Electronic Colloquium on Computational Complexity, Report No. 33 (1999)

pNP

Graph Isomorphism is Low for ZP and other Lowness results

V. Arvind* Johannes Koblert
August 19, 1999

Abstract

We show the following new lowness results for the probabilistic class ZPPNF,

e The class AM N coAM is low for ZPPNP. As a consequence it follows that Graph Iso-

morphism and several group-theoretic problems known to be in AM N coAM are low for
ZPPNP,

e The class IP[P/poly], consisting of sets that have interactive proof systems with honest
provers in P /poly are also low for ZPPNF,

We consider lowness properties of nonuniform function classes: NPMV/poly, NPSV/poly,
NPMV,/poly, and NPSV;/poly. Specifically, we show that

o Sets whose characteristic functions are in NPSV /poly and that have program checkers (in
the sense of Blum and Kannan [8]) are low for AM and ZPP™Y.

e Sets whose characteristic functions are in NPMV, /poly are low for 5.

1 Introduction

In the recent past the probabilistic class ZPPNY has appeared in different results and contexts
in complexity theory research. E.g. consider the result MA C ZPPNP [1, 12] which sharpens
and improves Sipser’s theorem BPP C ¥8. The proof in [1] uses derandomization techniques
based on hardness assumptions [21]. Another example is the result that if SAT € P/poly then
PH = ZPPY?. [19, 4], which improves the classic Karp-Lipton theorem® Actually [19] prove that
every self-reducible set? A in (NP N co-NP)/poly is low for ZPPNP ie. ZPPNP" = ZPPNP_ Thig
stronger result is in a sense natural, since there is usually an underlying lowness result that implies
a collapse consequence result like the Karp-Lipton theorem. Recall, for example, that the lowness
result underlying the Karp-Lipton theorem is that self-reducible sets in P/poly are low for X5 [24].

The notion of lowness was first introduced in complexity theory by Schéning [24]. It has since
then been an important conceptual tool in complexity theory, see e.g. the survey paper [15].

*Institute of Mathematical Sciences, C.I.T Campus, Chennai, India 600 113 (arvind@imsc.ernet.in)

tAbteilung fiir Theoretische Informatik, Universitit Ulm, Oberer Eselsberg, D-89069 Ulm, Germany
(koebler@informatik.uni-ulm.de).

!The Karp-Lipton theorem states that if SAT € P/poly then PH collapses to P,

By self-reducibility we mean word-decreasing self-reducibility which is adequate because standard complexity
classes contained in EXP have such self-reducible complete problems.

ISSN 1433-8092

1.1 Lowness for ZPPN?

We recall the formal definition of lowness [24]. For a relativizable complexity class C such that for
all sets A A € C4, let Low(C) denote {A | C4 = C}. Clearly, Low(C) is contained in C and consists
of languages that are powerless as oracle for C.

Few complexity classes have their low sets exactly characterized. These are the well-known
examples: Low(NP) = NP Nco-NP, Low(AM) = AM N coAM [24]. For most complexity classes
however, a complete characterization of low sets appears to be a challenging open question. Re-
garding Low(¥}), Schoning proved [25] that AM N coAM is contained in Low(¥3), implying that
Low(AM) C Low(X5). This containment is anomalous because AM ¢ ¥} in some relativized
worlds [23]. Indeed, lowness appears to have other anomalous properties: it is not known to pre-
serve containment of complexity classes, for example NP C PP but NP N co-NP is not known to
be in Low(PP). Similarly, NP C MA but NP N co-NP is not known to be in Low(MA). Little is
known about Low(MA) except that it contains BPP and is contained in MA N co-MA [17].

Regarding ZPPN?| it is shown in [19] that Low(ZPPNF) C Low(X5). No characterization of
Low(ZPPN?) is known. Our aim is to show some inclusions in Low(ZPPNP) as a first step.

We first show in this paper that AMNcoAM is low for ZPPNP i.e. AMNcoAM C Low(ZPPNF).
Hence we have the inclusion chain: Low(MA) C Low(AM) C Low(ZPPNY) C Low(¥}). Tt follows
that Graph Isomorphism and other group-theoretic problems known to be in AM N coAM [3] are
low for ZPPNP,

We prove another lowness result for ZPPNY: Let IP[P/poly] denote languages that have in-
teractive proof systems with honest prover in P/poly. We show that IP[P/poly] C Low(ZPPNP),
improving the containment IP[P/poly] C Low(X}) shown in [2]. Our proof has a derandomization
component in which the Nisan-Wigderson pseudorandom generator [21] is used to derandomize the
verifier in the IP[P /poly| protocol. The rest of the proof is based on the random sampling technique
as applied in [4, 16].

1.2 NP/poly Nco-NP/poly and subclasses

As shown in [19], lowness proofs that work for P/poly carry over easily to (NP Nco-NP)/poly.
However there are technical hurdles in handling NP /poly N co-NP/poly: E.g. the best known
collapse consequence of NP C NP /poly Nco-NP /poly is PH C ZPP(X}), and it is just a relativized
version of the result in [19].

In order to better understand this aspect of NP /poly N co-NP/poly the authors of [9]introduce
two interesting subclasses of NP /poly N co-NP/poly which we discuss in Section 5. We notice
firstly that NP /poly Nco-NP /poly and the above-mentioned subclasses are closely connected to the
function classes NPMV /poly, NPSV/poly, NPMV,/poly, and NPSV,/poly, which are nonuniform
analogues of the function classes NPMV, NPSV, NPMV,, and NPSV, introduced and studied by
Selman and other researchers [26, 10]. More precisely, we note that A € (NP Nco-NP)/poly if
and only if x4 € NPSV,/poly, where x4 denotes the characteristic function of a language A.
Similarly, A € NP /poly N co-NP/poly if and only if y4 € NPMV/poly. Likewise, NPSV /poly and
NPMV,/poly capture the two new subclasses of NP /poly N co-NP /poly defined in [9].

We prove the following new lowness results for these classes:

e We show that self-reducible sets whose characteristic functions are in NPMV, /poly are low for
32 (this result is essentially the lowness result underlying the collapse consequence i.e. The-
orem 5.2 in [9]).

e We show that all self-checkable sets® whose characteristic functions are in NPSV /poly are
low for AM.

2 Preliminaries

Let ¥ = {0,1}. We denote the cardinality of a set X by || X|| and the length of a string z € £* by
|z|. The characteristic function of a language L C ¥* is denoted by xr. The definitions of standard
complexity classes like P, NP, E, EXP etc. can be found in standard books [7, 22]. A relativized
complexity class C with oracle A is denoted by either C4 or C(A). Likewise, we denote an oracle
Turing machine M with oracle A by M4 or M(A).

For a class C of sets and a class F of functions from 1* to X*, let C/F [13] be the class of sets
A such that there is a set B € C and a function h € F such that for all x € ¥*,

e As (z,h(1?)) e B.

The function A is called an advice function for A.
We recall definitions of AM and MA. A language L is in AM if there exist a polynomial p and
a set B € P such that for all z, |z| = n,

T€A = PrObreR{O,l}p(n) [Elya |y| :p(n) : <$ayar> € B] =1,
2@ A = Probc, gV lyl = p(n) : (@,3,7) € B] < 1/4.

Let L be a set in MA. Then there exist a polynomial p and a set B € P such that for all z,
|$ ‘ =n,

r€EA = Jy, ‘y| = p(’I'L) : PrObreR{O,l}P(")K‘Taya’r) € B] > 3/4a
z¢A = Vy, ‘y| :p(n) : PrObreR{O,l}P(n)K‘xay’T) € B] < 1/4

Notice that we have taken the definition of AM with 1-sided error, known to be equivalent to
AM with 2-sided error.

Next, we recall some properties of universal hashing: let £(m,k) denote all linear functions
from ™ to ©*, where ™ and ¥ are interpreted as m and k-dimensional vector spaces over GF[2],
respectively. We recall a useful folklore lemma (as stated in [16]) that lower bounds the probability
that a random h € L(m, k) isolates some z in a given set S of appropriate size (meaning that z is
the only element in S such that h(z) = 0*¥). The lemma also upper bounds the probability that
such an z belongs to a given small subset S’ of S.

Lemma 1 [16] Let S C 2™ — {0™} be a nonempty set of size s, let 8" C S be of size at most s/6,
and let k € N such that 2% < 3s < 2¥*1. Then, for h € L(m, k) chosen uniformly at random,

e with probability at least 2/9, there is a unique € S such that h(z) = 0¥, and

e with probability at most 1/9, there exists some x € S' such that h(z) = OF.

Definitions for single and multiprover interactive proof systems can be found in standard texts,
e.g. [22]. Let MIP denote the class of languages with multiprover interactive protocols and IP
denote the class of languages with single-prover interactive protocols. We denote by MIP[C] and
IP[C] the respective language classes where the prover complexity is bounded by FP(C).

3In the program checking sense of Blum and Kannan [8]

3 AMNcoAM is low for ZPPNP

In this section we show that AM N coAM is low for ZPPNY. Tt follows that Graph Isomorphism
and a host of group-theoretic problems known to be in AM N coAM [3] are all low for ZPPNY. We
recall here that it is already known that AM N coAM is low for ¥4 [25] and also for AM [17].

We notice first that although AM N coAM C ZPPNP (because AM C coRN' and the equality
ZPP = RN coR relativizes) and AM N coAM is low for itself, it doesn’t follow that AM N coAM is
low for ZPPNP. As mentioned before, NP N co-NP is trivially low for NP but is not known to be
low for PP or MA.

Theorem 2 AM N coAM is low for ZPPNF,

Proof. Let L be any set in AM N coAM. We need to show that a given ZPPNP" machine M can
be simulated in ZPPNY. For an input of length bounded by n to the machine M suppose all the
lengths of the queries made to L during the computation are bounded by m. Since L € AMNcoAM,
it follows from standard probability amplification techniques and quantifier swapping that there
are NP sets A and B and a polynomial p such that Vy : |y| < m, there is a subset S C {0,1}P(™)
of size ||S|| > 2P(™)~1 with the following property:
y € L implies
Vw: (y,w) € Aand Vw € S : (y,w) & B

and y ¢ L implies
Vw: (y,w) € Band Vw € S : (y,w) € A

Notice that in the above we are using the fact that AM protocols can be assumed to have
one-sided error.

In other words, a large fraction of the w’s act as advice strings using which membership in L
for strings of length m can be decided with an NP N co-NP computation. Notice, however, that it
would be incorrect for us to claim from here that L € (NPNco-NP)/poly, because if we use a string
from {0, 1}?(™) — § as advice, the resulting combination of machines for A and B may not yield an
NP N co-NP computation for some input y € <™. However, we observe that the above property
of advice strings in S implies that w € S iff using w as advice yields an NP N co-NP computation
for all inputs y € ™,

Thus, a candidate advice w € XP(™) is not in S iff it satisfies the following NP predicate:

Jye <" (y,w) € ANB

We now describe the ZPPNY machine N that simulates the given ZPPNP” machine M on some
input . Machine N first randomly guesses an advice string in w € (M) which, by assumption, is
in S with probability 1/2. A single NP query using the above NP predicate is now used to certify
that w € S. Using such a w as advice, N can replace the oracle L with an NP Nco-NP computation
when it simulates M.]

Corollary 3 Graph Isomorphism is low for ZPPNP.

The above corollary follows since Graph Isomorphism is in AMNcoAM [11]. The lowness result
also holds for various group-theoretic problems known to be in AM N coAM [3].

4

Notice that the previous theorem essentially shows that we can simulate AM N coAM with an
NP Nco-NP computation using a random string in a coNP set as advice for the computation. This
observation combined with the result of [19] (that self-reducible sets in (NP N co-NP)/poly are low
for ZPPNF) immediately yields the following corollary.

Corollary 4 Self-reducible sets in AM N coAM /poly are low for ZPPNY,

Additionally, we also have the following corollary in the average-case complexity setting. We
first recall the definition of AP (see, e.g. [18] for a detailed treatment): AP is the class of decision
problems A such that for every polynomial-time computable distribution there is an algorithm that
decides A and is polynomial-time on the average for that distribution.

Corollary 5 If NP C AP then AM N coAM = NP N co-NP.

The proof follows from the assumption NP C AP combined with the fact that for any set
in AM N coAM a large fraction of strings satisfying a coNP predicate are good advice strings, as
we have already seen in the proof of Theorem 2. Thus, a ZPP computation can randomly guess
such an advice string and use an AP algorithm for the uniform distribution to decide the coNP
predicate. This AP algorithm, with its running time truncated to a suitable polynomial bound,
will still accept many of the randomly picked good advice strings.*

4 IP[P/poly] is low for ZPP~P

The class IP[P/poly| implicitly figures in the proof of the result in [5] that if EXP C P/poly then
EXP = MA. We recall the idea of the proof: if EXP is contained in P/poly, then, each language
in EXP has a multiprover interactive protocol in which the provers are in EXP (and hence by
assumption have polynomial size circuits). This MIP protocol can be simulated by an MA protocol
where Merlin simply sends the circuits for the provers to Arthur in the first round. In other words,
the proof shows the inclusion chain EXP C IP[P/poly] C MA. Since the MA protocol is a single
prover interactive protocol, we also have MIP[P/poly| = IP[P/poly] C MA.

The above collapse consequence result of [5] motivates the study of lowness properties
of IP[P/poly]. We show next that IP[P/poly] C Low(ZPPN'), improving the containment
IP[P/poly] C Low(Xh) shown in [2]. Our result strengthens the result of [16] that NP sets in
P /poly with self-computable witnesses are low for ZPPNY, IP[P/poly] contains such NP sets, but
IP[P/poly] may not even be contained in NP. Although IP[P/poly] C MA C AM, IP[P/poly] is
not known to be closed under complement, and it is not known if IP[P/poly] is contained in AM.
Thus, TP[P/poly] C Low(ZPPNY) appears incomparable to AM N coAM C Low(ZPPNP) shown in
Theorem 2 in the previous section. Our result is also incomparable to the result in [19] that self-
reducible sets in P/poly are low for ZPPNY. An interesting aspect of our proof is that it combines
derandomization and almost uniform random sampling.

We recall definitions and results on derandomization [21]. For s € N, CZR(n,s) denotes all
boolean functions f : {0,1}" — {0,1} that can be computed by deterministic circuits of size s.
Furthermore, for a function s : N — N let CZR(s) = U,>0CZR(n, s(n)).

Definition 6 (cf. [21]) Let r : N — R and L be any language. L is said to be CZR(r)-hard if
for all but finitely many n

11 {z €{0,1}" [xz(z) = g(x)} _ 1
2 r(n) < 2n < 2

L1
r(n)

“This is an application of ideas from [18].

Let p,l,m,k be positive integers. A collection D = (Dy,...,Dp) of sets D; C {1,...,1} is
called a (p,l,m, k)-design if | D;|| = m for all 4, and for all i # j, |D; N D;|| < k. Using D we get
from a boolean function g : {0,1}™ — {0,1} a sequence of boolean functions g; : {0,1} — {0,1},
i=1,...,p, defined as g;(s1,...,5) = g(Siy,---,8i,) where D; = {i1,...,4,}. By concatenating
the values of these functions we get a function gp : {0,1}' — {0,1}? where gp(s) = g1(s) - .. gp(s)-
Nisan and Wigderson show [21, Lemma 2.4] that the output of gp looks random to a small deter-
ministic circuit, provided ¢ is hard to approximate by deterministic circuits of a certain size (in
other words, the hardness of g implies that the pseudorandom generator gp is secure against small
circuits). The following makes this more precise.

Lemma 7 [21] Let D be a (p,l,m, k)-design and let g : {0,1}™ — {0,1} be an CZRA(m, p? + p2*)-
hard function. Then the function gp has the property that for every p-input circuit ¢ of size at most
2
Y2
[Probye o110 (e () = 1] = Probye 0,1 [e* (9(s)) = 11 < 1/p.

Next, we recall the main theorem of [21]:
Theorem 8 [21]| For all « > 0 if E has a language that is CZR(2%")-hard, then BPP = P.

We also need the following folklore lemma which states that most boolean functions are hard
on the average (see e.g. [20]).

Lemma 9 For each a such that 0 < a < 1/3, there is a constant ng such that for all n > ng the

number of n-ary boolean functions that are not CIR(n,2°")-hard is at most 22" e,

Theorem 10 IP[P/poly] is low for ZPPNF.

Proof. As observed before each language in IP[P/poly] is in MA via the following protocol: Merlin
(the prover) first sends to Arthur (the verifier) a polynomial-size circuit for the honest prover.
Arthur uses this circuit to simulate the IP[P/poly] interactive protocol for the given language.
This is simply a randomized BPP-like computation. More precisely, for L € IP[P/poly] there are a
polynomial p and a set A € P such that Vn,

Fw € {0,1}MVy € L™ Prob,¢ (o 1yom (Y, w,r) € A] > 3/4

and
vw € {0,1}PMyy € £<" — L5 Prob, ¢ 0.1} [(y, w,T) € A] < 1/4

For L € IP[P/poly] we need to show that given a ZPPNT" machine M there is a ZPPNP machine
N that accepts the same language. Let = be a length ng input to M. Suppose all queries made
to L during the computation of M (z) are of size at most n. In the design of N, we will have two
preprocessing steps which are both ZPPNY computations. The preprocessing steps will correctly
compute a polynomial-size circuit for L™ which can be used to replace the oracle in machine M
to complete the proof. For the rest of the proof we fix the input z to machine M.

To proceed further, we use the above MA protocol for L. For a pair y, w, the decision procedure
for A can be seen as a circuit Cy,, that takes r as input. We can assume w.l.o.g that C ,, as size
bounded by p?(n). Using Lemma, 7 we have for any (p, I, m, k)-design D and any CZR(m, p* + p2F)-
hard boolean function g : {0,1}" — {0,1} that

‘PrObreR{O,l}P [e(r) = 1] — Probye . 10,1y:[c(gn(s)) = 1]‘ <1/p

6

holds for every p-input circuit ¢ of size at most p?. Now let m(n) = 12log p(n), I(n) = 2881og p(n),
and k(n) = logp(n). By Lemma 9 we know that for all sufficiently large n, a randomly chosen
boolean function g : {0,1}™™ — {0,1} is CZR(m(n),2™™/*)-hard (and thus CZR(m(n),p(n)? +
p(n)25(™)-hard) with probability at least 1 — e=2mM,

The machine N performs the following preprocessing step:

input y, |y < n;

compute a (p(n),l(n),m(n), k(n))-design D;

choose randomly g : {0,1}™(®) — {0,1};

if g is CZR(m(n),2™(/*)-hard then {this can be decided by an NP oracle}
compute the pseudorandom strings r1,...,7y@x) of gp on all seeds;

By the property of these pseudorandom strings r1,...,ruu) with respect to circuits C,,, we
have for all y: |y| < n that

Fw € {0,117y € L= = |[{ril{y, w,r;) € A} > 2™~

and
Yw € {0, 1}P(n)vy ensn _<n . ||{Ti|<y,w,n) c A}H < ol(n)—1

For each n, therefore, we can now efficiently build a polynomial-size circuit C,, (in which the
pseudorandom strings 71, ..., 7o) are hard-wired) such that

Jw € {0,1}PMvVy e L= : Cp(y,w) =1

and
vw € {0,1}PMvy € B — L= ¢ Cp(y,w) =0

Notice that {Cp}n>o is a uniform circuit family, where each C, takes an input y and advice
string w to decide y’s membership in L. The above property guarantees that the advice strings w
have only 1-sided error.

We now proceed to the next step of machine N in which it performs a ZP computation
to compute with high probability a polynomial-size deterministic circuit ¢ that decides L correctly
for inputs of length upto n. In fact, each output circuit éy will be constructed from a set W of
polynomially many advice strings in ¥2("), Stated formally, for all z € ©"

PNP

cw(z) =1 < JweW : Cp(w,z) =1

By virtue of the 1-sided correctness of C,,, éw rejects all x € ¥ — L=" for any W.
We need one more notation: For S C L=", define the active advice set W(S) to be

W(S) :={we "™ |Vz e §: Cplw,z) =1}

Notice that W (S) contains all correct advice strings for any S C L=".

On input 0", machine N iteratively includes strings € L=" into S, until it finds a circuit éw
for L=". N aims to extend S with an z such that ||[IW(S)|| decreases by a constant factor. To
ensure this, N randomly picks 9n hash functions h; and computes the set W of (at most 9n) advice
strings that are isolated in W (S) by some h;. Then N includes in S the lexicographically least
xz € L=" such that Vw € W : C,(w,z) = 0. We now formally describe N:

input 0";

S :=0;

loop
choose randomly k € {1,...,p(n)};
choose randomly hy,...,hg, from L(p(n), k);
W := {w € ¥ | some h; isolates w within W (S)}
if éw (z) = 0 for some z € L=" then S := SU {z}
else exit(loop) end

end loop;

output ¢

Clearly, N can be implemented with access to an NP oracle. Moreover, since ¢y never accepts
an £ ¢ L™ and since the loop only terminates outputing éy when it accepts all x € L=", the
algorithm is correct. It only remains to show that the expected running time of N is polynomially
bounded.

Consider a specific stage of the loop iteration. Call z € L=" a good extension of S if |[W (S)||
decreases by a constant factor, say, |W (S U{z})|| < (5/6) - [|[W(S)||. Let A denote the event that
2k < 3||W(S)|| < 2¥*! holds for the randomly picked k. Clearly, A holds with probability zﬁ' We
claim that pg = Proby,; . s, [a good extension of S is obtained | A] > 1/2.

To see this, let BAD = {z € L=" | |W(S) = W(SU{z})|| < ||W(S)]|/6} denote the set of bad
extensions of S. For x € BAD, let p, be the probability that S is extended by z conditioned on
event A. Notice that 1 —pg < > pap Pz- Now, p; is bounded by the probability that Cw(z) =0
for the set W of isolated advice strings. Note that ¢y (x) = 0 if none of hq,hs, ..., hg, isolates
within W (S) an advice string w € W(S U {z}). By Lemma 1, a single h; isolates some advice
string in W(S) with probability greater than 2/9, and, moreover, h; isolates an advice string in
W(S) — W(S U {z}) with probability at most 1/9. Thus, with probability at least 1/9, each h;
isolates an advice string in W (S U {z}). So, the probability that none of hy,..., hg, isolates an
advice string in W (S U {z}) is at most (8/9)°" < e~". Hence, p, < ™" for each x € BAD. Since
[|IL="|| < 2™ we get 1 —ps < > ,cpap Pz < (2/€)™. Thus, pg > 1/2 for large enough n. Therefore,

1

the probability that a single extension of S is good is at least 5 (since Prob[4] = ﬁ)

The size of W (S) is 2°(") at the start of N(0")’s computation. Since W (S) is always nonempty,
there can be at most p(n)log 1(6/5) < 4p(n) successful extensions of S. Hence, it follows that the
expected number of loop iterations is at most 8p?(n). [

The above lowness result easily extends to IP[(NP N co-NP)/poly] by observing that the proof
relativizes: for any oracle set A, IP[P4/poly] is low for 7ZPPNPY,

We conclude this section with another connection to the average-case complexity setting.
Theorem 11 If NP C AP and NP C P/poly then PH collapses to Ab.

Proof. Recall from [19, 4] that if NP C P/poly then PH collapses to ZPPNY. At the heart of this
collapse result is the following FZPPNF computation: on input 0" it outputs with high probability
a polynomial-size circuit for length n instances of SAT. Since NP C P/poly by assumption, the
NP oracle in the above FZPPNP computation can be replaced by an appropriate polynomial-size
circuit. Thus, given access to a hard boolean function we can use the Nisan-Wigderson generator
to derandomize the above FZPPNP computation: Observe that derandomization here implies that

the output of the pseudrandom generator will include a pseudorandom string that is an accepting
computation of the FZPPNP computation. Thus, given access to a hard boolean function the
FZPPNP computation can be derandomized to an FPNY computation.

Now, as argued in the proof of the previous theorem, we can use a ZP computation to
guess a hard boolean function and then verify that it is hard with a single coNP query. At this
point, we can use the assumption that NP C AP, as in [18] and Corollary 5, to get rid of the NP
oracle and replace this ZPPNY computation with an ZPP computation. Finally, notice that the
lexicographically first output of this ZPP computation can be computed by an FPNF computation.
Thus it is possible to compute a polynomial-size circuit for SAT=" by an FPNY computation and
consequently PH collapses to A. [

PNP

5 Nonuniform function classes and lowness

We now study lowness properties of NPMV /poly, NPSV /poly, NPMV,/poly, and NPSV;/poly.
These are nonuniform analogs of the function classes NPMV, NPSV, NPMV,;, and NPSV; stud-
ied by Selman [26] and other researchers, e.g. [10]. We find these nonuniform classes inter-
esting because when restricted to characteristic functions of sets, NPMV /poly coincides with
NP /poly N co-NP /poly and NPSV,/poly coincides with NP N co-NP/poly. Likewise, we note that
the two subclasses of NP /poly N co-NP /poly studied in [9], namely all sets underproductively re-
ducible to sparse sets and all sets overproductively reducible to sparse sets, also coincide with
NPSV /poly and NPMV,/poly, respectively.

Following Selman’s notation in [26], a transducer is an NDTM T with a write-only output tape.
On input z machine T outputs y € X* if there is an accepting path on input z along which y
is output. Hence, the function defined by T" on ¥* could be multivalued and partial. Given a
multivalued function f on ¥* and x € ¥* we use the notation

set-f(z) ={y | f(z) = y}
to denote the (possibly empty) set of functions values for input . We recall the basic definitions.
Definition 12 [10]

1. NPMV is the class of multivalued, partial functions f for which there is a polynomial-time
NDTM N such that

(a) f(x) is defined iff N(z) has an accepting path.
(b) y € set-f(x) if and only if there is an accepting path of N(x) where y is output.

2. NPSV is the class of single-valued partial functions in NPMV.
3. NPMV; is the class of total functions in NPMV.
4. NPSV, is the class of total single-valued functions in NPMV.

The classes NPMV /poly, NPSV /poly, NPMV, /poly, and NPSV;/poly are the standard nonuni-
form analogs of the above classes defined as usual [13]: for F € {NPMV,NPSV,NPMV;NPSV,},
a multivalued partial function f is in F/poly if there is a function g € F, a polynomial p, and an
advice function h: 1* — X* with |h(1™)| < p(n) for all n, such that for all x € ¥*,

set-f () = set-g((z, h(1"))).

Before we connect these classes to NP /poly N co-NP/poly and its subclasses [9], we recall defini-
tions from [9]: Consider polynomial-time nondeterministic oracle machines N whose computation
paths can have three possible outcomes: accept, reject, or 7. The machine N can also be viewed as
a transducer which computes, for given oracle D and input z, a multivalued function. More pre-
cisely, if we identify accept with value 1 and reject with 0, and consider the ? computation paths as
rejecting paths then NP defines a partial multivalued function: set-NP(z) C {0,1}. Machine N
is said to be underproductive if for each z we have {0,1} Z set-NP(z), and N is said to be robustly
underproductive if for each oracle D and input z we have {0,1} Z set-NP(z). Likewise, NP is
overproductive if for each x we have set-NP(z) # 0, and N is said to be robustly overproductive if
for each oracle D and input z we have set-NP(z) # 0.

With standard arguments we can convert a sparse set into a polynomial-size advice string
and vice-versa (see, e.g. [7]). It follows that A € NP/poly N co-NP/poly if and only if there
is a sparse set S and a nondeterministic machine N such that N° is both overproductive and
underproductive and A = L(N®). Similarly, A € (NP N co-NP)/poly if and only if there is a sparse
set S and a nondeterministic machine NV such that N is both robustly overproductive and robustly
underproductive.

Proposition 13 Let x4 denote the characteristic function for a set A C X*:
1. xa is in NPMV /poly if and only if A is in NP /poly N co-NP /poly.
2. xa is in NPSVy/poly if and only if A is in (NP N co-NP)/poly.

3. xa is in NPSV/poly if and only if there are a sparse set S and a robustly underproductive
machine N such that A= L(N®).

4. xa is in NPMVy/poly if and only if there are a sparse set S and a robustly overproductive
machine N such that A = L(N®).

By abuse of notation, we identify x4 with A in this section. E.g. we write A € NPSV /poly when
we mean x4 € NPSV/poly. We now turn to lowness questions for the nonuniform function classes.
The classes NP /poly Nco-NP /poly and (NP Nco-NP)/poly are of interest in the context of deriving
strong collapse consequences from the assumption that NP (or other hard complexity classes) is
contained in one of these classes. We recall the known collapse consequence [19] result for NP /polyN
co-NP /poly under the assumption that NP is contained therein: If NP C NP /poly N co-NP/poly
then PH collapses to ZPP>2. The open question here is whether the collapse consequence can
possibly be improved to ZPPNF. This is one reason to consider classes that lie between NP /poly N
co-NP /poly and (NP N co-NP)/poly.

5.1 A lowness result for NPMV,/poly

It is shown in [9] that if an NP-complete problem is in NPMV, /poly® then PH collapses to ¥5. We
use ideas in their proof to show the underlying lowness result for functions: all word-decreasing self-
reducible functions in NPMV,/poly are low for ¥5. We first recall the definition of word-decreasing
self-reducible sets (and define its obvious extension to total single-valued functions).

Definition 14 [6] For strings =,y € ¥*, z <y if |z| < |y| or |z| = |y| and z is lexicographically
smaller than y. A set A is word-decreasing self-reducible if there is a polynomial-time oracle

®In [9] the authors state the result in terms of overproductive reductions to sparse sets.

10

machine M such that A = L(M%), where on any input = the machine M queries the oracle only
about strings y such thaty < x. Similarly, a total single-valued function f on ¥* is word-decreasing
self-reducible if there is a polynomial-time oracle transducer T such that TY computes f, where on
any input x transducer T' can query the oracle only about strings y such that y < x.

The definition of lowness extends naturally to total, single-valued functions: A functional oracle
f return f(z) on query z. For any relativizable complexity class C we say that f € Low(C) if
C/ = C. We show next that self-reducible sets and self-reducible functions in NPMV /poly have
identical lowness properties. Hence it suffices to prove lowness of self-reducible sets in NPMV/poly.

Theorem 15 Let F contain all self-reducible functions in any of the four function classes
{NPMV /poly, NPSV/poly, NPMV,/poly, NPSV,/poly}. Let C be the subclass of F consisting of
characteristic functions (making C a language class, essentially). For every self-reducible function
f € F there is a set A € C such that f and A are polynomial-time Turing equivalent.

Proof. Given f € F, we can define the corresponding set A € C# by suitably encoding, for each
z, the bits of f(z) in A. We can easily ensure that the self-reducibility of f carries over to A and
f and A are polynomial-time Turing equivalent. [

Theorem 16 Word-decreasing self-reducible sets in NPMV;/poly are low for ¥5.

Proof. Let A be a word-decreasing self-reducible set in NPMV; /poly. Let M be the self-reduction
machine for A. Consider a ¥5(A) machine M with oracle A. There is a polynomial p such that
for inputs z of length n, p(n) bounds the length of the queries made by M(z) to A. We fix n and
let m denote p(n). Since A € NPMV,/poly there is a nondeterministic transducer 7' that fulfils
conditions of Definition 12. W.lo.g we assume for each m € N that T interprets advice strings
w € $4™) for inputs of length at most m, for some polynomial g.

How hard is it to test that a candidate advice w is good? The conjunction of the following two
coNP predicates does this task:

e We first define the coNP predicate STRONG (w):
Vz € ng VylayQ : {T(z,w,yl),T(z,w,yg)} 7é {07 1}

where T'(z,w,y1) and T(z,w,y2) are values output by 7" on computation paths y; and yo,
given advice w and input z. Notice that this coNP predicate just verifies that T is single-
valued for advice w. However, observe that advice w could still be incorrect. The next coNP
predicate checks correctness of w.

e For input z € £<™, let M¥(z) denote the computation that results by simulating the self-
reduction machine M (z), where any query q is answered by simulating T'(w, ¢): the simulation
of T'(w, q) aborts along a path resulting in ?. On other paths the simulation proceeds treating
output 1 as accept and output 0 as reject. Notice that this simulation of M{’(z) yields
a nondeterministic single-valued computation if STRONG(w) holds, as STRONG(w) forces
each simulation of the kind T'(w,q) to be single-valued for all ¢. When the simualation is
complete along some path M{’(z) accepts on that path and outputs the value computed.

We now define the coNP predicate CORRECT(w):

11

CORRECT(w) := Vz € ™ :if T(w, z) accepts then MY (z) never rejects, and if T'(w, 2)
rejects then M{’(z) never accepts.

Notice that if STRONG (w) holds then CORRECT(w) checks that Vz € ™ the advice string
w is consistent with the self-reducibility machine Mj.

We have the following claim summarizing the properties of STRONG and CORRECT.
Claim. The string w € X9 is a correct advice string for <™ iff STRONG(w) A CORRECT (w)
holds.

Continuing with the proof, recall that the computation tree for M“(z) has an 3 layer followed
by a V layer. We denote this by saying that M4 (z) accepts if and only if: Iy : M4A(z,y),
where M4(z,y) is the remaining computation which defines a co-NP4 predicate. Now it is easy to
logically describe the ¥5 machine N that simulates M on an input x of length n. N accepts z iff
the following 5 predicate holds:

Jw e 2™ Jy : M¥(z,y) A STRONG(w) A CORRECT(w)

where M™(z,y) represents the following computation: simulate M“(z,v), and for each query ¢
made to A plug in the nondeterministic computation T'(w, q). If a computation path of T'(w,q)
rejects then terminate that computation as accepting (because this path is irrelevant to the overall
computation). If a computation path of T'(w, ¢) outputs 1 (interpreted as accept in the simulation)
or 0 (interpreted as reject in the simulation), machine M"(z,y) continues with the computation
assuming that the answer is correct. Continuing in this manner M"(z,y) finally accepts or rejects
on each computation path.

To see correctness, notice first that N accepts z € X" if M4 accepts z, because for the good
advice string w and for y such that M (z,y) is true, M™(z,y) correctly simulates M*(z,y) and
therefore accepts. Next, for a string z € X" that is rejected by M4, notice that for the good
advice string w, M"¥(z,y) also rejects for any y. And for a bad advice string w the coNP predicate
STRONG(w) A CORRECT(w) rejects regardless of M™(x,y) for any y. This completes the proof.

|

Since X}, I}, PP, C_P, Mod,,P, PSPACE, and EXP have many-one complete word-decreasing
self-reducible sets [6], the following corollary is immediate.

Corollary 17 IfC € {¥},1I},PP,C_P,Mod,,P,PSPACE, EXP}, for k > 1, has a complete set in
NPMV,/poly then C C X8 and PH = 35,

The proof follows since for each C € {Z}, 11}, PP, C_P, Mod,,,P, PSPACE, EXP} we have X C
¥§.

We end this section with the observation that AM N coAM is contained in NPMV;/poly. It in
interesting to now compare the lowness results (Theorems 2 and 16) for these classes.

Proposition 18 If L € AM N coAM then L is in NPMV;/poly.

Proof. Given L € AMNcoAM, as already observed in an earlier proof by probability amplification
techniques and quantifier swapping, there are NP sets A and B and a polynomial p such that
Vz : |z| < m, there is a subset § C {0,1}P(™) of size ||S|| > 2P(™)~1 with the following property:
xz € L implies

Vw : (z,w) € Aand Yw € S: (z,w) ¢ B

12

and z ¢ L implies
Vw: (z,w) € Band Vw € S: (z,w) € A

We can combine the NP machines for A and B and build a transducer I that takes pair (z,w) as
input, where w is the advice string. Observe that S constitutes the (large) fraction of the w’s that
are correct advice strings using which membership in L for strings of length m can be decided and
for such advice strings the transducer I will always yield a single-valued, total computation for all
inputs of length m, outputing either 1 or 0 depending on the membership of input z. Notice that the
above properties also already imply L is in NPMV,/poly, because no matter which w € {0, 1}p(m)
is used as advice, (z,w) is either in the NP set A or in the NP set B and so the transducer I always
outputs at least one of 0 or 1 for any advice string and any input. [

5.2 A lowness result for NPSV /poly

In [9] it is left as an open problem to discover new lowness (or collapse consequence) results for
NPSV /poly. As noted in [9], nothing better is known for NPSV /poly than the collapse consequence
result: if SAT is in NPSV/poly then PH collapses to ZPPEg, which holds even for the larger class
NP /poly N co-NP /poly [19].

We show that sets in NPSV/poly that are checkable, in the sense of program checking as defined
by Blum and Kannan [8], are low for AM and for ZPPNY. Since @P, PP,PSPACE, and EXP have
checkable complete problems, it follows that for any of these classes inclusion in NPSV /poly implies
its containment in AMNcoAM. This result is proved on the same lines as the Babai et al result [5]:
If EXP is contained in P/poly then EXP C MA.

Recall the definitions of MIP[C] and IP[C] for a class C of languages. We prove a technical
lemma that immediately yields the lowness result.

Lemma 19 If A € NPSV/poly then MIP[A] C AM.

Proof. Let L € MIP[A] for some set A € NPSV/poly. Let T' be the nondeterministic transducer
that witnesses that A € NPSV /poly. We describe an MAM protocol for L:

1. Let = be an input of length n to the protocol. Let m = p(n), for polynomial p, bound the
size of the queries to A made by the verifier during the protocol for inputs of length n.

2. Merlin sends advice w of length g(m) to Arthur.

3. Arthur sends a polynomial random string r (used for simulating the original IP protocol) to
Merlin.

4. Merlin sends back the list of successive queries to set A (generated by simulating the orig-
inal TP protocol with random string r), the list of answers to those queries along with the
computation paths of transducer T' with advice w that certify the answers to the queries.

5. Arthur can verify in polynomial time that Merlin’s message is all correct and accept iff the
original IP protocol accepts.

13

By the fact that 7' computes a single-valued partial function for any advice w, although the
verifier is simulating the nondeterministic transducer 7', it is guaranteed that each accepting com-
putation path has identical output and hence does identical computation. Thus, what makes the
above MAM protocol work is the fact that for any advice w and query ¢ all accepting computation
paths of T'(w,q) output the same value. So, regardless of which computation paths are sent to
Arthur by Merlin in Step 4 of the above protocol, Arthur’s decision will be the same. In other
words, Arthur’s acceptance depends only on the random string r, hence exactly preserving the
acceptance probability of the original IP protocol.

Standard techniques can be used to convert the MAM protocol to an AM protocol. This
completes the proof. [

We have as immediate consequence the following lowness result.

Theorem 20 If L is a checkable set in NPSV /poly then L € AM N coAM and hence low for AM
and ZPPNP.

Proof. The assumption in the theorem’s statement implies that both L and L are in MIP[I_L] by
the checker characterization theorem of [8]. Now, applying Lemma 19 yields that both L and L are
in AM and the result follows. [

We can derive new collapse consequences as corollary, since ®P, PP, PSPACE, and EXP have
checkable complete problems. It follows that for any of these classes inclusion in NPSV /poly implies
its containment in AM N coAM.

Corollary 21 If any of the classes ®P, PP,PSPACE, and EXP is contained in NPSV /poly then
it is low for AM and hence PH = AM.

Notice that we also have the same lowness for checkable funcitons in NPSV /poly.
Theorem 22 Checkable functions in NPSV /poly are low for AM and ZPPNY.

Proof. Let f be a checkable functions in NPSV/poly. We can suitably encode, for each z, the
bits of f(z) in a language A which is polynomial-time Turing equivalent to f and hence A is also
checkable. The lowness result now follows by invoking Theorem 20. [

Acknowledgements. The first author was partially supported by an Alexander von Humboldt
fellowship and he is grateful to Prof. Uwe Schoning for hosting his visit to Ulm university where
this work was carried out.

References

[1] V. ARVIND AND J. KOBLER, Pseudorandomness and resource-bounded measure, Proceedings
17th Conference on the Foundations of Software Technology & Theoretical Computer Science,
Springer-Verlag, LNCS 1346, pp. 235-249, 1997.

[2] V. ArvIND, J. KOBLER, AND R. SCHULER, On helping and interactive proof systems, Inter-
national Journal of Foundations of Computer Science 6(2), 137-153, 1994.

14

3]

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

L. BABAIL Bounded round interactive proofs in finite groups, SIAM Journal of Discrete Math-
ematics, 5: 88-111, 1992.

N. BsHouTy, R. CLEVE, R. GAVALDA, S. KANNAN, AND C. TAMON, Oracles and queries

that are sufficient for exact learning, Journal of Computer and System Sciences, 52, pp. 421-
433 1996.

L. BaBAI, L. FORTNOW, N. NISAN, AND A. WIGDERSON, BPP has subexponential simu-
lations unless EXPTIME has publishable proofs, Computational Complexity, 3, pp. 307-318,
1993.

J. BALCAZAR, Self-reducibility, Journal of Computer and System Sciences, 41 (1990), pp. 367—
388.

J. L. BALCAZAR, J. DAz, AND J. GABARRO, Structural Complezity I, EATCS Monographs
on Theoretical Computer Science. Springer-Verlag, second edition, 1995.

M. BLuMm AND S. KANNAN, Designing programs that check their work, Journal of the ACM,
43:269-291, 1995.

J.Y. CA1, L.A. HEMASPAANDRA, AND G. WECHSUNG, Robust Reductions, In Proceedings

of the 4th Annual International Computing and Combinatorics Conference, Springer-Verlag,
LNCS 1449, pp. 174-183, 1998.

S. FENNER, L. FOrRTNOW, A. NAIK, AND J. ROGERS, Inverting onto functions, In Proceed-
ings of the 11th IEEE Conference on Computational Complexity, IEEE, New York, pp. 213—
222, 1996.

O. GOLDREICH, S. MICALI, AND A. WIGDERSON, Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems, Journal of the ACM, 38:691-729,
1991.

O. GOLDREICH AND D. ZUCKERMAN, Another proof that BPPCPH (and more), Technical
Report TR97-045, Electronic Colloquium on Computational Complexity, October 1997.

R. M. KARP AND R. J. LIPTON, Some connections between nonuniform and uniform com-
plezity classes, in Proceedings of the 12th ACM Symposium on Theory of Computing, ACM
Press, 1980, pp. 302-309.

K. Ko AND U. SCHONING, On circuit-size complexity and the low hierarchy in NP, SIAM
Journal on Computing, 14:41-51, 1985.

J. KOBLER, On the structure of low sets, In Proceedings of the 10th Structure in Complexity
Theory Conference, 246-261. IEEE Computer Society Press, 1995.

J. KOBLER AND U. SCHONING, High sets for NP, In D. Zu and K. Ko, editors, Advances in
Algorithms, Languages, and Complexity, pp. 139-156, Kluwer Acad. Publishers, 1997.

J. KOBLER, U. SCHONING, AND J. TORAN, The Graph Isomorphism Problem: Its Structural
Complezity, Birkhiuser, Boston, 1993.

15

[18] J. KOBLER AND R. SCHULER, Average-case intractability vs. worst-case intractabil-
ity, Proceedings of the conference on Mathematical Foundations of Computer Sciences

(MFCS);/1;.,;BR;, Springer-Verlag, LNCS 1450, 493-502, 1998. ;BR;, Py,

[19] J. KOBLER AND O. WATANABE, New collapse consequences of NP having small circuits, Pro-

ceedings of the 22nd International Colloquium on Automata, Languages, and Programming,
Springer-Verlag, LNCS 944, pp. 196-207, 1995.

[20] J. H. Lutz AND W. J. ScHMIDT, Circuit size relative to pseudorandom oracles, Theoretical
Computer Science, 107:95-120, 1993.

[21] N. N1SAN AND A. WIGDERSON, Hardness vs randomness, Journal of Computer and System
Sciences, 49:149-167, 1994.

[22] C. PAPADIMITRIOU, Computational Complezity, Addison-Wesley, 1994.

[23] M. SANTHA, Relativized Arthur-Merlin versus Merlin-Arthur games, Information and Com-
putation, 80(1), pp. 44-49, 1989.

[24] U. ScHONING, A low and a high hierarchy within NP, Journal of Computer and System
Sciences, 27, pp. 14-28, 1983.

[25] U. SCHONING, Probabilistic complezity classes and lowness, Journal of Computer and System
Sciences, 39, pp. 84-100, 1989.

[26] A. SELMAN, A tazanomy of complexity classes of functions, Journal of Computer and System
Sciences, 48(2), pp. 357-381, 1994.

16

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

