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Abstract. We consider separations of reducibilities in the context of
resource-bounded measure theory. First, we show a result on polynomial-
time bounded reducibilities: for every p-random set R, there is a set which
is reducible to R with £ 4+ 1 non-adaptive queries, but is not reducible
to any other p-random set with at most k& non-adaptive queries. This re-
sult solves an open problem stated in a recent survey paper by Lutz and
Mayordomo [15]. Second, we show that the separation result above can
be transferred from the setting of polynomial time bounds to a setting
of rec-random sets and recursive reducibilities. This yields as a special
case the main result of Book, Lutz, and Martin [7], who, by using differ-
ent methods, showed a similar separation w.r.t. Martin-Léf-random sets.
Moreover, in both settings we obtain a separation as above of truth-table
versus bounded truth-table reducibility.

1 Introduction and related work

We use the symbol < with appropriate sub- or superscripts to denote binary rela-
tions on Cantor space, the class of all sets of natural numbers. These binary rela-
tions are meant as reducibilities and, in particular, we will consider polynomial-
time bounded reducibilities of the following types: Turing (p-T), truth-table
(p-tt), bounded truth-table (p-btt), and bounded truth-table restricted to at
most k queries (p-btt(k)); see Sect. 2 for more precise definitions.

We say two reducibilities <, and <; are separated by an oracle A if the
lower spans of A w.r.t. these reducibilities, i.e. the classes {X : X <, A} and
{X : X <, A}, differ. It is easy to see that two reducibilities are different (as
relations on Cantor space) if and only if they are separated by some oracle.
Beyond this simple observation, the question which reducibilities are separated
by what kind of oracles has been the object of intensive studies. Here, for a given
pair of reducibilities, typical question are the following. Are there separating
oracles of low complexity? How comprising is the class of separating oracles?
What are sufficient properties for being a separating oracle?

Ladner, Lynch, and Selman [10] considered separations of the usual poly-
nomial-time bounded reducibilities in the range between many-one and Turing
reducibility. They showed that for every distinct pair of such reducibilities, there
is a separating oracle which can be computed in exponential time. Subsequently,
in their seminal paper [5], Bennett and Gill obtained results about separations
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by almost all or by random oracles, i.e., they showed that for certain pairs of
reducibilities the class of separating oracles has measure 1 w.r.t. uniform measure
on Cantor space. In fact, for every k > 0, every pair of distinct reducibilities
chosen among p-T-, p-tt, p-btt, p-btt(k + 1), and p-btt(k)-reducibility can be
separated by random oracles, see [14] and [17], as well as [9] for a separation of
p-btt(k + 1)- and p-btt(k)-reducibility by almost all tally oracles.

A separation by random oracles can be expressed equivalently by saying that
the class of oracles which do not separate the reducibilities under consideration
has uniform measure 0. Lutz and Mayordomo [14] could show for certain pairs of
polynomial-time bounded reducibilities of truth-table type that the class of sep-
arating oracles does not just have uniform measure 0 but is in fact covered by a
polynomial-time computable martingale. Typically, their results are derived from
the assumption that for both reducibilities the number of queries is bounded by a
function in the input length and that the two bounding functions are related in a
specific way, say, one is growing faster than the square of the other. In the special
case where the bounding functions are constant they showed that for every nat-
ural number k, there is a polynomial-time computable martingale which covers
all oracles which do not separate p-btt(k+ 1)- and p-btt(k)-reducibility, whence,
in particular, these reducibilities are separated by every p-random oracle. The
latter can be rephrased by saying that these reducibilities are locally separated
by the class of p-random oracles. Here a nonempty class C locally separates two
given reducibilities iff for every set A in C, the lower spans of A w.r.t. these re-
ducibilities are different, whereas C globally separates the reducibilities in case
for every set A in C there is a set B which is reducible to A w.r.t. one of the
reducibilities but B is not reducible to any set in C w.r.t. the other reducibility.
Moreover, in case such a set B exists not for all but just for some sets A in C,
we say that C yields a weak global separation of the reducibilities under consid-
eration. In distinguishing local and global separations we follow Book, Lutz, and
Martin [7], who discuss such separations for the classes of Martin-Lof-random,
tally, and sparse sets.

Remark 1. By definition, every local or global separation by a class C extends
trivially to every nonempty subclass of C. This is false in general, however, for
weak global separations. For example given an oracle A which separates p-btt(2)-
and p-btt(1)-reducibility, the class {A, @}, but not its subclass {(}} yields a weak
global separation of these two reducibilities.

In Theorem 4, we extend Lutz and Mayordomo’s local separation of p-
btt(k + 1)- and p-btt(k)-reducibility to a global separation. This, together with
Remark 6, solves Problem 7 in the recent survey article [15], where it has been
asked to prove or disprove that, in our terms, the class of p-random oracles
yields a weak global separation of these reducibilities. In Sect. 6, then we obtain
by basically the same proof as for Theorem 4, that for every natural number
k, the class of rec-random sets globally separates p-btt(k 4+ 1)-reducibility from
btt(k)-reducibility, i.e., from the reducibility restricted to at most k non-adaptive
queries where the reductions have to be effective but might run in arbitrary time
and space. By Remark 1, this yields as a special case the main result of Book,



Lutz, and Martin [7], who showed, by using different methods, a corresponding
global separation w.r.t. the class of Martin-Lof-random sets, which is a proper
subclass of the class of rec-random sets. Moreover, we will argue that in both set-
tings, i.e., for polynomial-time bounded, as well as for recursive reductions and
martingales, the corresponding random sets globally separate the corresponding
notions of truth-table and bounded truth-table reducibility.

2 Notation

The notation used in the following is mostly standard, for unexplained nota-
tion refer to [4], [6], and [13]. All strings are over the alphabet X = {0,1}.
We identify strings with natural numbers via the isomorphism which takes the
length-lexicographical ordering on {X,0,1,00,...} to the usual ordering on w,
the set of natural numbers. If not explicitly stated differently, the terms set and
class refer to sets of natural numbers and to sets of sets of natural numbers,
respectively.

A partial characteristic function is a (total) function from some subset of
the natural numbers to {0,1}. A partial characteristic function is finite iff its
domain is finite. The restriction of a partial characteristic function g to some set
I is denoted by B|I, whence in particular for a set X, the partial characteristic
function X|I has domain I and agrees there with X. We identify strings of
length n in the natural way with a partial characteristic function with domain
{0,...,n—1}, whence in particular strings can be viewed as prefixes of sets. For
a partial characteristic function o with domain {29 < ... < z,_1}, the string
associated with a is the (unique) string 3 where 8(j) = a(z;) forj=0,... ,n—1.
For a set X and a partial characteristic function o we write (X, o) for the set
which agrees with o for all arguments in the domain of o and which agrees with
X, otherwise.

We will consider the following variants of polynomial-time bounded reducibil-
ity: Turing reducibility (p-T), truth-table reducibility (p-tt), where the queries
have to be asked non-adaptively, bounded truth-table reducibility (p-btt), where
for each reduction the number of queries is bounded by a constant, and, even
more restrictive, p-btt(k)-reducibility, where for all reductions this constant is
bounded by some natural number k. The relation symbol <P refers to p-btt-
reducibility, and relation symbols for other reducibilities are defined in a similar
fashion. Expressions such as p-T-reduction and <}-reduction will be used in-
terchangeably. We will represent p-btt-reductions by a pair of polynomial time
computable functions ¢ and h where g(z) gives the set of strings queried on
input z and h(z) is a truth-table of a Boolean function over k variables which
specifies how the answers to the queries in the set g(z) are evaluated. Here we
assume, firstly, via introducing dummy variables, that the cardinality of g(z) is
always exactly k and, secondly, by convention, that in order to assign the queries
in g(¢) to the arguments of the Boolean function h(x), the queries are ordered
by the length-lexicographical ordering.



3 Resource-Bounded Measure

We give a brief introduction to resource-bounded measure which focusses on
the concepts that will be used in subsequent sections. For more comprehensive
accounts of resource-bounded measure theory see the recent survey papers by
Ambos-Spies and Mayordomo [4] and by Lutz [13].

The theory of resource-bounded measure is usually developed in terms of
martingales, which can be viewed as payoff functions of gambles of the following
type. A player successively places bets on the individual bits of the characteristic
sequence of an unknown set A or, bets on A, for short. The betting proceeds in
rounds ¢ = 1,2,... where during round i, the player receives the length ¢ — 1
prefix of A and then, firstly, decides whether to bet on the ith bit being 0 or
1 and, secondly, determines the stake by specifying the fraction of the current
capital which shall be bet. Formally, a player can be identified with a betting
strategy b : {0,1}* — [—1, 1] where the bet is placed on the next bit being 0 or 1
depending on whether b(w) is negative or nonnegative, respectively, and where
the absolute value of the real b(w) is the fraction of the current capital that shall
be at stake.

The player starts with strictly positive, finite capital. At the end of each
round, in case the current guess has been correct, the capital is increased by
this round’s stake and, otherwise, is decreased by the same amount. So given a
betting strategy b, we can inductively compute the corresponding payoff function
d by applying the equations

d(w0) = d(w) — b(w) - d(w) d(wl) = d(w) + b(w) - d(w) .

Intuitively speaking, the payoff d(w) is the capital the player accumulates till the
end of round |w| by betting on a set which has the string w as a prefix. Conversely,
every function d from strings to nonnegative reals which for all strings w, satisfies
the fairness condition

d(w) = d(wO)—;—d(wl) ’ (1)

induces canonically a betting function b, where

d(wl) — d(w0) 1
2 " d(w)

b(w) =

in case d(w) differs from 0 and b(w) = 0, otherwise. We call a function d from
strings to nonnegative reals a martingale iff d(A) > 0 and d satisfies the fairness
condition (1) for all strings w.

By the preceding discussion it follows for gambles as described above that the
possible payoff functions are exactly the martingales and that in fact there is a
one-to-one correspondence between martingales and betting strategies. We will
frequently identify martingales and betting strategies via this correspondence
and, if appropriate, notation introduced for martingales will be extended to the
induced betting strategies.



Fix a martingale d. We say d succeeds on a set A if d is unbounded on the
prefixes of A, i.e., if limsup, ;, , d(A|{0,...,n}) = co. The success set S*®[d] of
the martingale d is the class of sets on which d succeeds. We say d succeeds on
or covers a class iff this class is contained in S*[d].

Every countable class C = {C1,Cs, ...} is covered by the following betting
strategy: on input w, let ¢ be the minimal index such that w is a prefix of C;
(and abstain from betting if such an index does not exist), then bet half of the
current capital on the next bit agreeing with the corresponding bit of C;. As a
consequence, most of the classes considered in complexity and recursion theory
can be covered by martingales, whence in order to distinguish such classes in
terms of coverability, one has to restrict the class of admissible martingales. Here,
in general, for a given class C one is interested in finding a class of martingales
which allows the covering of large subclasses of C, but not of C itself. In the
context of recursion theory, this led to the consideration of recursive martingales,
see [19], [20], whereas in connection with complexity classes one has to impose
additional resource-bounds, see [11], [13], [1]. Here an effective martingale d
is always confined to rational values and it is assumed that there is a Turing
machine which on input w outputs an appropriate finite representation of d(w).

Recall the definition of the uniform (or Lebesgue) measure on Cantor space,
which describes the distribution obtained by choosing the individual bits of a set
by independent tosses of a fair coin. It has been shown by Ville that a class has
uniform measure 0 iff the class can be covered by some martingale, see [22] and
[4]. The latter result justifies the following notation: a class has measure 0 w.r.t.
a given class of martingales iff it is covered by some martingale in the class. The
aim stated above can then be rephrased: for given C, we want to specify a class
of admissible martingales such that large subclasses of C have measure 0, but
not C itself.

In connection with measure on complexity classes, most attention has been
received by measure concepts for the exponentially time-bounded classes E =
DTIME(2") and EXP = DTIME(2P°Y). For example, in the case of the
class E, Lutz proposed to use martingales which on input w are computable in
time polynomial in the length of w. Observe that the latter time bound yields
the same class of martingales as the time bound 2°(#D) where z is the minimal
string not in the domain of w, i.e., if w is viewed as prefix of a set A, then z
is the minimal string y such that A(y) is not encoded in w. Lutz could show
that for every constant ¢, the subclass DTIME(2°") can be covered by such a
martingale, but not E itself. The class of polynomial time bounds used to define
measure on E is so robust that, similar to the case of unrestricted martingales,
there is a one-to-one correspondence between polynomial-time computable mar-
tingales and betting strategies (however, in general, the polynomial bounding the
running time might not be preserved in the transition from a betting strategy
to the corresponding martingale, see [3]). Furthermore, there is a similar corre-
spondence between martingales and betting strategies in the case of martingales
used to define measure on EXP and in the case of recursive martingales, see [3]
and [20], respectively.



Intuitively speaking, a martingale can only succeed on a set which has certain
regularities known to the martingale and, conversely, if none of the martingales
in a given class succeeds on a set R then, relative to the martingales under
consideration, the set R is essentially irregular or random. Formally, we call
a set random w.r.t. a given class of martingales iff none of these martingales
succeeds on this set. Now, the success set of a single martingale always has
uniform measure 0, and by o-additivity, the same holds for every countable union
of success sets. Thus for every countable class of martingales, the corresponding
class of random sets has uniform measure 1. In this situation, random sets can
also be viewed as typical sets.

We say a set is p-random if the set cannot be covered by a polynomial-time
computable martingale, and we write p-RAND for the class of all p-random sets.
The notion rec-random set and the class rec-cRAND of all rec-random sets are de-
fined likewise with recursive martingales in place of polynomial-time computable
ones. Moreover, we will consider Martin-Lof-random sets, which have been intro-
duced in [16] and have been characterized equivalently in terms of martingales
in [20]: a set is Martin-Lof-random if and only if it cannot be covered by a
subcomputable martingale. Here a martingale d 1s subcomputable iff there is a
recursive function g in two arguments such that for all strings w, the sequence
g(w,0),g(w, 1), ... is nondecreasing and converges to d(w). Schnorr [20] has im-
plicitly shown that the class of Martin-Lof-random sets is a proper subclass of
rec-RAND.

We conclude this section by two remarks in which we describe standard
techniques for the construction of martingales.

Remark 2. Let a finite set D be given, as well as a list (D1, ..., Dy,) of pairwise
disjoint subsets of D which all have the same cardinality £ > 0. Then for a
partial characteristic function ¢ with domain D and a string w of length & we
might ask for the frequency

[{j : w is the associated string of o|D; }|

alo,w,(D1,...,Dp)) = —
with which w occurs in o as associated string at the positions specified by the
D;. In case the sets D; are clear from the context, we suppress mentioning them
and write a(o, w), for short.

If we choose the bits of & by independent tosses of a fair coin, then for every w
of length k, the expected value of a(e, w) is 1/2%. Tt is suggestive to assume that
for large m, only for a small fraction of all partial characteristic functions with
domain D the frequency of w will deviate significantly from the expected value.
Using Chernoff bounds (see for example Lemma 11.9 in [18]), one can indeed
show that given k and a rational ¢ > 0, we can compute a natural number
m(k, ) such that for all m > m(k,¢) and for all D and Dy, ..., Dy, as above we
have

H{o:D—={0,1}: (3 5¢ < alo,w,(Dy,...,Dp)) < ;
21D|

MY

Sl

> 1l—e€.
(2)



Remark 3. Let I be a finite set and let @ be a subset of all partial characteristic
functions with domain /. We can easily construct a martingale which by betting
on places in I, increases its capital by a factor of 2|I|/|@| for all sets B where
B|I is in ©. Here the martingale takes the capital available when betting on the
minimal element of I and distributes it evenly among the elements of @, then
computing values upwards according to the fairness condition for martingales.

4 Separating p-btt(k + 1)- and p-btt(k)-reducibility

In connection with Theorem 4, recall that given a reducibility <, the lower <-
span of a set A is the class {X : X < A} of sets which are <-reducible to A4,
and the lower <-span of a class C is the class of all sets which are <-reducible
to some set in C.

Theorem 4. Let R be a p-random set and let k be a natural number. Then
the lower p-btt(k 4+ 1)-span of R is not contained in the lower p-btt(k)-span of
p-RAND.

Proof. In order to define a set A and a p-btt(k + 1)-reduction (gq, ho) from A to
R we let hg(z) be the truth-table of the (k 4 1)-place conjunction and we let

go(z) = {x0MF+L 2021k . x0TI} A = {z:g0(z) CR} .

We are done if we can show that if A is p-btt(k)-reducible to a set, then this
set cannot be p-random. So let B be an arbitrary set and assume that A is
reducible to B via the p-btt(k)-reduction (g, h). We will construct a polynomial-
time computable martingale d which succeeds on B. To this end, we define a
sequence ng,ni,... with

1
ng=20, nipq > 2™ logniy1 > m(k+1, =—) (3)

’ 2i+1
(here m(.,.) is the function defined in Remark 2) and such that given z of
length n, we can compute in time @(n?) the maximal i with n; < n. Such a
sequence can be obtained by standard methods. For example we can first define
a sufficiently fast growing time-constructible function » : w — w and then let
n; be the i-fold iteration of r applied to 0 (for details, refer to the chapter on
uniform diagonalization and gap languages in [6]).

It is helpful to view the betting strategy of the martingale d as being per-
formed in stages ¢ = 0,1, ... where the bets of stage 7 depend on the g-images of
the strings of length n;. While considering the queries made for strings of length
n; with i > 0, we will distinguish short queries which have length strictly less
than

i = BI—;J (4)



and long queries, i.e. queries of length at least l;. We call two strings  and y
equivalent iff, for some i, both have identical length n; and in addition we have

(i) h(z) = h(y) , (1) {z in g(w) - || <li} ={zing(y) : [z <L} , ()

i.e., two strings of length n; are equivalent iff they have the same truth-table and
the same set of short queries. Then for some constant ¢ and for all sufficiently
large ¢, the number of equivalence classes of strings of length n; is bounded by

ks 2 =1 k
222< _ > < 2% (k+1)-2%F < c.27

j=0 J

3

Lk

B

c-272

IA

As a consequence, there is some i, such that for all i > iy, there is an equivalence
class of cardinality at least m; := [logn;|. For all such ¢, among all equivalence
classes of strings of length n; we choose one with maximal cardinality (breaking
ties by some easily computable but otherwise arbitrary rule), we let J; contain
the first m; strings in this equivalence class, and we let

|A N Ji
g =
| Ji
(In fact the current proof would for example also go through if we had chosen

the cardinality m; of J; to be equal to n;. Our actual choice of the m; has
the advantage that most of the current proof can be reused in the proof of

Theorem 7.) We show now that due to A being p-random, almost all a; are
close to 1/2k+1,

Claim 1. For almost all i,

1 1 3 1
5 g < @ < 5gEgT o (6)
Proof. Fix an index ¢ and assume that (6) is false. Let 21 < ... < 2y, be

the elements of J;, let D; = go(z;) for 7 = {1,...,m;}, and let D be the
union of Dy through D,,,. If we let w = 1¥+! then by definition of go we have
a; = a(R|D, w), whence (6) remains false with a; replaced by a(R|D, w). On the
other hand, (6) is false with a; replaced by a(c, w) for at most a 1/2-fraction
of all partial characteristic functions ¢ with domain D because by (3) and the
choice of the m;, we have m; > m(k + 1, I/Zi). Remark 3 then shows that while
betting on R, a martingale can increase its capital by a factor of 2¢ by betting for
all places in D on the 1/2'-fraction of partial characteristic functions for which
(6) is false.

Now consider the following martingale, where we leave it to the reader to show
that the martingale can be computed in polynomial time. The initial capital 1
is split into infinitely many parts ¢y, cs, ... where ¢; = 1/2 is exclusively used
to place bets on the strings in the set D which corresponds to the index i, i.e.,
the strings which are in go(2) for some z in J;. By the preceding discussion, the
martingale can increase the capital ¢; to at least 1 for all 7 such that (6) is false.
But if this were the case for infinitely many values of i, the martingale would
succeed on R, thus contradicting the assumption that R is p-random. O



By Claim 1, the set A has comparatively low density on J;. We will show now
that this fact gives us enough information on the set B to construct a polynomial-
time computable martingal which succeeds on B. Let I" be the functional which
corresponds to the btt(k)-reduction given by (g,h) (whence for example A is
equal to I'(B)) and for all 7 > i, let

H, = U {z:zin g(x) and |z| > I;} ,

rin J;

l.e., H; is the set of all long queries made by strings in J;. Then we can argue
that only for a fraction of all partial characteristic functions o with domain H;
the set I'((B, o)) has such low density on J;. Formally, for every ¢ > iy and for
every partial characteristic function o with domain H;, we let

PGB, ) N N
[7’2(0) - |Jz| ) P = 2 2k:+1 )

and, further,

©; = {o: o partial characteristic function with domain H; and g;(0) < p} .

Then by Claim 1 for almost all ¢, the restriction of B to H; must be contained
in @;. Moreover, we will argue that there is some § < 1 such that for almost all
i, the set @; comprises at most a d-fraction of all partial characteristic functions
with domain H;. We will then exploit the latter fact in the construction of
the martingal d by betting against the (1 — J)-fraction of partial characteristic
functions outside of @; which have already been ruled out as possible restriction
of B to H;.

For the moment, let 7, be the Boolean function obtained as follows: com-
pute h(z) and for every short query z in g(«) hard-wire B(z) into 7. Then for
equivalent strings « and y, the Boolean functions 7, and 7, are identical. As
a consequence, for every 7, all strings in J; are mapped to the same Boolean
function, which we denote by 7;. We call a Boolean function constant iff it eval-
uates to the same truth value for all assignments to its arguments, whence in
particular all O-placed Boolean functions are constant.

Claim 2. For almost all 7, 7; 1s not constant.

Proof. If ; is constant, then the value A(z) must be the same for all z in J;.
But then a; is either 0 or 1, whence Claim 1 implies that this is the case for at
most finitely many indices 1. O

Claim 3. There is a constant § < 1 such that for almost all i, the set ©; comprises
at most a J-fraction of all partial characteristic functions with domain H;.

Proof. For given ¢ such that 7; is not constant, consider the random experiment
where we use independent tosses of a fair coin in order to choose the individual
bits of a random partial characteristic function ¢ with domain H;. Then all



partial characteristic functions of the latter type occur with the same probability,
whence the fraction we want to bound is just the probability of picking an
element in ©;.

For every string « in J;, define a 0-1-valued random variable b, and, moreover,
define a random variable 4; with rational values in the closed interval [0, 1] by

be(o) :=I'((B,o),2) , 7(0) = |}—Z| Z be(0) .

Consider an arbitrary string z in J;. By assumption, 7; is not constant, whence
there is at least one choice of o such that b, is 1. Moreover such a o occurs with
probability at least 1/2* because h(z), and thus also 7;, has at most k variables.
Thus the expected value of b, is at least 1/2% and by linearity of expectation we
obtain

E(y) = |}i| S Bl > l}” Y o= o

rin J; x in J;
If we let p be the probability of the event 4; < p, we have

g <EG)<popt(-p) 1<p+(-p)=> o 4(1=p) . ()

ok
where the relations follow, from left to right, by (7), by definition of p and by
~i < 1, because the probability p is bounded by 1, and by definition of p. But

(8) is obviously false in case (1 — p) is strictly less than 1/2*%2 whence p can
be bounded from above by § 1= 1 — 1/2++2, O

For all ¢, let I; = {« : I; <|z| < l;41}. The n; grow sufficiently fast such that for
some i1 and for all 7 > iy, the set H; is contained in I;. Moreover, by Claim 3,
for some is and all i > i5, there is a set ©; of partial characteristic functions
with domain H; where, firstly, ©; contains only a d-fraction of all such partial
characteristic functions, and, secondly, @; contains the restriction of B to H;.
Let i3 be the maximum of i; and i,.

Now we are in a position to describe a betting strategy which succeeds on
B. On input w, let z be the (Jw|+ 1)th string, i.e., the string on which we might
bet. We first compute the index i such that z is in /; and the corresponding
set H;. In case i < i3 or if z is not in H;, we abstain from betting. Otherwise,
we place a bet on 2 according to a betting strategy as described in Remark 3,
which, while placing bets on the strings in H;, increases the capital by a factor
of at least 1/ by betting against the partial characteristic functions which are
not in @;. Here all necessary computations can be performed in time 2°(*) and
hence, by |z| > I; = |n;/8], in time 20021 Tt follows that this betting strategy
induces a polynomial-time computable martingale which on interval I; preserves
its capital in case i < i3 and increases its capital by a factor of at least 1/4 for
all ¢ > i3. This finishes the proof of Theorem 4. O

10



Remark 5. The proof of Theorem 4 shows in fact that the theorem is valid for
some small constant ¢ and all n®-random sets R, i.e., for all sets R which cannot
be covered by a martingale which is computable in time O(n°). Indeed, the
theorem is even valid for n-random R. This can be shown by essential the same
proof where, however, during stage ¢, we will not consider the queries made for
all strings of length n;, but just the queries for the first 27/ strings of this
length, while adapting appropriately the values of the n; and the I;.

Remark 6. Theorem 4 states that the lower p-btt(k+ 1)-span of every p-random
set R contains a set A which is not in the lower p-btt(k)-span of any p-random
set. As already noted in [7], for a set R which is not just p-random but is even
Martin-Lof-random, such a set A cannot be recursive. This follows from a result
by Book, Lutz, and Wagner [8]. They have shown for a quite comprising class of
bounded reducibilities that every recursive set which is reducible to a Martin-
Lof-random set must be contained in the corresponding Almost-class, i.e. in
the class of sets which have an upper span of uniform measure 1. Now, firstly,
their result applies to p-btt(k)-reducibility for all k¥ > 0 and, secondly, for these
reducibilities it has been shown in [2] that the corresponding Almost classes are
all equal to the class of sets computable in polynomial time. As a consequence,
every recursive set A in the lower p-btt(k+1)-span of a Martin-Lof-random set is
computable in polynomial time and is hence in the lower p-btt(k)-span of every
Martin-Lof-random set.

5 Separating p-tt- and p-btt-reducibility

The proof of Theorem 4 can be adjusted such that it yields a global separation
of the polynomial-time bounded versions of truth-table and bounded truth-table
reducibility.

Theorem 7. For every p-random set R, the lower p-tt-span of R is not con-
tained in the lower p-btt span of p-RAND.

Proof. The proof of Theorem 7 is rather similar to the proof of Theorem 4. Here
the main difference is that now, while reducing A to R, we will use an increasing

number of queries. In the definition of the sequence ng, n1,... we replace (3) by
no=0,  mip >2% 0 logniy >m(i+ 1, o) (9)

i.e, the first argument of the function m is changed from the constant k& + 1 to
1. This relates to the fact that now the set A is defined by

A

U {z :|z| =mn; and {20"1* 202171 ... 20'1'} C R} ,

iin w

i.e., the canonical p-tt-reduction from A to R will ask ¢ queries for arguments
of length n;. The set A is indeed reducible to B in polynomial time because the
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n; have been chosen such that given a string z of length n, in polynomial time,
firstly, we can compute the largest index ¢ with n; < |z| and, secondly, we can
check whether n is in fact equal to some n; by comparing the corresponding
indices for  and 071
Now let S be an arbitrary set and assume that A is reducible to S via the
p-btt-reduction (g, h), where this reduction is in fact a p-btt(k)-reduction for
some k. Then if we define the J; and the a; in the same way as in the proof
of Theorem 4, we can show again that for almost all 7, the a; are close to their
expected value, i.e., for almost all i, we have
1 1

5 5 < o <

N | o

1
In the proof we exploit that by the choice of the n;, now we have m; > m(i, 1/2%),
and not just m; > m(k, 1/2"). In the argument we construct a martingal which
again considers all partial characteristic functions domain equal to H;, where
the sets H; are defined like in the proof of Theorem 4. Now we cannot bound
the cardinality of the sets H; by k - m;, as before, but just by 7 - m;. However,
the latter bound is still less than n; for almost all 7, whence the constructed
martingal 1s again computable in polynomial time. The remainder of the proof
is almost literally the same as for Theorem 4 and is left to the reader. O

6 Separations by rec-random oracles

Lutz [11] showed that recursive martingales yield a reasonable measure concept
for the class of recursive sets, where in particular the class of all recursive sets
cannot be covered by a recursive martingale (see [21] for a comparison of measure
concepts for the class of recursive sets). Next we state two results on rec-random
sets which correspond rather closely to Theorems 4 and 7 on p-random sets.

In connection with Theorems 8 and 9, recall from the introduction that
rec-RAND is the class of sets which cannot be covered by a recursive martin-
gale. Moreover, let btt-reducibility be defined like p-btt-reducibility, except that
a btt-reduction can run in arbitrary time and space, and let btt(k)-reducibility
be the restriction of btt-reducibility where the number of queries is bounded
by k.

Theorem 8. Let the set R be in rec-cRAND and let k be a natural number.
Then the lower p-(k + 1)-tt-span of R is not contained in the lower btt(k )-span
of reccRAND.

Theorem 9. For every set R in rec-RAND, the lower p-tt-span of R is not
contained in the lower btt-span of rec-RAND.

We omit the proofs of Theorems 8 and 9, which are basically the same as in the
case of p-random sets. Besides the fact that now we consider effective martingales
and reductions instead of polynomial-time bounded ones, the main difference is
that for recursive reductions from A to B we cannot compute an apriori bound
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on the size of the queries, whence we cannot choose the n; such that the sets
H; are disjoint from some index i on. However, as a set H; will never contain
short strings, i.e., strings of length less than /;, each string 2 will be contained
in at most finitely many of the sets H;. Furthermore, each of the local betting
strategies related to the various sets H; uses its own share of the initial capital,
whence we can apply a recursive betting strategy which at each string z bets
according to the sum of the finitely many local betting strategies which are
relevant for z.

Remark 10. Recall from Remark 1, that a global separation by a class C extends
to all nonempty subclasses of C. As a consequence, the global separation by the
class rec-RAND stated in Theorem § yields as a corollary the main result of
Book, Lutz, and Martin in [7], who used different methods to show that for
all k, the class of Martin-Lof-random sets globally separates p-btt(k + 1)- and
btt(k)-reducibility.
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