour D on T going twice via every edge of T. (The cost
of D is exactly twice the cost of T'.)

Step 3: Construct a Hamiltonian tour H from D by avoiding the repetition of nodes in
the Eulerian tour. (In fact, H is the permutation of nodes of G, where the order
of a node v is given by the first occurrence of v in D.)

4Note that .. is a constant depending on r and & only.
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Output: H.

Christofides Algorithm

Input: A complete graph G = (V, E) with a cost function cost : E — R?? satisfying
the triangle inequality.

Step 1: Construct a minimal spanning tree T' of G and find a matching M with minimal
cost (at most 3 of the cost of the optimal Hamiltonian tour) on the nodes of T
with odd degree.

Step 2: Construct a Eulerian tour D on G' =T U M.

Step 3: Construct a Hamiltonian tour H from D by avoiding the repetition of nodes
in the Eulerian tour.

Output: H.

Since the triangle inequality holds and Step 3 in both algorithms is realized by
repeatedly shortening a path x, u1,... ,um,y by the edge (z,y) (because uy,... ,un
have already occurred before in the prefix of D) the cost of H is at most the cost
of D. Thus, the crucial point for the success of 2APPR, and Christofides algorithm
is the triangle inequality. A reasonable possibility to search for an extension of the
application of these algorithms is to look for inputs that “almost” satisfy the triangle
inequality. In what follows we do this in two different ways.

Let A-TSP = (X7, X0, L, L1, M, cost, minimum) be a representation of the TSP
with triangle inequality. We may assume X7 = ¥p = {0, 1,#}, L contains codes of
all cost functions for edges of complete graphs, and L; contains codes of cost func-
tions that satisfy the triangle inequality. Let, for every z € L, G, = (V,, E,, cost;)
be the complete weighted graph coded by z. Obviously, the Christofides algorithm
is consistent for (X7, X0, L, L, M, cost, minimum).

Let A114-TSP = (X1,%0, L, Ball, 4(L1), M, cost, minimum) for any r € RT
and for any distance function d for A-TSP. We define for every z € L,

. cost(u,v
dist(r) = max {O,max {cost(u,p) -(I-coit(p,v) —1|u,v,p € Vgc}} ,
and
distance(r) = max {O,max{ — cost(u, v) —1|u,v €V,
> iny cost(pi, pit1)
and u = p1,p2,... ,Pm+1 = v is a simple path between

u and v in Gm}}

Since the distance measure dist is the most important for us we will use the notation
Ap-TSP instead of Ag 4is-TSP. For simplicity we consider the size of z as the
number of nodes of G, instead of |z|. We observe that for every 5 > 1 the inputs
from Apg 4is+-TSP have the property cost(u,v) < - (cost(u,z) + cost(z,v)) for all
u,v,z (B=14r).

Lemma 1 The 2APPR and Christofides algorithm are stable according to distance.
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Proof. We present the proof for the algorithm 2APPR only. Let z €
Bally gistance(L1) for an r € RT. Let D, be the Eulerian tour corresponding to the
moves of DFS in Step 2. Observe that D, goes twice via every edge of the minimal
spanning tree 7T'. Since the cost of T is smaller than the cost of any optimal Hamil-
tonian tour, the cost of D, is at most twice the cost of an optimal Hamiltonian tour.
Let H, = v1,v2, ..., Up,v1 be the resulting Hamiltonian tour. Obviously, D, can be
written as vy Pyvs Povs... v Pyv1, where P; is a path between v; and V(i+1) modn in D,.
Since ¢({vi, V(i+1) modn }) 18 at most (1+7) times the cost of the path v; Piv(i11)modn
for all 7 € {1,2,...,n}, the cost for H, is at most (1 + r) times the cost for D,.
Since the cost of D, ist at most 2 - Opt(x), the algorithm 2APPR isa (2 (1 +7))-
approximation algorithm for (X7, X0, L, Ball, gistance(L1), M, cost, minimum). O

Now, one can ask for the approximation stability according to the distance mea-
sure dist that is the most interesting distance measure for us. Unfortunately, as
shown in the next lemmas, the answer is not as positive as for distance.

Lemma 2 For every r € R, Christofides algorithm is (r, % (14 r)mog? ”U—quasi—
stable for dist, and 2APPR is (r,2 - (1 + r)['°82 ") _quasistable for dist. O

Proof. Again, we realize the proof for the algorithm 2APPR only. Let x = (G, ¢) €
Ball, gist(Lr) for an r € R*. Let T, D,, and H, have the same meaning as in the
proof of Lemma 1. The crucial idea is the following one. To exchange a path v, P,u
of a length m, m € N*t, for the edge {v,u} one can proceed as follows. For any
p,s,t € V(G) one can exchange the path (p, s), (s,t) for the edge (p,t) by the cost
increase bounded by the multiplicative constant (1 + 7). This means that reducing
the length m of a path to the length [m/2] increases the cost of the connection
between u and v by at most (1 + r)-times. After at most [logy, m] such reduction
steps one reduces the path v, P,u to the path v,u and

cost(u,v) = c({v,u}) < (1 +7r)18271 . cost(v, Pu) .

Following the argumentation of the proof of Lemma 1 we have ¢(D;) < 2 - Opt(x).
Since m < n for the length m of any path of D, exchanged by a single edge, we
obtain

(Hy) < (14+7)08 (D) <2 (14 7) 08" . Opi(a) .

O
That the result of Lemma 2 cannot be essentially improved is shown by presenting

an input for which the Christofides algorithm as well as 2APPR provide a very poor
approximation.

Lemma 3 For everyr € RY, if the Christofides algorithm (or 2APPR) is (r, f-(n))-
quasistable for dist, then f.(n) > nlo82(47) /(2. (1 + 7).
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Proof. We construct a weighted complete graph from Ball, 4is+(Lr) as follows. We
start with the path pg,p1,... ,p, for n = 28 k € N, where every edge (p;, pit1)
has the cost 1. For all other edges we take maximal possible costs in such a way
that the constructed input is in Ball, gist(L1). As a consequence, for every m €
{1,... ,logyn}, we have cost(p;,pitom) = 2™ - (14+r)" fori =0,... ,n— 2™ (see
Figure 1).

n(1+r)logz n _— pl4lega(1+r)

Figure 1: A hard Ag 45~ TSP instance

Let us have a look at the work of Christofides algorithm on this input. (Similar
considerations can be made for 2APPR.) There is only one minimal spanning tree
that corresponds to the path containing all edges of the cost 1. Since every path
contains exactly two nodes of odd degrees, the Eulerian graph constructed in Step
1 is the cycle D = pg,p1,p2,--- ,Pn,po With the n edges of cost 1 and the edge
of the maximal cost n - (1 4 r)l9827 = pl+log2(1+7) - Gince the Eulerian path is a
Hamiltonian tour, the output of the Christofides algorithm is unambiguously the
cycle po,pi,--. ,Pn,po With the cost n 4+ n1t182(47) But the optimal tour is

H = Po,P2,P4y--- 7p2i7p2(i+1)"" yPnsPn—1,Pn—3y--- ,P2i+1,P2i—1,--- ,P3,P1,P0-

This tour contains two edges (po,p1) and (pp—1,pn) of the cost 1 and all n — 2 edges
of the cost 2 (1 + r). Thus, Opt = cost(H) =2+2-(1+7r)-(n—2), and

cost(D) n 4 nitloga(l+r) pltloga(14r)  plogy(l+7)

cost(H)  2+2-(1+r)-(n—2) >2~n-(1+7‘) S 2-(147)

O
Corollary 1 24APPR and the Christofides algorithm are unstable for dist. O

The results above show that 2APPR and Christofides algorithm can be useful for
a much larger set of inputs than the original input set. But the stability according to
dist would provide approximation algorithms for a substantially larger class of input
instances. So the key question is whether one can modify the above algorithms to
get algorithms that are stable according to dist. In what follows, we give a positive
answer on this question.
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4 A Stable Algorithm for Ag 4,-TSP

The main aim of this section is to prove the following result.

Theorem 1 For every 3 € R?!, there is a (% - 2)-approzimation algorithm PMCA
for Ag gist- TSP working in time O(n?).

The informal idea of the algorithm PMCA is as follows. The first step is a
modification of the Christofides algorithm. Instead of building G’ from the minimal
spanning tree T and a matching on nodes with odd degrees we build G’ from T
and a “path matching” consisting of cheapest paths between the nodes of T' with
odd degrees. Using this we avoid to take edges with high costs, and the cost of our
resulting graph G’ (and also of the corresponding Eulerian tour D) will be again (as
in the case of A-TSP) at most % times the cost of an optimal Hamiltonian tour.

The main part of PMCA deals with the task of transforming D into a Hamil-
tonian tour by substituting at most 4 consecutive edges by a new one. Under the
given modified triangle inequality, this guarantees that the new tour costs at most
(3% as much as D which gives the desired quality.

The way how PMCA realizes this task is to resolve conflicts (vertices multiply
used in D) in three steps. First, all conflicts within the path matching are resolved
even before constructing the Eulerian tour D. Next, after D is obtained, by resolving
some conflicts the spanning tree is divided into a forest of degree at most 3. The
preceding steps will assure that, in every conflict resolution, at most two consecutive
edges are substituted by a new one. Moreover these new edges are separated in some
way, such that in the final step at most one of them together with two original edges
will be substituted by another new one when PMCA resolves all remaining conflicts
on the cycle.

The rather technical proof of Theorem 1 follows. Theorem 1 improves the ap-
proximation ratio achieved in [AB95]. Note that this cannot be done by modifying
the approach of Andreae and Bandelt. The crucial point of our improvement is
based on the presented modification of Christofides algorithm while Andreae and
Bandelt conjectured in [AB95] that Christofides algorithm cannot be modified in
order to get an approximation algorithm for Ag g;s-TSP.

Note that Theorem 1 can also be formulated in a general form by substituting
the parameter 3 by a function £(n), where n is the number of nodes of the graph
considered.

Proof. of Theorem 1.

In the following, we will give a proof of Theorem 1 by stating algorithm PMCA
and showing its approximation ratio and time complexity. The central ideas of
PMCA are the following. First, we replace the minimum matching generated in
the Christofides Algorithm by a “minimum path matching”. That means to find a
pairing of the given vertices s.t. the vertices in a pair are connected by a path rather
than a single edge, and the goal is to minimize the sum of the path costs. In this
way, we obtain an Eulerian tour on the multi-graph consisting of spanning tree and
path matching (in general not Hamiltonian). This Eulerian tour has a cost of at
most 1.5 times of the cost of an optimal TSP tour, as will be shown in Claim 7.
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The second new concept concerns the substitution of sequences of edges by single
ones, when transforming the above mentioned tour to a Hamiltonian one. Here, we
can guarantee that at most four consecutive edges will be eventually substituted
by a single one. This may increase the cost of the tour by a factor of at most (32
for inputs from Ag-TSP (remember that we deal in this section only with distance
function dist, and therefore drop the corresponding subscript from Ag 45~ TSP).

Before stating in detail the algorithm, we have to introduce its main tools first. Let
G = (V, E) be a graph. A path matching for a set of vertices U C V of even size is
a collection IT of |U|/2 edge-disjoint paths having U as the set of endpoints.

Assume that p = (ug,u1), (u1,u2),.-.,(ug—1,ur) is a path in (V. E), not nec-
essarily simple. A bypass for p is an edge (u,v) from FE, replacing a sub-path
(%i, Uit1), (Wit1,Ui42),--- , (uj—1,u;) of p from u = u; to u; = v (0 <@ < j < k).
Its size is the number of replaced edges, i.e. j — i.> Also, we say that the ver-
tices w1, Uit2, ... ,uj1 are bypassed. Given some set of simple paths II, a conflict
according to IT is a vertex which occurs at least two times in the given set of paths.

Algorithm PMCA

Input: a complete graph (V, E) with cost function cost : E — R0
(a Ag-TSP instance for 5> 1).
1. Construct a minimal spanning tree 7" of (V, E).
2. Let U be the set of vertices of odd degree in T';
construct a minimal (edge-disjoint) path matching II for U.
3. Resolve conflicts according to II, in order to
obtain a vertex-disjoint path matching II' with cost(Il') < - cost(II)
(using bypasses of size 2 only).
4. Construct an Eulerian tour m on T and IT'.
(7 can be considered as a sequence of paths p1,p2, ps, .- -
such that py,ps,... are paths in T, and po, p4,... € IT')
5. Resolve conflicts inside the paths p1,ps, ... from T, such that T is divided into
a forest T’ of trees of degree at most 3, using bypasses of size 2 only.
(Call the resulting paths p!, pj, ... and the modified tour 7’ is pi, ps, vk, p4, .. ..)
6. Resolve every double occurrence of nodes in 7’ such that the overall size
of the bypasses is at most 4 (where “‘overall”” means that a bypass constructed
in Step 3 counts for two edges). Obtain tour 7"
Output: Tour 7.

In the following, we have to explain how to efficiently obtain a minimal path match-
ing, and how to realize the conflict resolution in Steps 3, 5, and 6. The latter not
only have to be efficient but must also result in substituting at most four edges by
a single one after all.

How to construct an Eulerian cycle in Step 4 is a well-studied task. We only observe
that since each vertex can be endpoint of at most one path from IT' by definition
the same holds for the paths in 7": the endpoints of p1, ps,... are the same as those

of p2,pa, - - -.

®Obviously, we are not interested in bypasses of size 1.
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Remark 1
In the Eulerian cycle constructed in Step 4 of Algorithm PMCA, every vertex occurs
at most once as endpoint of a path built from the spanning tree. O

We give in Sections 4.1, 4.2, 4.3, and 4.4 detailed descriptions of Steps 2, 3, 5, and
6, respectively. Finally, in Section 4.5, we show that Algorithm PMCA meets the
claimed performance guarantee.

4.1 Computing minimum path matchings

Claim 1
One can construct in time O(|V|?) a minimum path matching IT for U that has the
following properties:

Every two paths in I are edge-disjoint. (1)
IT forms a forest. (2)

Proof. First, we will show how to construct a path matching within the given
time. Then we will show that the claimed properties (1) and (2) are obtained as a
consequence of the minimality. For showing this, we will assume initially that there
are no edges of cost zero, and at the end, we will demonstrate how to cope with such
edges by applying a technical trick.

To construct the path matching, we first compute all-pairs cheapest paths.® Then,
we define G’ = (V, E') where cost'(v,v") is the cost of a cheapest path between v
and v’ in G. Next, we compute a minimum matching on G’ (in the usual sense), and
finally, we substitute the edges of G' in the matching by the corresponding cheapest
paths in G. Clearly, this can be done in time O(n3) and results in a minimum path
matching.

Assume now that there are two paths having one or more common edges as shown
in Figure 2(a). Substituting them by paths as in Figure 2(b) removes the common
edges from the path matching and anything in between. Due to the minimality, the
removed part consisted of zero-cost edges.

e~ —

g\ ~ /g\ / ; ’ f/ ‘\\\\ // /
(a) > e (b) > . <
N gl

[ — —_— J—

Figure 2: Impossibility of multiply used edges in a minimal path matching

Similarly, if the path matching is not a forest, it contains cycles as in Figure 3(a).
These can be removed as shown in Figure 3(b). By the same argument as above,
the removed edges must be of cost zero.

SSince we associate a cost instead of a length to the edges, we speak about cheapest instead of
shortest path.
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NV - L I >
_—/,<‘\ //‘<~~ e <~\
(a.) ~ g ‘\‘ // g\~. (b) - hl fl\~.
\>.< -
f=" "~ g7~

Figure 3: Impossibility of cycles in a minimal path matching

The above considerations show that in the absence of zero-cost edges, any minimal
path matching will have the claimed properties.

If there are zero-cost edges present in the graph, we compute the path matching by
using the following modified cost function:

cost(u,v) = (cost(u,v),1)
for each edge (u,v). Addition is done component-wise, and costs are ordered by

. c <di, or

dy,ds) iff ’
(61762)<( Ly 2) ( c1 = dj and ¢ < ds. )

It is clear that a minimum path matching according to the new cost function is

minimal according to the original one, too. Since the new function avoids zero cost,

the claimed properties are guaranteed. O

The essential property of a minimal path matching for our purposes is that it costs at
most half of the cost of a minimal Hamiltonian tour. This will be shown in Claim 7
in Section 4.5 where we estimate the approximation ratio of Algorithm PMCA.

4.2 Conflict elimination in the path matching II

Now we show how Step 3 of the algorithm is performed. That is, we will show the
following claim.

Claim 2

Every path matching having properties (1) and (2) can be modified into a vertex-
disjoint one by using bypasses of size 2 only. Moreover, on each of the new paths,
there will be at most one bypass.

Proof. By Claim 1, every vertex used by two paths in a path matching belongs to
some tree. We will show how to resolve a tree of II by using bypasses of size 2 in
such a way that only vertices of the tree are affected. Then we are done by solving
all trees independently.

Let II7 be a subset of II, forming a tree. For simplicity, we address Il itself as a
tree. Every vertex of II7 being a conflict has at least three edges incident to it, since
it cannot be endpoint of two paths in II, and it is part of at least two edge-disjoint
paths by definition of a conflict.
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We reduce the size of the problem at hand in that we eliminate paths from the tree
by resolving conflicts.

Procedure 1
Input: A minimal path matching II for some vertex set U on (V, E)
fulfilling properties (1) and (2).
For all trees Ilp of II
While there are conflicts in Iz (i.e. there is more than one path in II7)
pick an arbitrary path p € Ilr;
if p has only one conflict v, and v is an endpoint of p,
pick another path using v as new p instead;
let v1,va, ..., v be (in this order) the conflicts in p;
while & > 1
consider two paths p1,pr € Il which use v1 respectively v, commonly with p;
pick as new p one of p1, pr which was formerly not picked;
let v1,va, ..., v be (in this order) the conflicts in p;
let v be the only vertex of the finally chosen path p which is a conflict;
if v has two incident edges in p,
replace those with a bypass,
else (v is an endpoint of p)
replace the single edge incident to v in p together
with one of the previously picked paths with a bypass (see Figure 4).
Output: the modified conflict-free path matching IT'.

@ I .............. Path 0
. - &—— - e Path 1
__________________________________ Path 2

(b) I .............. Path 0
5 . & — - mme-- Path 1
-------------------- i - - - . .Path 2

. 'O

y |72 Path 0
/C . & -+ o Path 1’
_____________________ E - - - - - Bypass

Figure 4: Eliminating a path from a tree. Vertices being conflicts are filled, i.e. non-
filled vertices belong to only one path.

The second case of the last step is shown in Figure 4(a) (the paths are visited in the
order 0,1,2). The replacement can be considered as first switching some parts of the
paths (Figure 4(b)) and then building the bypass as in the “if”-case (Figure 4(c)).
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It remains to convince ourselves that the above procedure results in eliminating
successively all conflicts within IT by using bypasses of size 2 only.

Since Il is a tree, only one of the paths p1, py sharing a vertex with the actual path
p may be visited before. Thus the inner while-loop will always end up with a path
having only one conflict. Since a new path is chosen w.r.t. the extremal conflict
vertices of the previous one, the second case of the case distinction will always be
as shown in Figure 4. Note that we use here the property of the path matching
that each vertex is endpoint of at most one path of that matching, which guarantees
the existence of the edge “borrowed” from Path 1. The existence of Path 1 in turn
is guaranteed by the fact that Procedure 1 changes its pick immediately if it has
initially picked a path like Path 2.

Since each construction of a bypass reduces the number of paths having conflicts by
one, it is clear that the whole procedure will terminate.

The bypass size will always be 2 since each bypass is built between vertices belonging
only to one path, and that path is conflict-free afterwards. Consequently, the new
edge will never be involved again in subsequent bypass constructions, and every path
will finally have only one bypass. O

4.3 Dividing the spanning tree into a forest of degree at most 3

In this section, we describe the implementation of Step 5 of Algorithm PMCA. Tt
divides the minimal spanning tree by resolving conflicts into several trees, whose
crucial property is that they have vertices of degree at most 3.

Procedure 2 below is based on the following idea. First, a root of T is picked. Then,
we consider a path p; in T" which, under the orientation w.r.t. this root, will go
up and down. The two edges immediately before and after the turning point are
bypassed. One possible view of this procedure is that the minimal spanning tree is
divided into several trees, since each bypass building divides a tree into two.

Procedure 2
Input: T and the paths p1, p3, ps, ... computed in Step 4 of Algorithm PMCA.
Choose a node r as a root in T'.
For each path
pi = (v1,v2), (V2,03), ..., (Vn;—1,Vp;) in T do

Let v; be the node in p; of minimal distance to r in T'.

If 1 <j < n;then

bypass the node v; and call this new path p;.

else pi = p;.

Output: The paths p,p5,p5, . . ., building a forest TY.

Claim 3

If a node v occurs in two different paths p; and p}; of Ty, then v is an inner node in
one path and a terminal node in the other path. I.e. the node degree of the forest
spanned by p{,p%,pk, ... is at most three.
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Proof. Let v be a node occurring in paths p; and p};. The node v cannot be a
terminal node in both paths: In 7' the two paths p;,p; cannot have a common
endpoint due to Remark 1. And building a bypass in Procedure 2 never changes the
endpoints of a path.

Assume that v is an inner node in both paths. Then there exist at least four
incident edges (v,v1), (v,v2), (v,v3), (v,v4) in T. Furthermore at most one of the
nodes vy, v2,vs3,v4 is closer to 7 than v. Thus at least one of the the paths will be
bypassed, because v is closer to the root r than all other nodes of that path. This
is a contradiction to our assumption. |

From Procedure 2, we obtain immediately the next observation which will be used
in the next section.

Remark 2
In Ty, every path has at most one bypass, and every bypass is of size two. O

4.4 Conflict resolution in the Eulerian tour

Remember that after Step 5, we have an Eulerian cycle ©’ as a sequence of paths
P1,D2, D5, P4, ... such that the odd numbered paths pi,p5,... are in T}, resulting
from the spanning tree, and ps,ps,... are elements of the path matching II' (as
modified in Step 3).

Before we present Procedure 3, we have a close view on the structure of the paths
Pi, D5, Pk, - - . and pa,pa, Pe, - - . and state some key observations for Procedure 3.

Claim 4
Vertices which are leaves in T are not conflicts in 7.

Proof. A leaf v in Tf occurs by definition only on one path p’ of T¢. Being endpoint
of p' implies that it is also an endpoint of a path p from IT'. That means p is the
continuation of p’ in 7’ and vice versa, so v being endpoint in the two paths means
not being a conflict. But also the last possibility of v being a conflict, the existence of
another path p € T containing v, is excluded since this would be a conflict between
p and p in Ty which is conflict-free by Claim 2. O

The following claim states the crucial observation which assures that Procedure 3
constructs bypasses in the worst case out of an old bypass of size 2 and two edges
not being bypasses before. Thus, we will have bypasses of size at most 4 after all.

Claim 5
In the cycle pi,p2, p§, pa, s, D, - - -, between each two bypasses there is at least one
vertex not being a conflict.

Note that “between” includes the case that the claimed vertex may be endpoint of
one or both edges being bypasses.
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Proof. Claim 5 relies itself on another observation about T} and the output of
Procedure 2.

For every path p} being output of Procedure 2 holds:

If p’ contains a bypass, both of its endpoints are leaves in T, and 3
i f

otherwise at least one of its end vertices is a leaf. (4)

In view of Claim 4 (leaves in Ty are not conflicts), this implies Claim 5: Each of
the paths p!, p2, ps, pa, P%, pe, - - ., alternatingly from ITI" and T, contains by Claim 2
and Remark 2 at most one bypass. Every other path is from T}. If it contains a
bypass, it provides by (3) at both ends the claimed conflict-free vertices. If it does
not contain a bypass, one of its endpoints is by (4) the conflict-free vertex between
the two potential bypasses of its neighboring paths from IT'.

Now to show (3) and (4), we just look at an endpoint v of path p}. Let v’ be its
neighbor in that path, i.e. (v,v’) is the first edge of p}, or (v, v) is the last. If v’ is
closer to the root r of T' then v will be a leaf in T for the following reason:

Procedure 2 changes the degree of v by an even number, i.e. v has odd degree in T
If that degree is 1, v is already a leaf in T', and hence in T. If the degree of v in
T is larger, for all paths in 7' containing v, other than p}, v will be an inner vertex
and at the same time the one closest to r ((v,v’) is the unique edge from v towards
7). Thus, v will by bypassed by Procedure 2 in all paths other than p}, becoming a
leaf in T7.

Next, the endpoint v of a path in a tree can only be either the unique vertex closest
to the root 7, or else it has to be farther away from r than its neighbor v/, and hence
is a leaf. Only one of the two endpoints can be the unique closest vertex, which
shows (4). And a bypass is constructed in a path by Procedure 2, only if neither of
the endpoints is the vertex closest to the root, which proves (3). O

Below, we present Procedure 3 which consecutively resolves the remaining conflicts.
Note that s,t,u,v, and their primed versions, denote occurrences of vertices on a
path, rather than the vertices itself. In one step, Procedure 3 has to make a choice.
We state the rule used for choosing separately for further reference in proving the
correctness of the procedure. In that proof, we will show also that this rule always
gives a unique choice.

Remember that the input of Procedure 3 is a cycle pl, p2,ps, pa, s, P, - - -, where
Claim 5 holds.

Procedure 3
Input: a cycle 7’ on (V, E) where every vertex of V' occurs once or twice.
Take an arbitrary conflict, i.e. a vertex occurring twice as u and v’ in 7';
bypass one occurrence, say u (with a bypass of size 2);
while there are conflicts remaining
if occurrence u has at least one unresolved conflict as neighbor
let v be one of them, chosen by rule (5);
(i.e. (v,u) or (u,v) is an edge of ' and there is another occurrence v’ of
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the same vertex as v)
resolve that conflict by bypassing v’
else
resolve an arbitrary conflict;
let u be the bypassed vertex.
Output: the modified cycle 7”.

The rule used for choosing the next conflict to be resolved is the following.

If between u and another bypassed vertex occurrence t on 7', there
are only unresolved conflicts, chose v to be the neighbor of u to- (5)
wards t.

That there cannot be vertex occurrences satisfying the conditions for ¢ on both sides
of u will be shown as part of proving the correctness of Procedure 3.

Claim 6

Procedure 3 terminates after resolving all conflicts, and it generates bypasses of size
at most four overall, i.e. taking into account that some edges of the input cycle 7’
may be bypasses of size 2 themselves.

Proof. Clearly, Procedure 3 will terminate after resolving all conflicts if rule (5)
always produces a unique choice when applied. This in turn follows from statement
(6) which we prove by induction on the number of conflicts resolved by Procedure 3.

Assume during the run of Procedure 3, there are two vertex oc-
currences s,t bypassed by the procedure such that between them,
there are only unresolved conflicts.

Then one of s,t, say s, is the vertex occurrence u just under con-
sideration by Procedure 3, and the vertex occurrence v, being the
neighbor of s towards ¢, is resolved next as not bypassed.

After the first conflict resolution, (6) holds since there is only one vertex occurrence
u bypassed, and between u and itself on the cycle n’, there will always be u', a
resolved, non-bypassed vertex occurrence.

In the induction step, we have to look at a conflict resolution performed by Proce-
dure 3. Here, the applicability of rule (5) relies on the induction hypothesis. Assume
there would be to both sides of u vertex occurrences s,t such that between u and
both of them there would be only unresolved conflicts. Then there (6) would be
applicable to s,t at an earlier stage (before bypassing u there were only unresolved
conflicts between s and t), and consequently one of the conflicts in between would
have been resolved as not bypassed by the induction hypothesis, a contradiction.

Now that rule (5) can be applied, this application just guarantees that (6) still holds
after the actual conflict resolution.
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Next, we will see how (6) implies that Procedure 3 bypasses at most 2 consecu-
tive vertex occurrences, i.e. never replaces more than three consecutive edges of 7'.
Again, we show this by contradiction.

We look at any piece (ug,u1), (u1,us), (u2,us), (us,us) of the input cycle ©’ and
assume the three consecutive vertex occurrences uj, us,ug are bypassed during the
run of Procedure 3.

We consider the situation where Procedure 3 just has bypassed uo. If any of its
neighbors u1,us would be unresolved at that time, the procedure would choose one
of them as the next conflict to be resolved. Then it would resolve that conflict
by fixing as not bypassed u; respectively us. Consequently, u; and us have to be
treated before us. W.l.o.g., let u; be treated before us.

Next, we look at the situation where Procedure 3 just has bypassed u3. Since wuy
is bypassed earlier, there are only unresolved conflicts (namely us) between the
bypassed vertices u1,us. By (6), ue would be resolved next as not bypassed, giving
the desired contradiction.

We end this proof by showing how bypassing at most two consecutive vertices limits
the overall bypass size.

According to Claim 5, each new bypass may substitute at most one old bypass of
size two and two edges being no bypasses before. (Of course, only vertices being
conflicts will be bypassed). Overall this limits the bypass size by 4. O

4.5 The performance of the algorithm PMCA

To show the claimed approximation ratio, we start by bounding the cost of the initial
objects, constructed in Step 1 and 2 of Algorithm PMCA.

Claim 7 (a) The cost of a minimum spanning tree on G = (V, E) is at most the
minimal cost of a Hamiltonian tour.

(b) The cost of a minimum path matching IT for U on G = (V, E) is at most half
of the minimal cost of a Hamiltonian tour;

Proof.

(a) Removing one edge from a Hamiltonian tour of minimal cost gives a spanning
tree whose cost is at least that of the minimal spanning tree. (Note that the
reasoning here is just as in case of the original Christofides algorithm since it
is independent of the triangle inequality.)

(b) We take any Hamiltonian tour of minimal cost on G. Cutting it into paths at
the vertices of U, we put the paths alternatingly into two sets. Each of these
two sets is a path matching for U on G. The cheaper one has at most half of
the cost of the Hamiltonian tour but at least the cost of II. O

Now, we can state the approximation ratio of PMCA.
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Claim 8
The cost of the Hamiltonian tour 7" returned by the algorithm PMCA is at most
%ﬂ2 times the cost of an optimal one.

Proof. Let Cy; be the minimal cost of a Hamiltonian tour in the given graph G.
We bound the size of the objects computed by PMCA step by step in comparison
to Copt-

In the first two steps, the algorithm computes a spanning tree T' and a path matching
II. According to Claim 7, their respective costs are bounded by cost(T") < Cop and
cost(IT) < 0.5 Cyp.

In Step 3, II is replaced with II’ which increases the cost of the path matching by
at most a factor of 3. As noted at the end of Section 4.2, this is a consequence of
using bypasses of size at most two: bypassing means replacing two edges by one,
and the cost of the new edge is [ times the sum of the costs of the original edges
(in a Ag-TSP instance).

The Eulerian tour 7 constructed in Step 4 consists exactly of the edges of T' and IT'.
Thus its cost is cost(m) = cost(T) + cost(Il') < (14 0.5 - 3) - Copt-

In Step 5, some edges from 7T are bypassed by using bypasses of size 2 only.
Consequently, the cost of the resulting tour 7’ can be bounded by cost(n’) =
cost(Ty) + cost(Il') < (1 +0.5) - B+ Cops.

Finally, in Step 6 sub-paths of ©’ are replaced by single edges. This is done in
a way such that at most 4 of the original edges from 7 and II are replaced with
a new single one (taking into account the combined effects of Steps 3, 5, and 6).
This may (in the given Ag-TSP instance) increase the costs by a factor of at most
(3%, compared to the sum of the costs of T and II. Consequently, we have for the
resulting Hamiltonian cycle 7 the cost cost(n") < 28% - Cope. O

This concludes the proof of Theorem 1. g

5 Conclusion and Discussion

In the previous sections we have introduced the concept of stability of approxima-
tions and we have applied it for TSP. Here we discuss the potential applicability
and usefulness of this concept. Applying it, one can establish positive results of the
following types:

1. An approximation algorithm or a PTAS can be successfully used for a larger
set of inputs than the set usually considered (see Lemma 1).

2. We are not able to successfully apply a given approximation algorithm A (a
PTAS) for additional inputs, but one can modify A to get a new approximation
algorithm (a new PTAS) working for a larger set of inputs than the set of inputs
of A (see Theorem 1 and [AB95, BC99]).
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3. To learn that an approximation algorithm is unstable for a distance measure
could lead to the development of completely new approximation algorithms
that would be stable according to the considered distance measure.

The following types of negative results may be achieved:

4. The fact that an approximation algorithm is unstable according to all “reason-
able” distance measures and so that its use is really restricted to the original
input set.

5. Let Q = (21, Yo, L, L, M, cost, goal) € NPO be well approximable.
If, for a distance measure d and a constant r, one proves the nonexistence
of any approximation algorithm for Q, 4 = (21,30, L, Ball, 4(L1), M, cost,
goal) under the assumption P # NP, then this means that the problem @ is
“unstable” according to d.

Thus, using the notion of stability one can search for a spectrum of the hardness
of a problem according to the set of inputs, which is the main aim of our con-
cept. This has been achieved for TSP now. Collecting results of Theorem 1 and of
[BCY9], we have min{%ﬁ2,45}—approximation algorithms for Ag 45~ TSP, and fol-
lowing [BC99], Ag 4is+-TSP is not approximable within a factor 1 + ¢ - 5 for some
€ < 1. While TSP does not seem to be tractable from the previous point of view of
approximation algorithms, using the concept of approximation stability, it may look
tractable for many specific applications.
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