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A New Algorithm for MAX-2-SAT

Edward A. Hirsch*

Abstract

Recently there was a significant progress in proving (exponential-time) worst-case
upper bounds for the propositional satisfiability problem (SAT). MAX-SAT is an im-
portant generalization of SAT. Several upper bounds were obtained for MAX-SAT and
its NP-complete subproblems. In particular, Niedermeier and Rossmanith recently
proved the worst-case upper bound O (ZK/ 2'88“') for MAX-2-SAT (i.e. each clause
contains at most two variables), where K is the number of clauses. In this paper we
improve this bound to O (2K2/ 4), where K> is the number of 2-clauses. In addition, our
algorithm and the proof are much simpler than those of Niedermeier and Rossmanith.
The key ideas are to use the symmetric flow algorithm of Yannakakis and to count only
2-clauses (and not 1-clauses).

1 Introduction.

SAT (the problem of satisfiability of a propositional formula in conjunctive normal form
(CNF)) can be easily solved in time of the order 2"V, where N is the number of variables
in the input formula. In the early 1980s this trivial bound was improved for formulas in
3-CNF by Monien and Speckenmeyer [15] (see also [16]) and independently by Dantsin [3]
(see also [6, 4]). After that, many upper bounds for SAT and its NP-complete subproblems
were obtained ([11, 19, 22] are the most recent). Most authors consider bounds w.r.t. three
main parameters: the length L of the input formula (i.e. the number of literal occurrences),
the number K of its clauses and the number N of the variables occurring in it. In this paper
we consider bounds w.r.t. the parameters K and L. The best such bounds for SAT are
p(L)2K/323-[11] (p is a polynomial) and O(22/%7) (see the journal version of [11]).

The maximum satisfiability problem (MAX-SAT ) is an important generalization of SAT.
In this problem we are given a formula in CNF, and the answer is the maximal number of
simultaneously satisfiable clauses. This problem is NP-complete! even if each clause contains
at most two literals (MAX-2-SAT ; see, e.g., [18]). This problem was widely studied in the
context of approximation algorithms (see, e.g., [23, 9, 12, 10]). As to the worst-case time
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bounds for the exact solution of MAX-SAT, Niedermeier and Rossmanith [17] proved two
worst-case upper bounds: O(L - 25/215) for MAX-SAT?, and O(2K/288) for MAX-2-SAT.
For the latter bound, they presented an algorithm for MAX-SAT running in O(2L/576-)
time?; the desired bound follows since L < 2K. They also posed a question whether this
bound can be improved by a direct algorithm (and not by an algorithm for general MAX-
SAT for a bound w.r.t. L). In this paper, we answer this question by giving an algorithm
which solves MAX-2-SAT in O(2%/%) time. In addition, our algorithm and the proof are
much simpler.

Most of the algorithms/bounds mentioned above use the Davis-Putnam procedure [8, 7].
In short, this procedure allows to reduce the problem for a formula F' to the problem for
two formulas F[v] and F[v] (where v is a propositional variable). This is called “splitting”.
Before the algorithm splits each of the obtained two formulas, it can transform them into
simpler formulas F and F, (using some transformation rules ). The algorithm does not split
a formula if it is trivial to solve the problem for it; these formulas are the leaves of the splitting
tree which corresponds to the execution of such algorithm. For most known algorithms, the
leaves are trivial formulas (i.e. the formulas containing no non-trivial clauses).

In the algorithm presented in this paper, the leaves are satisfiable formulas and formulas
for which the (polynomial time) “symmetric flow” algorithm of Yannakakis [23] finds an
optimal solution (this algorithm either finds an optimal solution or simplifies the input
formula). Transformation rules include the pure literal rule, a slightly generalized resolution
rule (using these two rules one can solve MAX-SAT in a polynomial time in the case that
each variable occurs at most twice; it was already observed in, e.g., [20]), and the frequent
1-clause rule [17]. Although in MAX-SAT 1-clauses cannot be eliminated by the usual unit
propagation technique, in the case of MAX-2-SAT they can be eliminated by the symmetric
flow algorithm of Yannakakis [23]. Thus, before each splitting we can transform a formula
into one which consists of 2-clauses, and each variable occurs at least three times. Therefore,
each splitting eliminates at least three 2-clauses in each branch. This observation would
already improve the bound of [17] to O(2K2/3). However, by careful choice of a variable for
splitting, we get a better bound O(2%2/4), which implies the bound O(2%/8) (since L > 2Kj).

In Sect. 2 we give basic definitions and formulate in our framework the known results we
use. In Sect. 3 we present the algorithm and the proof of its worst-case upper bound.

2 Background.

Let V be a set of Boolean variables. The negation of a variable v is denoted by v. Given a set
U, we denote U = {u|u € U}. Literals (usually denoted by 1,1',1;,1l5,...) are the members
of the set W = V U V. Positive literals are the members of the set V. Negative literals are
their negations. If w denotes a negative literal 7, then w denotes the variable v.
Algorithms for finding the exact solution of MAX-SAT are usually designed for the un-
weighted MAX-SAT problem. However, the formulas are usually represented by multisets

?Bansal and Raman [1] have recently improved this bound to O(L - 2%/2:36--),

3Bansal and Raman [1] have recently improved this bound to O(L - 2L/6:89) which leads to the
O(2K/344) bound for MAX-2-SAT.



(i.e., formulas in CNF with integer positive weights). In this paper we consider the weighted
MAX-SAT problem with positive integer weights. A (weighted) clause is a pair (w, S) where
w is a strictly positive integer number, and S is a nonempty finite set of literals which does
not contain simultaneously any variable together with its negation. We call w the weight of
a clause (w, S).

An assignment is a finite subset of W which does not contain any variable together with
its negation. Informally speaking, if an assignment A contains a literal [, it means that [
has the value True in A. In addition to usual clauses, we allow a special true clause (w,T)
which is satisfied by every assignment. (We also call it a T-clause.)

The length of a clause (w, S) is the cardinality of S. A k-clause is a clause of the length
exactly k. In this paper a formula in (weighted) CNF (or simply formula) is a finite set of
(weighted) clauses (w,S), at most one for each S. The length of a formula is the sum of
the lengths of all its clauses. The total weight of all 2-clauses of a formula F' is denoted by
Ra(F).

The pairs (0, S) are not clauses, however, for simplicity we write (0,.S) € F for all S and
all F'. Therefore, the operators + and — are defined:

F+G = {(w+wyS) | (w,S) € F and (wy,S) € G, and wy + wy > 0},
F-G = {(w)—wy,S) | (w1,S) € F and (we,S) € G, and w; — wy > 0}.

For a literal [ and a formula F', we define

Fl] = ({@9)|(w,S)eFandl,l¢S}t+
{(w,S\{I}) | (w,S) € Fand S # {l},and | € S} +
{(w, T) | w is the sum of the weights ' of all clauses (w', S) of F such that [ € S}.

(Note that no (w,®) or (0,S) is included in F[l|, F + G or F — G.) For an assignment
A ={l,...,ls} and a formula F, we define F[A] = F[l;][ls]...[ls] (evidently, F[I][I'] =
F[I'[l] for every literals I,I' such that I # I'). For short, we write F[l1,...,I,] instead
of F[{ly,...,ls}]. For example, if FF = {(1,{z,y}), (5,{7}), (2,{Z,y}), (10,{Z})}, then
Fla,z] = {(11,T), (7,{y}) }.

The optimal value OptVal(F) = maxs{w | (w,T) € F[A]}. An assignment A is optimal
if F[A] contains only one clause (w,T) (or does not contain any clauses, in this case w = 0)
and OptVal(F) =w (= OptVal(F[4])).

A formula is in 2-CNF if it contains only 2-clauses, 1-clauses and a T-clause. A formula
is in 2E-CNF if it contains only 2-clauses and a T-clause.

If we say that a (positive or negative) literal v occurs in a clause or in a formula, we mean
that this clause (more formally, its second component) or this formula (more formally, one
of its clauses) contains the literal v. However, if we say that a variable v occurs in a clause
or in a formula, we mean that this clause or this formula contains the literal v, or it contains
the literal . A variable v occurs positively, if the literal v occurs, and occurs negatively, if
the literal v occurs. A literal [ is an (i,7)-literal if [ occurs exactly 7 times in the formula
and the literal [ occurs exactly j times in the formula. A literal is pure in a formula F' if it
occurs in F', and its negation does not occur in F. The following lemma is well-known and
straightforward.



Lemma 1 Ifl is a pure literal in F, then OptVal(F') = OptVal(Fl]).

In this paper, the resolvent R(C, D) of clauses C = (wi, {l1,12}) and D = (wy, {1, 13}) is
the formula
{ (ma‘X(wla('U?)v T)7 (min(w17w2)7 {52: l3}) }

if [, # I3, and the formula {(w; + wy, T)} otherwise. This definition is not traditional, but it
is very useful in MAX-SAT context.

The following lemma is a straightforward generalization of the resolution correctness (see,
e.g., [21]) for the case when there are weights, but the literal on which we are resolving does
not occur in other clauses of the formula.

Lemma 2 If F contains clauses C = (wy,{v,l1}) and D = (wa, {0, l2}) such that the variable
v does not occur in other clauses of F, then

OptVal(F) = OptVal( (F — {C,D}) + R(C, D) ).
The following simple observation is also well-known (see, e.g., [14, 5]).

Lemma 3 Let F' be a formula in weighted CNF, and v be a variable. Then
OptVal(F) = max( OptVal(F[v]), OptVal(F[7]) ).

We also note that a polynomial time algorithm for 2-SAT is known. In our context, a
formula F is satisfiable if OptVal(F') is equal to the sum of the weights of all clauses occurring
in F.

Lemma 4 (see, e.g. [2]) There is a polynomial time algorithm for 2-SAT.

Yannakakis presented in [23] an algorithm which transforms a formula in 2-CNF into a
formula in 2E-CNF which has the same optimal value. This algorithm consists of two stages.
The first stage is a removal of a maximum symmetric flow from a graph corresponding to
the formula; this stage can be considered as a combination of three transformation rules (it
is not important for us now which combination):

1) replacing® of a “cycle”

{ (w’ {lla E})a (w’ {lg,g}), oty (wa {lkag}) }

by another cycle

{ (w’ {Ea l2})= (wa {E’ l3})’ R (w’ {E’ ll}) };

4This replacing is made by subtracting the weights: e.g., if a formula contains a clause (', {l1,15}) with
w' > w, then it is split into two clauses (W' — w, {l1,12}) and (w, {l1,12}), and the latter clause is replaced as
formulated.




2) replacing of a set

{ (w’ {E})’ (wa {ll,g})a (w’ {ZQ,E})a R (wa {lk—laﬁ}) }

by the set
{ (w7 {E; l2}): (wu {E, 13}), M) (wa {lk——17 lk})v (w’ {E}) };

3) replacing two contradictory clauses (w, {I}) and (w, {I}) by a true clause of the weight
w.

The second stage is replacing of the obtained formula F' by the formula F'[A] for some
assignment A (it is not important for us now which assignment). Evidently, this algorithm
does not increase the total weight of all 2-clauses.

Lemma 5 ([23]) There is a polynomial time algorithm which given an input formula F in
weighted 2-CNF, outputs a formula G in weighted 2E-CNF, such that R2(G) < Ra(F), and
OptVal(F') = OptVal(G).

The following fact was observed by Niedermeier and Rossmanith.

Lemma 6 ([17]) If the weight of a 1-clause (w,{l}) of a formula F' is not less than the
total weight of all clauses of F containing the literal I, then OptVal(F') = OptVal(F[l]).

3 Results.

In this section we present Algorithm 1 which solves MAX-2-SAT in the time O(2X2/%), where
K, is the total weight of 2-clauses in the input formula (in the case of unweighted MAX-2-
SAT, K, is the number of 2-clauses).

Algorithm 1.

Input: A formula F in weighted 2-CNF.
Output: OptVal(F).

Method.
(1) Apply the symmetric flow algorithm from [23] (see Lemma 5) to F.
(2) If there is a pure literal [ in F', assume F := F[[].

(3) If there is a variable that occurs in F' exactly once positively in a clause C' and exactly
once negatively in a clause D, then F := (F — {C,D}) + R(C, D).

(4) If F has been changed at steps (2)—(3), then go to step (1).

(5) If F is satisfiable’, return the sum of the weights of all its clauses.

®We can check it in a polynomial time [2], see Lemma 4.
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(6) If there is a variable v occurring in the clauses of F' of the total weight at least 4, execute
Algorithm 1 for the formulas F[v] and F[7], and return the maximum of its answers.

(7) Find® in F a clause (w, {l1,l}) such that l; and [, are (2,1)-literals, and the two other
clauses C' and D containing the literals /1, /; do not contain the li_terals [, 1l5. Execute
Algorithm 1 for the formulas (F[l;] — {C, D}) + R(C, D), and Fl[ly, 5], and return the

maximum of its answers.

O

Theorem 1 Given a formula F in 2-CNF, Algorithm 1 always correctly finds OptVal(F)
in time O(2%(F)/4),

Proof. Correctness. If Algorithm 1 outputs an answer, then its correctness follows from the
lemmata of Sect. 2 (step (1): Lemma 5; step (2): Lemma 1; step (3): Lemma 2; step (6):
Lemma 3; step (7): Lemmata 3, 2 and 6, note that at this step F' consists of the clauses of
weight 1).

Since any change at steps (2) and (3) decreases the total weight of 2-clauses in F', and
the step (1) does not increase it, the cycle (1)—(4) is repeated a polynomial number of times.
Now it remains to show that at step (7) Algorithm 1 always can find a clause satisfying its
conditions.

Note that at step (7) the formula F' is not satisfiable, consists only of 2-clauses (and,
maybe, a T-clause), does not contain pure literals, and each variable occurs in it exactly
three times, i.e. F' contains only (2,1)-literals and (1,2)-literals. Since F' is not satisfiable,
there exists at least one clause in it that contains two (1,2)-literals (otherwise the assignment
consisting of (2,1)-literals is satisfying; cf. “Extended Sign Principle” of [13]). Thus, (1,2)-
literals occur in at most /N — 1 clauses of F', where /V is the number of variables occurring in
F. There are 3N/2 2-clauses in F. Hence, F' contains more than N/2 2-clauses consisting
only of (2,1)-literals. There are at least N + 1 literals in these clauses, thus, there is at
least one (2,1)-literal occurring in fwo such clauses. This literal, and at least one of the two
literals occurring with it in these clauses, satisfy the condition of the step (7).

Running time. Each of the steps of Algorithm 1 (not including recursive calls) takes only
a polynomial time (Lemmata 5 and 4). The steps (1)—(5) do not increase the total weight of
2-clauses in F'. By the above argument, each of these steps is executed a polynomial number
of times during one execution of Algorithm 1 (again not including recursive calls). It suffices
to show that for each formula F” which is an argument of a recursive call, R (F") < Ry (F)—4.

Note that at the moment of a recursive call, the formula consists only of 2-clauses (and,
maybe, a T-clause). Then the statement follows from the conditions of the steps (6) and (7).

0

Corollary 1 Given a formula F in unweighted” 2-CNF of length L, Algorithm 1 always
correctly finds OptVal(F) in time O(2L/8).

Remark 1 Of course, in Corollary 1 only the number of literal occurrences in 2-clauses is
essential.

6Theorem 1 proves that it is possible to find a clause satisfying the conditions of this step.
"Te., all weights equal 1.



4 Conclusion

In this paper we improved the existing upper bound for MAX-2-SAT with integer weights
to O(2%2/*), where K is the total weight of 2-clauses of the input formula (or the number of
2-clauses for unweighted MAX-2-SAT). This also implies the O(2%/8) bound for unweighted
MAX-2-SAT, where L is the number of literal occurrences (in 2-clauses).

One of the key ideas of our algorithm is to count only 2-clauses (since MAX-1-SAT in-
stances are trivial). It would be interesting to apply this idea to SAT, for example, by
counting only 3-clauses in 3-SAT (since 2-SAT instances are easy). Also, it remains a chal-
lenge to find a “less-than-2V" algorithm for MAX-SAT or even MAX-2-SAT, where N is the
number of variables.
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