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Abstract

Recently there was an explosion in proving (exponential-time) worst-case upper
bounds for the propositional satisfiability problem (SAT) and related problems, mainly,
k-SAT, MAX-SAT and MAX-2-SAT. The previous version of this paper contained an
algorithm for MAX-2-SAT, and a “proof” of the theorem stating that this algorithm
runs in time of the order 2K2/4, where K is the number of 2-clauses in the input
formula. This bound and the corresponding bound 2%/8 (where L is the length of the
input formula) are still the best known. However, Jens Gramm pointed out to the
author that the algorithm in the previous revision of this paper had an error. In this
revision of the paper, we present a corrected version of the algorithm and the proof
of the same upper bound. The proof is still based on the key idea to count only 2-
clauses (and not 1-clauses). However, the use of Yannakakis’ symmetric flow algorithm
is replaced by several transformation rules.

1 Introduction

SAT (the problem of satisfiability of a propositional formula in conjunctive normal form
(CNF')) can be easily solved in time of the order 2", where N is the number of variables in
the input formula. In the early 1980s this trivial bound was improved for formulas in 3-CNF
by Monien and Speckenmeyer [17, 18] and independently by Dantsin [4]. After that, many
upper bounds for SAT and its NP-complete subproblems were obtained ([15, 11, 21, 14, 24]
are the most recent). Most authors consider bounds w.r.t. three main parameters: the
length L of the input formula (i.e. the number of literal occurrences), the number K of its
clauses and the number N of the variables occurring in it. In this paper we consider bounds
w.r.t. the parameters K and L. The best such bounds for SAT are poly(L) - 25/3:23- [11]
and poly(L) - 25797 (see the journal version of [11]).

The maximum satisfiability problem (MAX-SAT' ) is an important generalization of SAT.
In this problem we are given a formula in CNF, and the answer is the maximum number
of simultaneously satisfiable clauses. This problem is NP-complete! even if each clause
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there is an assignment that satisfies at least m clauses”.
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contains at most two literals (MAX-2-SAT ; see, e.g., [20]). MAX-SAT was widely studied
in the context of approximation algorithms (see, e.g., [25, 8, 13, 10, 1]). Recently there was
an explosion in the domain of the worst-case time bounds for the exact solution of MAX-SAT
and MAX-2-SAT [16, 5, 19, 2, 9]. The best bounds from the listed papers are O(L - 2K/2:36-)
and O(L - 25/68%) for MAX-SAT [2], and the bounds O(L - 25/37-) and O(L - 2L/748-) for
MAX-2-SAT [9].

Most of the algorithms/bounds mentioned above, as well as the algorithm presented in
this paper, use a kind of Davis-Putnam procedure [7, 6]. In short, this procedure allows to
reduce the problem for a formula F' to the problem for two formulas F[v] and F[v] (where
v is a propositional variable). This is called “splitting”. Before the algorithm splits each of
the obtained two formulas, it can transform them into simpler formulas F; and F, (using
some transformation rules). In a splitting tree corresponding to the execution of such an
algorithm, the node labelled by F' has two sons labelled by F} and F;. The algorithm does
not split a formula if it is trivial to solve the problem for it; these formulas are the leaves
of the splitting tree. The running time of the algorithm is within a poly(L) factor of the
number of leaves of the splitting tree.

In the previous revision of this paper [12], an algorithm achieving the bounds poly(L)-2%/4
and poly(L)-2"/® was given. However, Jens Gramm [private communication] has pointed out
that there is an error in this algorithm: it uses Yannakakis’ symmetric flow algorithm [25] as
a subroutine, Yannakakis’ algorithm may introduce non-integer weights, and the algorithm
from [12] relies on integer weights.

In this paper, we give a corrected version of this algorithm. One of the main ideas remains
the same: to count only 2-clauses (clearly, MAX-1-SAT is trivial). However, the present
version of our algorithm does not use Yannakakis’ symmetric flow algorithm. Instead, it
uses a transformation rule that allows to eliminate a variable occurring only in two 2-clauses
(with the same sign) and in one l-clause (with the opposite sign)?. This rule, together
with pure literals elimination, resolution rule, the annihilation of 1-clauses and dominating
1-clause rule (this one is from [19]), guarantees that we can transform a formula into one in
which every variable occurs in at least three (unweighted) 2-clauses. A splitting therefore
eliminates at least three 2-clauses in each branch. This observation already gives a very
simple poly(L) - 2X2/3_time algorithm. In this paper we show that by choosing a variable v
occurring in the maximum number of 2-clauses we can get a better bound poly(L) - 2K2/4
which implies the bound poly(L) - 2%/8 (since L > 2Kj).

In Section 2 we give basic definitions. In Section 3 we describe the transformation rules
and show their correctness. In Section 4 we present the algorithm and the proof of its
worst-case time upper bound.

2 Background

Let V' be a set of Boolean variables. The negation of a variable v is denoted by v. Literals
are variables and their negations. If [ denotes a negative literal v, then [ denotes the variable

2In fact, this rule inspired the author to replace (unfortunately, incorrectly) several transformation rules
by a “similar” Yannakakis’ algorithm in a very early draft of this paper.



v.

Algorithms for finding the exact solution of MAX-SAT are usually designed for the un-
weighted MAX-SAT problem. However, the formulas are usually represented by multisets
(i.e., formulas in CNF with positive integer weights). In this paper we consider the weighted
MAX-SAT problem with positive integer weights. A (weighted) clause is a pair (w, S) where
w is a strictly positive integer number, and S is a nonempty finite set of literals which does
not contain simultaneously any variable together with its negation. We call w the weight of
a clause (w, 5).

An assignment is a finite set of literals which does not contain any variable together with
its negation. Informally speaking, if an assignment A contains a literal /, then the literal /
has the value True in A. In addition to usual clauses, we allow a special true clause (w,T)
which is satisfied by every assignment. (We also call it a T-clause.)

The length of a clause (w, S) is the cardinality of S. A k-clause is a clause of the length
exactly k. In this paper a formula in (weighted) CNF (or simply formula) is a finite set of
(weighted) clauses (w, S), at most one for each S. A formula is in 2-CNF if it contains only
2-clauses, 1-clauses and a T-clause. The length of a formula is the sum of the lengths of all
its clauses. The total weight of all 2-clauses of a formula F is denoted by Ry (F).

The pairs (0, S) are not clauses, however, for simplicity we write (0,.5) € F for all S and
all F'. Therefore, the operators + and — are defined:

( ) € F and (ws, S) € G, and w; +wy > 0},

F+G = {(W1+WQ,S) (4)1,5
S) | (w1,S) € F and (we, S) € G, and w; — wq > 0}.

F—G {(wl—wg, )

|
|
Ezxample 1. If
F={(2T), 3{z,y}), 4{z7})}

and

G={2{zy}), 4{z,7}) },
then

F-G={(2T), (1,{z,y}) }.
O

For a literal [ and a formula F, the formula F[[] is obtained by setting the value of [ to
True. More precisely, we define

F[l = ({(w,S)] (w,S)€ Fandl,l¢S}+
{(w,S\{1}) | (w,S)€ Fand S # {l},and [ € S} +
{(w, T) | w is the sum of the weights ' of all clauses (', S) of F such that [ € S}.

(Note that no (w, ) or (0,S5) is included in F[l], F + G or F — G.) For an assignment A =
{l1,...,1s} and a formula F, we define F[A] = F[l1][lo] . .. [I5] (evidently, F[l][I'] = F[I'][I] for
every literals [, !’ such that [ # {"). For short, we write F[ly,...,[ ] instead of F[{l1,...,[s}].

Example 2. 1f
F={1T), (L{z,y}), 6,;{7}), 2,{7,7}), (10,{z}), (2.{7,2}) },
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then
Flz,z) ={ (12,T), (7,{7}) }-
O

The optimal value OptVal(F) = maxs{w | (w,T) € F[A]}. An assignment A is optimal
if F[A] contains only one clause (w, T) (or does not contain any clauses, in this case w = 0)
and OptVal(F) = w (= OptVal(F[4])).

If we say that a literal v occurs in a clause or in a formula, we mean that this clause
(more formally, its second component) or this formula (more formally, one of its clauses)
contains the literal v. However, if we say that a variable v occurs in a clause or in a formula,
we mean that this clause or this formula contains the literal v, or it contains the literal v.

For a literal [, we write #;(G) to denote the total weight of the clauses of a formula G in
which [ occurs. We omit G when the meaning of F' is clear from the context. We also write
#;* to denote the total weight of k-clauses in which [ occurs.

A closed subformula G is a subset of a formula F' such that none of the variables occurring
in G occur in F' — (.

3 Transformation rules

In this section we formulate the transformation rules we use. We also show their correctness.
We say that a rule is correct if it preserves OptVal.

Pure literal. A literal is pure in a formula F' if it occurs in F', and its negation does not
occur in F'. The following lemma is well-known and straightforward.

Lemma 1. If a is a pure literal in F, then OptVal(F') = OptVal(F[a]).
Rule Tpure replaces F' by Fla| if a is a pure literal.

Annihilation of 1-clauses. Rule T,,, replaces F' by (F — {(1,{a}), (1,{a}) }) + (1,T)
if F' contains clauses (w1, {a}) and (w9, {@}). In other words, this rule “annihilates” opposite
1-clauses.

Resolution. In this paper, the resolvent R(C, D) of 2-clauses C' = (w1, {l1,l2}) and D =
((A)Q, {ll, lg}) is the formula

{ (max(wy,ws), T), (min(wy,ws), {l2,13}) }

if [y # I3, and the formula {(w; + wy, T)} otherwise. This definition is not traditional, but it
is very useful in MAX-SAT context.

The following lemma is a straightforward generalization of a statement about usual res-
olution (see, e.g., [23]).
Lemma 2. If F contains 2-clauses C' = (w1,{v,l1}) and D = (w9, {7,l2}) such that the
variable v does not occur in other clauses of F', then

OptVal(F) = OptVal( (F — {C, D}) + R(C, D) ).



Rule Tpp replaces F' by (F — {C,D}) + R(C, D) if F, C and D satisfy the condition of
Lemma 2.

Remark 1. Note that if at least one of C' and D is a 1-clause, the situation is handled by
Tann O Taom (described below) followed by Tpure-

Dominating 1-clause. The following fact was observed by Niedermeier and Rossmanith.

Lemma 3 (Niedermeier, Rossmanith, [19]). If for a literal a and a formula F, # > #4,
then OptVal(F) = OptVal(Fa]).

Rule Tgom replaces F' by Fla] in such a case.

Small closed subformula. We can easily compute the optimal value for a closed subfor-
mula G containing at most two variables. Clearly, OptVal(F') = OptVal(F —G)+OptVal(G).
Rule Tsman replaces F' by (F — G) + (OptVal(G), T) in such a case.

Rare literal. Let F be a formula, and let a be a literal, such that #® = 2, #% = #0 =0
and # = 1. Consider a 2-clause (w, {a,b}) in F. Rule Tyare replaces this clause by (w, T)

and replaces the literals a,a by the literals b, b respectively in all other clauses.

Lemma 4. Rule Tyare is correct.

Proof. Let F' be the obtained formula. It is trivial that OptVal(F"') < OptVal(F'). We now
prove the opposite inequality.

Let A be an optimal assignment for F. Let b € A. Consider F'[b]. Note that we can
apply Rule Tgom to the literal @ in this formula, i.e.,

OptVal(F) = OptVal(F[A]) < OptVal(F[b])
— OptVal(F[a, b]) = OptVal(F"[a, b]) < OptVal(F").

Let now b € A. Consider F[b]. Note that we can apply Rule Tapn, and then Rule Tpure
to the literal a in this formula, i.e.,

OptVal(F) = OptVal(F[A]) < OptVal(F[b])
= OptVal(F(a, b)) = OptVal(F'[a,b]) < OptVal(F").

4 Results

In this section we present Algorithm 1 which solves MAX-2-SAT in time of the order 2%2/4,
where K, is the total weight of 2-clauses of the input formula (in the case of unweighted
MAX-2-SAT, K, is the number of 2-clauses).



Algorithm 1.

Input: A formula F in weighted 2-CNF.
Output: OptVal(F).

Method.

(A1) Apply Rules Tpure; Tann; Tpp;, Tdom; Tsman, Trare to F' as long as at least one of
them is applicable.

(A2) If F contains only a T-clause, return the weight of this clause.

(A3) Choose an arbitrary variable v occurring in F with maximum #® +#% and form the
formulas F{ := F[v] and F} := F[v]. For each i = 1,2, apply Rules Tpure, Tann, TP,

Tdom, Trare to F] in such order that for the obtained formula Fj,
R(F) — Ro(F;) > 4

holds®. Execute Algorithm 1 for the formulas Fy and F, and return the maximum of
its answers.

O

Theorem 1. Given a formula F in 2-CNF, Algorithm 1 always correctly finds OptVal(F') in
time poly (L) - 2X2/% where L is the length of F, and Ky = f5(F).

Proof. Running time. Every transformation rule takes polynomial time and does not increase
the total weight of non-T-clauses. When the condition of a rule is satisfied, the rule decreases
the total weight of non-T-clauses. Thus, the transformation rules are executed a polynomial
number of times during step (A1).

None of the steps of Algorithm 1 increases the total weight of 2-clauses of F'. When
the algorithm splits F' at step (A3), the condition of this step guarantee that the weight of
2-clauses is decreased by at least four in each of the two branches. Algorithm 1 does not
split formulas that do not contain 2-clauses, hence, the bound on the running time follows.

Correctness. The correctness of transformation rules is shown in Section 3. It remains
to show that at step (A3) appropriate rules can be easily found. Clearly, if #2 + #% > 4,
then no rules are needed. We now suppose the contrary.

Note that if for a variable u, #2 +#32 < 2 holds, then u satisfies the condition of at least
one of our transformation rules (and this is impossible). Moreover, #® + #& < #@ 4 £®
by the choice of v. Thus, for every variable u occurring in F, we have #& + #& = 3,

We now note that for each i = 1,2, we have R (F) — R2(F)) > 3.

Let (w, {a, b}) be one of the 2-clauses of F' containing the variable v, where a = v or a =7,
and let u be the variable corresponding to the literal b. Note that every F] contains a 2-clause
containing u since F' does not satisfy the condition of Rule Tg,ay. On the other hand, the
variable u occurs in at most two 2-clauses of F]. Clearly, applying the transformation rules
to this variable we can reduce the number of 2-clauses in F] yet by one obtaining F; such
that Ro(F') — R2(F;) > 4 (first apply Tann to 1-clauses containing u (if possible), then apply
Tpur; Top, Tdom OF Trare to u depending on the remaining clauses containing u). U

3Theorem 1 proves that it can be easily decided which rules should be applied and in which sequence.



Corollary 1. Given a formula F in unweighted* 2-CNF of length L, Algorithm 1 always
correctly finds OptVal(F) in time poly(L) - 21/8.

Remark 2. Of course, in Corollary 1 only the number of literal occurrences in 2-clauses is
essential in the exponent.

Remark 3. Clearly, the polynomial factor poly(L) in Theorem 1 and Corollary 1 is nearly
linear.

Remark 4. Algorithm 1 can be easily redesigned so that it finds the optimal assignment (or

one of them, if there are several assignments satisfying the same number of clauses) instead
of OptVal(F).

5 Conclusion

In this paper we proved the upper bound poly(L)-2%2/* for MAX-2-SAT with positive integer
weights, where K is the total weight of 2-clauses of the input formula (or the number of
2-clauses for unweighted MAX-2-SAT), L is the number of literal occurrences. This also
implies the bound poly(L) - 2%/ for unweighted MAX-2-SAT.

The key idea of our algorithm is to count only 2-clauses (we can do it since MAX-1-
SAT instances are trivial). It would be interesting to apply this idea to SAT, for example,
by counting only 3-clauses in 3-SAT (since 2-SAT instances are easy). Also, it remains a
challenge to find a “less-than-2” algorithm for MAX-SAT or even for MAX-2-SAT, where
N is the number of variables.
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