Electronic Colloquium on Computational Complexity, Report No. 38 (1999)

On the Complexity of Finding Satisfiable
Subinstances in Constraint Satistaction

Peter Jonsson
Department of Computer and Information Science
Linkoping Universitet
S-58183 Linkoping, Sweden
petej@ida.liu.se

Paolo Liberatore*
Department of Computer and System Science
University of Rome “La Sapienza”
Via Salaria 113
I-00198 Rome, Italy

liberato@dis.uniromal.it

August 27, 1999

Abstract

We study the computational complexity of an optimization ver-
sion of the constraint satisfaction problem: given a set F' of constraint
functions, an instance consists of a set of variables V related by con-
straints chosen from F' and a natural number k. The problem is to
decide whether there exists a subset V/ C V such that |[V’/| > k and the
subinstance induced by V' has a solution. For all possible choices of
F', we show that this problem is either NP-hard or trivial. This hard-
ness result makes it interesting to study relaxations of the problem

*This work has been done while the second author was visiting LinkOping University.

ISSN 1433-8092

which may have better computational properties. Thus, we study the
approximability of the problem and we consider certain compilation
techniques. In both cases, the results are not encouraging.

1 Introduction

The constraint satisfaction problem provides a framework in which it is pos-
sible to express, in a natural way, many combinatorial problems encountered
in computer science, mathematics and elsewhere. A constraint satisfaction
problem CSP(F) consists of some finite set F' = {f; : D¥ — {0,1}} of
functions where D is some (not necessarily finte) fixed set. An instance of
the problem is a set of constraint functions applied to specified subsets of
variables and the aim is to find an assignment to the variables that satisfies
all constraint applications, i.e., make them evaluate to 1. Note that F' is
not part of the input of the problem. This problem is known to be NP-hard
in the general case and NP-complete when the domains of the variables are
finite. However, much more is known about the complexity of the constraint
satisfaction problem and its variants. The most well-known result is probably
that by Schaefer [1978]. He has shown that there are essentially four classes
of polynomial-time solvable constraint satisfaction problems on domains of
size 2, namely,

1. 0-valid problems, i.e., problems where the all-zero assignment is always
a solution, and similarly the 1-valid problems;

2. Horn problems, i.e., problems where every constraint function can be
expressed as the conjunction of Horn clauses, and similarly anti-Horn
problems;

3. 2SAT problems where every constraint function can be expressed as
the conjunction of clauses of length 2; and

4. affine problems where every constraint function is the solution set of
some set of linear equations modulo 2.

In all other cases, the problem is NP-complete. Similar complete classifica-
tions have been obtained for a number of other problems over domains of
size 2, including the following:

e The MAX-CSP and MIN-CSP problems where the objective is to max-
imize (minimize) the number of satisfied constraints [Creignou, 1995,
Khanna et al., 1997b, Khanna et al., 1997a]. Khanna et al. also stud-
ies the MAX ONES and MIN ONES problems where the objective is to
maximize (minimize) the number of variables that is given the value 1.
Further variations on these problems are considered in Jonsson [1999].

e The problem of finding the lexicographically maximal or minimal solu-
tion [Reith and Vollmer, 1998|.

e The problem of counting the number of solutions [Creignou and Hermann, 1996].

e The problem of telling whether a set of solutions represents the set of
all solutions [Kavvadias and Sideri, 1998].

Complexity results for domains of cardinality larger than 2 are more sparse.
However, a large number of polynomial-time subclasses have been identified,
c.f., [Feder and Vardi, 1998, Jeavons and Cooper, 1996, Cooper et al., 1994].
Certain graph-theoretic results, such as the dichotomy theorem for H-colourings
of graph [Hell and Nesetiil, 1990], can be transferred to the constraint sat-
isfaction domain by using the connection between graph homomorphisms
and CSP which has been pointed out several times [Feder and Vardi, 1998,
Jeavons, 1998]. This results says that if we restrict ourselves to CSP problems
containing only one relation R which is binary (i.e., only involves two vari-
ables) and symmetric (R(z,y) holds iff R(y, z) holds), then the CSP problem
is either polynomial or NP-complete. A classification of the complexity of
the general CSP problem for arbitrary domain is not known.

The main result of this paper is a complete classification of the complexity
of a problem we call MAXIMUM INDUCED CSP(F) (MAX-IND-CSP(F)). An
instance of this problem consists of a set of variables V' (taking values from
a domain which may be infinite) related by constraints picked from the set
F' and a natural number k. The computational problem is to decide whether
there exists a subset V' C V such that |V’| > k and the induced subinstance
of the CSP instance has a solution. We show that depending on the choice
of I, this problem is either NP-hard or polynomial. In fact, the problem is
polynomial iff all instances of CSP(F') have a solution. Consequently, the
MAaX-IND-CSP(F') problems solvable in polynomial time are trivial and of
no interest.

Observe the difference between MAX-IND-CSP and MAX-CSP: the aim
in MAX-CSP is to maximize the number of satisfied constraints and not to
maximize the size of the largest induced satisfiable subinstance. MaAx-CSP
is in a certain sense easier problem then MAX-IND-CSP since there exists a
nontrivial set F' of constraint functions such that MAxX-CSP(F) is solvable
in polynomial time. (e.g., Khanna et al. [1997b] shows that this holds when
F only contains so-called 2-monotone constraint functions.) One should also
observe that MAX-IND-CSP is not an artificial problem without natural
applications. Consider, as an example, scheduling or timetabling problems
where the variables denotes start and stop times. Knowing how many of the
timing constraints that can be satisfied is probably not the most important
piece of information in practice (the MAX-CSP problem); the important
thing is to know how many of the start and stop times that simultaneously
can be acheived (the MAX-IND-CSP problem). Furthermore, many well-
studied combinatorial problems, such as the independent set problem for
graphs or hypergraphs, can easily be expressed as MAX-IND-CSP problems.

Having shown that MAX-IND-CSP is computationally hard except in a
few trivial cases, it is interesting to study relaxations of the problem. Thus,
we also consider two variations of the original problem.

In the first case, we begin by observing that the input of certain prob-
lems can be divided into two parts: One, called the fized part, is known in
advance, while the other one, called the varying part, is only available at
the same time as the actual computation. Such a distinction is interesting
when many input instances share the same fixed part. Then, it makes sense
to preprocess off-line the fixed part, putting it into a form such that solving
on-line a set of instances becomes easier. This idea of preprocessing part of
the input has been used in many areas of computer science such as computa-
tional geometry. For example, certain techniques for geometric searching (cf.
[Preparata and Shamos, 1985]) use a costly preprocessing phase to speed up
the on-line processing.

In our “compilation” version of MAX-IND-CSP (F'), we divide the input
into a fixed part Il consisting of a set of constraints over F', and a varying
part (V' k) where V' is a subset of the variables and k is a natural number
such that £ < |V’|. The question is whether the CSP instance II restricted
to the variables in V' has a solution on > k variables. Clearly, this prob-
lem is at least as hard as the original MAX-IND-CSP problem. Also note
that the problem would be trivial if V' was not included in the varying part.

4

Concerning this problem, we show the following: for any set F' of constraint
functions such that there exists unsatisfiable instances of CSP(F'), it is not
possible to compile the fixed part into a polynomially-sized data structure
such that the on-line processing can be carried out in polynomial time (un-
less NP C P/poly, which implies that the polynomial hierarchy collapses
[Karp and Lipton, 1980]). Obviously, it is only interesting to compile the
fixed part to a small data structure since the problem becomes trivial if we
allow compilation into arbitrarily-sized structures.

Finally, we study the approximability of MAX-IND-CSP(F') and the re-
sults are negative also in this case. We are not able to give a complete answer
to the question of when MAX-IND-CSP(F) is efficiently approximable and
when it is not. However, if all functions in F' have arity 2 or the constant-
zero function can be “implemented” by the functions in F', then MAX-IND-
CSP(F) cannot be approximated within n° for some § > 0 in polynomial
time, unless P = NP. Stronger nonapproximability bounds are also given in
certain special cases and under other complexity-theoretic assumptions.

The paper has the following organization: Section 2 contains the basic
definitions and Section 3 provides the complexity results for MAX-IND-CSP.
The compilability and approximability results can be found in Sections 4 and
5, respectively. A brief discussion of the results and concluding remarks are
collected in Section 6.

2 Preliminaries

In this section we define the problem of constraint satisfaction, and some
related concepts. Basically, a constraint is a condition that can hold or not
over a set of objects. An instance of the constraint satisfaction problem is
a set of constraints, and our aim is to find a set of objects that satisfy all
constraints. Constraints can refer to a single or multiple objects, and they
are thus classified on the basis of their arity. For instance, a unary constraint
is a condition over a single object, while a binary constraint specify that
some relation must hold between two objects.

Let us refer to the basic case of algebra: objects are numbers, and con-
straints are relations over them. A unary constraint is for instance z; > 0.
This is a condition over the variable z;, since only numbers greater than 0
satisfy this condition. On the other hand, a binary constraint like z; = x5

do not give a condition over x; alone: rather, it specify that 1 and zo must
be related in some way (in this case, they must be equal).

In this paper, we are concerned with constraints of arity > 2, i.e., we do
not consider unary constraints at all. A discussion of unary constraints is
in the conclusion of the paper: the complexity of the constraint satisfaction
problem with unary constraints is left open by this work.

Let us formally define the problem of constraint satisfaction. Let D be
an arbitrary non-empty collection of objects and F' = {fi, ..., f,} be a finite
set of functions from D¥ — {0,1},1 <7 < n and k; > 2 for every 7. We call
k; the arity of function f;. An instance of the constraint satisfaction problem
is defined as follows.

Definition 1 An instance of the constraint satisfaction problem over F
(CSP(F)) consists of:

1. a finite set of variables, V;

2. a finite set of constraints C = {Cy,...,Cn}. Each constraint C; is a
list (fi,x1,...,xp) where f; € F, xq,...,x, are distinct members of V
and p = k;, i.e., p equals the arity of f;.

Given a constraint ¢ = (f,1,... ,x,), we say that f is the function of c
and the list (x1,... ,x,) is the argument of c.

The domain D is not explicitly given in the definition of CSP(F'), since
it can be easily inferred from F. Given an instance of CSP(F'), the basic
computational problem is to verify whether it is possible to assign a value to
any variable in order to satisfy all constraints. To this extent, we give the
following definition.

Definition 2 A solution to an instance I1 of CSP(F) is a function S : V —
D such that for each constraint (f,z1,...,x,) € C, f(S(x1),...,S(xp)) = 1.
If 11 has a solution, we say that 11 is satisfiable.

An instance of the constraint satisfaction problem may be unsatisfiable.
In such cases, we may look for a partial solution, that is, an assignment of
values to a subset of variables. We define an induced subinstance of a CSP
problem as follows.

Let IT = (V,C) be an instance of the CSP(F') problem and assume that
V' C V. We define the subinstance of II induced by V', II|V' = (V',C")

where
C'={(f,z1,--.,2,) €C | 21,... ,2, € V'}.
The problem of finding solutions for a subinstance is defined as follows.

Definition 3 An instance of the MaxiMuM INDUCED CSP(F) (MAX-IND-
CSP (F')) problem consists of an instance Il = (V,C) of the CSP(F) problem
and an integer 1 < k < |V|. A solution to an instance of MAX-IND-CSP (F)
is a subset V! CV of the variables satisfying the following requirements:

1. V' > k; and
2. II|V' is satisfiable.

The concept of graph corresponding to a CSP instance is very useful, as
it allows for a graphical representation of CSP instances. This representation
can be used whenever all functions have arity two.

Definition 4 The graph corresponding to a CSP instance is defined as fol-
lows: for each variable of the CSP instance there is a node of the graph; for
any constraint (f,z,y), there is an edge labeled f between the nodes corre-
sponding to x and y.

Given a graph, we can construct a CSP instance using one function: for
each node of the graph there is a variable, and for each edge (u,v) there is a
constraint (f,z,y), where x and y are the variables corresponding to u and
v, respectively.

Let us consider an example.

Example 5 Let D = {0,1} and F' = {f1}, where the f; is a function defined

as: .
f1(:r,y):{ 1 ife#y

0 otherwise

Let us consider the following constraint satisfaction problem:

Ts

Figure 1: An instance of the constraint satisfaction problem.

V = {$1,$2,$3,.§C4,.’E5}
C = {(flaxlaxS)a(flaxlaxQ)’(flaanx3)’
(f1,74,%5), (f1, 21, 24), (f1, 2, 74), (f1, 23, 74) }

Since all constraints are binary, we can represent this instance as a graph.
Each node of the graph represents a variable of the problem, and constraints
are represented by edges. The graph corresponding to the above instance is
in Figure 1. Since f; is the only function, it is not necessary to label edges
with this function.

It is easy to see that this instance is unsatisfiable: for instance, if we
assign 1 to z1, we are forced to assign 0 to x, because of the constraint
(f1,21,x2), which is satisfied only if x; and x5 are assigned different values.
For the same reason, we must give 0 to 4. This means that the constraint
(f1,24,x2) is not satisfied, since z5 and z4 have the same value.

Finding a solution of the maximal induced CSP problem amounts to find
a maximal subset of variables which is satisfiable. In the example above,
we were able to find a solution for x; and xz9, but not for z;, zo, and xz4.
In Figure 2 we show the instance induced by {z1, 9,3, 25}, which is the
maximal satisfied induced subinstance.

So far, we have given the definitions of the problems of interest. We now
define some concept that will be useful in the sequel. First, we define the
concept of nontrivial set of functions.

T T2

\

O

xs3

Zs

H|{l‘1, T2, T3, l‘5}

Figure 2: An induced subinstance

Definition 6 A set of functions F is nontrivial if and only if there exists an
instance of CSP(F') that have no solutions.

If a set of functions is trivial, then any instance has a solution. As a
result, the problem of deciding whether a solution exists is also trivial.

Symmetric functions are very important in our proofs. Defining symmetry
for a binary function is straightforward: f is symmetric if and only if, for
any = and y in the domain it holds f(z,y) = f(y,). To define symmetry in
the general case, let us denote Sy the set of permutations on {1,...,k}.

Definition 7 A function f : D* — {0, 1} is symmetric if and only if it holds
f@y,ak) = [(@onys -+ 5 Togy)
for any possible choice of o € Si, and any x1,... ,x, € D.

Given a domain D and a set of functions F', we define the intersection of
the functions in F' as follows.

Definition 8 Let D be an arbitrary non-empty collection of objects and F' =
{f1,---, fa} be a finite set of functions from D¥ — {0,1}, 1 <1 < n and
k; > 2 for every i.

Let a = max(ky, ..., k,) and define the function f: D* — {0,1} as

9

flzy, ... me) = min{f,-(:v(,(l), s Toky) |1 <i<nando € Sa}
We call this function the intersection of {f,..., f.}.

It can be easily proved that, given an instance II of CSP({f}), where
f is the intersection of F', we can in polynomial time build an instance
IT" of CSP(F) which is satisfiable if and only if IT is. Furthermore, if the
maximal satisfied induced subinstance of II contains k variables, then the
maximal induced satisfiable subinstance of II' also contains k£ variables (no
new variables are introduced by the transformation).

Some other useful properties of f are the following:

1. f is a symmetric function; and

2. if F is nontrivial, then {f} is nontrivial.

3 Complexity

In this section we present our results concerning the complexity of the maxi-
mum induced constraint satisfaction problem. We show that, for any nontriv-
ial set F' of functions, the problem of deciding the existence of an induced
satisfiable subinstance containing a given number of variables is NP-hard,
and then we show a sufficient condition for membership in NP. We first
define the concept of induced subgraph.

Given a graph G = (V| E) and a subset of its nodes V' C V, the subgraph
of G induced by V' is: G|V’ =(V',{(u,v) | u,v € V'}). The INDEPENDENT
SET problem is a well-studied problem on graphs.

Definition 9 The problem INDEPENDENT SET is defined as:
INSTANCE: graph G = (V, E), integer k

QUESTION: is there a V' CV such that |V'| < k and G|V’ has no edges?

10

Our proofs use the concept of clique. A clique is a graph G = (V, E) such
that, for any v, w € V, it holds (v,w) € E.

In the sequel, we sometimes say “the graph G contains a clique...” mean-
ing that there exists a subset of nodes V' C V such that G|V’ is a clique.
Moreover, a clique containing r nodes is denoted K.

For the sake of clarity, we show two separate theorems: first we prove
the NP-completeness for the case in which all functions have arity 2, and
then we prove the claim in the general case. The reason for doing this is
that the proof of the first theorem is easier to understand thanks to the
correspondence between CSP instances and graphs.

Theorem 10 MAX-IND-CSP is NP-hard, for any nontrivial set of binary
functions.

Proof: We exhibit a reduction from INDEPENDENT SET. Given a nontrivial
set of binary functions F', we prove the hardness by using an instance con-
taining only the intersection of all functions in F', which we denote by f. As
already remarked, NP-hardness of MAX-IND-CSP ({f}) immediately carries
over to MAX-IND-CSP(F).

Given a CSP instance containing only one symmetric and binary function,
we consider the corresponding graph according to Definition 4. From now
on, we say that a graph (or a sub-graph) is satisfiable if and only if the
corresponding CSP instance is.

Since there exist unsatisfiable instances of CSP(F), there exist unsatis-
fiable instances of CSP({f}) and, consequently, unsatisfiable graphs. Let r
be the greatest number such that the clique K, is satisfiable. This number
exists since, otherwise, every clique would be satisfiable. Since each graph is
a subgraph of a clique, and satisfiability is anti-monotonic (that is, removing
edges from a satisfiable graph leads to a satistiable graph), this would imply
that each graph is satisfiable, contradicting the assumption of non-triviality
of {f}.

Let {v1,...,v,} be the values that must be assigned to the variables in
order to satisfy a clique of size 7. This means that f(v;,v;) = 1 for each
i # j. Since there are unsatisfiable instance, it also holds that f(v;,v;) =0
for any value v;.

We can now give the reduction from INDEPENDENT SET to MAX-IND-
CSP({f}). Given an arbitrary graph G, we create an instance of MAX-IND-
CSP({f}) as follows. Let n be the number of nodes of G: we add n copies

11

of K,_1 to GG, and then we link each node of GG to each of the nodes of each
copy of K,_;. Let us denote this graph as H. We say that a node v is a
G-node if and only if it appears in the graph G. Let C be the set of the
nodes of the added cliques. We can represent H graphically as follows.

Kr—l Kr—l Kr—l

00 o0 C

(n times)

G-nodes

Let us consider the case r = 1 first, since this is the easiest case. The
fact that » = 1 implies that the clique with two nodes is unsatisfiable. As
a result, f(x,y) = 0 for any value of x and y. In this case, the graph H is
equal to G itself, and an induced subset of it is satisfiable if and only if it
contains no edges. As a result, an induced subgraph is satisfiable if and only
if it is an independent set. We have thus reduced the INDEPENDENT SET
problem to MAX-IND-CSP(F).

Now consider the case in which r > 1. If the graph G has n nodes, the
number of nodes of H is (r — 1)n + n = nr, thus linear in n. Now, we prove
that there exits a set V! C V of cardinality k, such that G|V’ has no edges if
and only if there exists a set of variables X' of cardinality (r — 1)n + k, such
that H|X' is satisfiable. We prove the claim in two steps.

Only if. Assume that the graph G|V’ is an independent set (i.e. it has
no edges). Let X' = C UV’'. Since G|V’ is an independent set, there is no

12

edge between any two G-nodes of H|X'. The only edges in H|X' are those
between two nodes of a clique, or between a node of a clique and a G-node.

We prove that the graph H|X' is satisfiable. Assign {v,...,v, 1} to
the nodes of the cliques, and v, to all the G-nodes. Since there are no
edges between any two G-nodes, we have that no pair of connected nodes are
assigned the same value. Since f(v;,v;) = 1 whenever v; # v;, this instance
is satisfied by the assignment.

If. Assume that, for any V' C V of size k, the graph G|V’ contains some
edges. We prove that, for any set of variables X' of size (r —1)n+k, the CSP
instance H|X' is unsatisfiable. We consider three cases: the first is when X’
contains all the nodes of the cliques, the second is when X' contains all the
G-nodes, and finally, the case in which none of the above is true.

1. Assume that C' C X'. Since X' has size (r — 1)n + k, and contains all
the nodes of the cliques, it means that it contains exactly & of the G-
nodes of H. As a result, there is still some edge between two G-nodes.
Consider any clique, and the G-nodes of the graph.

Kr_l Kr—l K’I‘—l
o O O
(n times)
G-nodes

There is at least a pair of G-nodes that are joined. These node are
joined to each other, and to all the nodes of the clique. This means

13

that the clique plus the two nodes form a clique of size r 4+ 1, which we
know is unsatisfiable.

2. Assume that X’ contains all the G-nodes. Now, X' has size (r—1)n+k,
while the number of G-nodes is n. As a result, that X’ contains exactly
(r — 2)n + k nodes from the cliques, which means that X’ contains all
nodes but n—k chosen from C. Since there are n cliques, it follows that
there is at least one clique from which no nodes are removed. Since G
contains at least one edge, the proof of the previous case applies also
here.

3. Assume that X’ contains a part of the G-nodes and a part of the nodes
of the clique. Since X' contains all nodes but n — k it is still true that
there is some clique from which no nodes are removed. Since G does not
become an independent set by removing n — k nodes, it also holds that
H|X' contains at least one edge between two G-nodes. Once again, the
argument of the first case can be used to prove that the instance G|X’
is unsatisfiable.

As a result, we proved that G has an independent set of size k if and only
if H has an induced satisfiable subinstance containing (r —1)n+k variables. O

Note that, if the domain is finite, saying that the problem have unsatisfi-
able instances is equivalent to say that f(z,z) = 0 for each z in the domain,
where f is the intersection of all functions.

Now we prove that the result of NP-completeness holds even if we con-
sider functions of arbitrary arity. In this second theorem we cannot use the
correspondence between CSP instances and graphs, which makes the proof
somewhat harder to follow.

Theorem 11 MAX-IND-CSP(F) is NP-hard, for any nontrivial set of func-
tions F'.

Proof: We prove the NP-hardness by exhibiting a polynomial-time reduction
from INDEPENDENT SET.

Let a be the maximal arity of the functions under consideration and let
f be the intersection of F. Since F' is nontrivial, there exists an unsatisfiable
instance of CSP({f}).

14

Let us define K(z1, ... ,z,) to be the set of constraints having f as func-
tion and any subset of a variables of x4, ... ,z, as argument.

K(aﬁ,... 7$T‘):{(f7y17"' aya) | {yla--- ’ya}g{xla"' ;xr}}

Let r be the greatest number such that set of constraints K(z1,...,x,)
is satisfiable while K(z1,...,z,11) is not. We can easily prove that such a
number exist. Indeed, let ¥ be the smallest (in terms of number of vari-
ables) unsatisfiable instance. Let s be the number of nodes it contains. We
prove that r = s — 1. Since X is the smallest unsatisfiable instance, and
K(z1,...,z.) has s — 1 variables, it follows that the latter is satisfiable. It
also holds that K (x1, ... ,z,,1) is unsatisfiable, since 3 is a subset of it. Note
that » must be greater than or equal to a.

Consider an instance (G, k) of the INDEPENDENT SET problem. Let n be
the number of nodes of the graph G'. We construct an instance of M AX-IND-
CSP({f}), such that the graph G contains an independent set of cardinality
k if and only if there exists a subset of the variables of II such that the
induced subinstance of II is satisfiable and the subset contains n(r — 1) + &
variables.

The instance II is quite similar to the construction used in the proof of

the previous theorem. We have a set of variables z1,...,z, in one-to-one
correspondence with the nodes of the graph, and aset yi,... ,y™ ; of n(r—1)
auxiliary variables.

The constraints are defined as follows: for each ¢ = 1,...,n and each
z; € {z1,...,2,} we add the constraints K (z;,yt,...,y- ;). Moreover, if
x; and x, are variables whose corresponding nodes in the graph G are joined
by an edge, we add the set of constraints K(z;,z,,4:,...,y: ;) for each i.

Note that the set of constraints K(...) is equivalent to a single constraint
using a symmetric function, thus the ordering of the variables is irrelevant.
Thus, we have the following constraints:

1. For each subset of a variables of yi,...,y’ ,, there is a constraint
having f as function.

2. For each variable z; corresponding to a node of the graph, and for each
subset of a — 1 variables from y!, ... y’_, there is a constraint having
f as function.

15

3. For each pair of variables z; and x, corresponding to nodes that are
joined in the graph, and for each subset of a—2 variables from v, ... ,y._4,
there is a constraint having f as function.

Let us call this CSP instance II. We prove that the graph G has an
independent set of size k if and only if there exists a satisfiable subset of
nodes of the CSP having size n(r — 1) + k. In fact, we prove that there exists
a set V' C V containing all but ~ nodes, such that G|V’ contains no edges if

and only if there exists a set X' of variables, containing all but A variables,
such that II|X" is satisfiable.

There exists a set V' of n — h nodes such that G|V’ contains no
edges. Define the set X’ such that it contains Y and the variables
x; that corresponds to the nodes of V'. Clearly, this set contains all
the variables but h of them. The set X’ does not contain any pair of
variables z;, x, such that the corresponding nodes of the graph are
joined by an edge. As a result, the instance I1| X’ does not contain any
constraint in which two nodes z;, z, are in the argument at the same
time.

By assumption, the set of constraints K (yi,...,y,) is satisfiable. As
a result, there exist r elements of the domain {vq,...,v.} that sat-
isfy all the possible constraints over a set of r variables. Assign the
values {vy,...,v, 1} to the variables v, ... 3¢ |, for any value of
i€ {l,...,n}. Then, assign v, to the all the variables {z1,... ,z,}.

For each set V' of n — h nodes G|V’ contains edges. Let X' be a
set containing all variables but A of them. We consider what happens
when h variables are removed from II.

First assume that all the removed variables are among those corre-
sponding to the nodes of the initial graph G. Since it is impossible to
obtain an independent set from the graph removing A nodes, it follows
that there are two variables left z; and x,, such that the corresponding
nodes of the graph are joined by an edge. As a result, the set of con-
straints K (z;,z,,y%,...,y._ ;) is still intact for any ;. We know that
it is impossible to satisfy all the constraints over r + 1 variables. As a
result, II is unsatisfiable.

16

The case in which the variables are removed from the set yi,... ,y" ;
is identical: since h < n — 1, we are left with a set y%,... ¢!, from
which no variable is removed. Since there is at least a pair of variables
z; and z, whose corresponding nodes are joined by an edge, there is
still a set of constraints K (x;,x,,yt,... ,y. 1), which is unsatisfiable.

The case in which some removed variables are from the clique and some
from the nodes corresponding to the graph, and some from y{,... ,y" ;
is similar: since h < n, there is some 7 such that no variable from
yt,...,yi_, is removed. Moreover, since we have removed less than
h variables from {z1,...,x,}, and the corresponding graph has some
nodes, it holds that the set X' still contains a pair of variables z; and
x, that correspond to nodes of the graph joined by an edge. We can
thus repeat the proof used in the case above.

This proves that, for any given nontrivial set F' of functions of arity
greater or equal than two, INDEPENDENT SET can be polynomially reduced
to MAX-IND-CSP(F). Consequently, the latter problem is NP-hard. O

If the domain is finite, we can also give a proof of membership to NP.
Theorem 12 MAX-IND-CSP(F) is in NP, if the domain is finite.

Proof: We show that a single non deterministic guess suffices to solve the
problem. Given an instance, we guess the set of variables X’ and the function
S that assigns values to variables. We can verify in polynomial time whether
all constraints in the subinstance induced by X' are satisfied. a

As a result, if the domain is finite, and the set of functions is nontrivial,
the problem is NP-complete.

Corollary 13 MAX-IND-CSP(F') is NP-complete, if the domain is finite
and F' is nontrivial.
4 Compilability

In this section we study the possibility of reducing the complexity of MAX-
IND-CSP(F) via compilation. This section is composed of two parts: in the

17

first we recall the basic definitions and results about compilability; in the
second one we give our results about compilability of constraint satisfaction.

4.1 Preliminaries on Compilability

Since the MAX-IND-CSP problem is NP-hard for every nontrivial set of
functions, we cannot expect to compute solutions to the general problem in
polynomial time. However, it is still possible that slightly relaxed or modified
versions of the problem can be solved efficiently. An observation that may
lead to a reduction of the complexity is that hard problems often have a
useful property: the input is divided in two parts, where one of them is
known long before the rest of the input, or we may want to compute many
instances having some part in common. In such cases, it is possible to take
advantage of the structure of the problem, by doing some computation on
the first part of the input only. Since either this part is known in advance, or
it is shared by many instances to solve, it makes sense to spend more time on
this phase. This is useful if the result of this preliminary phase can speed-up
the process of solving the problem given the second part of the input.

The computation made in advance is called preprocessing, or compilation.
The actual solving of the problem, given the result of this phase and the rest
of the input is called on-line processing.

Of course, any algorithm can be seen as composed of a do-nothing com-
pilation phase and a do-it-all on-line processing. In this case, nothing is ac-
tually gained from compilation. The rationale of compilation is actually that
the on-line processing should be faster than the original algorithm thanks to
compilation. If such efficiency improving is possible, compilation is useful,
since it reduces the cost of solving the problem in an amortized sense.

We call the part of the input we preprocess fized part, while the rest of the
input is called varying part. When the complexity of the problem decreases
thanks to the compilation of the fixed part, we call the problem compilable.

In order to formalize the concept of preprocessing, we recall the definitions
of polysize functions, compilable classes and reductions. These concepts have
been introduced in [Cadoli et al., 1996], where more examples and motiva-
tions are provided. A function f is called polysize if there exists a polynomial
p such that for all z it holds || f(z)|| < p(||z||), that is, the size of the result
of f is bounded by a polynomial in the size of z.

Our intuitive notion of compilability states that a problem S can be

18

reduced into a simpler problem by preprocessing its fixed part. Given a
complexity class C, we introduce the class of problems compilable into C,
denoted by compC. As an example, the class compP contains the problems
that can be solved in polynomial time after a preprocessing phase.

Definition 14 A language of pairs S C ¥* x ¥* belongs to compC if and
only if there exist a polysize function f and a language of pairs S’ such that
for all x,y € ¥* we have that

1. (z,y) € S iff (f(z),y) € S".
2. S'e C.

Notice that no restriction is imposed on the time needed to compute f,

but only on the size of the result. This definition can be represented in terms
of a computing machine as in Figure 3.

yes/no

SI

Y

Figure 3: The compC machine.

In order to prove the non-compilability of problems, the concepts of nu-
comp reduction and hardness are defined.

Definition 15 A nucomp reduction (non-uniform compilability reduction)
between two problems of pairs A and B is a triple {f1, fo,g) such that fi and
fo are polysize functions, g is a polynomial function, and for each pair {(x,y)
it holds

(@, y) € Aiff (fi=, [lyl), 9(fala, [ly]),v)) € B

We say that A is nucomp reducible to B if there exists a nucomp reduc-
tion from A to B. The definition of hardness we include in this paper is a
simplification of the original definition. See [Cadoli et al., 1997] for details.

19

Definition 16 A problem of pairs B is said to be nucompC-hard if any prob-
lem in compC is nucomp reducible to it B.

Now, from [Cadoli et al., 1996] it follows that a nucompNP-hard problem
cannot be compiled into P, unless IT5 = ¥4 (that is, unless the polynomial
hierarchy collapses).

In many cases, nucompNP-hard problems are the variant (with fixed /varying
part) of well-known NP-hard problems. For instance, let us consider the
problem 3SAT, defined as follows.

Definition 17 The problem 3SAT is defined as:
INSTANCE: a set II of propositional clauses, each composed of three literals

QUESTION: is I satisfiable?

This problem can be easily converted into an “artificial” nucompNP-hard
problem, that will be useful to prove the hardness of our problems.

Definition 18 The problem *3SAT is defined as follows:
INSTANCE: a pair of strings {(x,y), in which y denotes a 3CNF formula

QUESTION: is y satisfiable?

In other words, a pair (x,y) is in *3SAT if y represents a satisfiable set
of clauses, each composed of three literals, while z can be any string.

Theorem 19 The problem *3SAT is nucompNP-hard.

Proof: Let A be an arbitrarily chosen problem in compNP. We prove that
A is nucomp reducible to *x3SAT. Since A is in compNP, it follows that there
exists a polysize function f and a polynomial function p such that

(z,y) € A iff p(f(z),y) €S

where S is a problem in NP. Since 3SAT is NP-hard, it follows that there
exists a polynomial reduction f’ from S to 3SAT:

z€ S iff f'(z) € 3SAT

20

The nucomp reduction from A to *3SAT is defined as (fi, fo, g), where

filz, k) = x
fo(z, k) = f(=)
g(z,y) = fl(p(z’y))

We can now prove that (z,y) € Aifand only if (fi(z, ||y]|), g(fa(=, ||y]]), v)) €
*3SAT:

(fa(a, 1Y), 9(folz, |y]]),) € *3SaT iff (z,9(f(2),y)) € *3SAT
ift (z, f'(p(f(x),y))) € *x3SAT
iff f'(p(f(2),y)) € 3SAT
iff p(f(z),y) €S
ifft (zr,y)e A

Since f; and f, are polysize (actually, they are computable in polynomial
time) and g is polynomial (since f is), this is a nucomp reduction. a

The nucompNP hardness of a problem is a way of proving that a problem
cannot be compiled into P. However, this requires to prove that there is a
nucomp reduction from a previously proved nucompNP-hard problem, which
can be a highly nontrivial task.

For this reason, the monotonic polynomial reductions have been intro-
duced [Liberatore, 1998]. Let us assume that we want to prove the non-
compilability to P of the problem S. Further assume that we have proven
the NP-hardness of S by means of a polynomial reduction from the problem
3SAT. This means that, given an instance of 3SAT (i.e. a set of clauses, each
composed of three literals), there exists exactly one instance of S associated
with it. Now, each instance of S is composed of a fixed and a varying part.
Let us denote r the function that gives the fixed part of S corresponding to a
set, of clauses, and A the function that gives the varying part. In other words,
given a set of clauses II, the corresponding instance of S has r(II) has fixed
part, and A(IT) has varying part. A polynomial reduction from an arbitrary
problem to a problem with fixed and varying part can thus be seen as a pair
of polynomial functions (r, h).

Definition 20 A polynomial reduction (r,h) from 3SAT to a language of
pairs S is called monotonic if, for any two sets of clauses 11y and Il over

21

the same alphabet, with 11, C 11y, it holds
(r(ILy), h(IL1)) € S & (r(Ily),h(IL;)) € S (1)

We can now prove that, given a monotonic polynomial reduction from
3SAT to S, one can build a proof of nuicompNP hardness for the problem S.

Theorem 21 If there exists a monotonic polynomial reduction from 3SAT
to a problem of pairs S, then S is nuicompNP-hard.

Proof: Suppose there exists a monotonic polynomial reduction (r, h) from
3SAT to B. We prove that there exists a nucomp reduction fi, fs, g from
the problem *3SAT (which is nucompNP-hard by Theorem 19) to S.

Let Var(II) be the number of atoms in II: notice that |Var(II)| < ||II||.
Furthermore, let II,, denote the set of all the clauses of three literals over a
set of variables {z1,...,Zm}.

Define f1, fo, g as follows.

fils;m) = r(Ily)
fo(s,m) = €

9(a,TI) = h(IMTU{Zvera+1 V "Tvar(my+1s - - - » Ty V =0)m)})

Let II' =TT U {xvar(n)+1 V Tyar(my+1s - - - 5 T V —ICUHHH}. Using the fact
that (r, h) is a monotonic polynomial reduction we have that

(z,II) € x3SAT iff II is satisfiable
iff II' is satisfiable
it (r(IT'),A(IT")) € S
i (r(ITyarqry), A(IT) € S
iff (M), A(IT)) € S

But 7(IIjjn) = fi(z, [|I1]|) and A(II") = g(a,II), thus (z,II) € *3SAT if and
only if {f1 (=, [[1L]]), g(fa(z, |[11]]), 1)) € S. O

22

4.2 Compilability of Constraint Satisfaction

As shown in the previous section, MAX-IND-CSP(F') is computationally
hard for every set F' of nontrivial functions. In this section, we investigate
the possibility of compiling part of a MAX-IND-CSP(F’) instance in order to
obtain a faster on-line solving process.

We show that the MAX-IND-CSP(F') problem is nucompNP-hard when
formalized as a fixed/varying part problem. The proof is composed of two
parts: first, we show that a variant of INDEPENDENT SET (COMP-INDEP-
SET) is nucompNP-hard by exhibiting a monotonic polynomial reduction
from 3SAT. Then, we show that there exists a nucomp reduction from Comp-
INDEP-SET to the compilation version of MAX-IND-CSP(F’). Since nucomp
reduction are transitive [Cadoli et al., 1996, Cadoli et al., 1997], the result
follows.

First of all, we have to define the “compilable version” of INDEPENDENT
SET and MAX-IND-CSP. Indeed, in order to determine the compilability
of those problems, we have to specify which part of the instances is fixed
and which part is varying. As a result, we have to re-define those problems
specifying such a partition of the input.

Definition 22 The MAXIMAL INDUCED INDEPENDENT SET problem is de-
fined as:

INSTANCE: a pair (G, (V', k)), where G is a graph, V' is a subset of its nodes,
and k is an integer. The fized part is the graph G.

QUESTION: does G|V’ have an independent set of k nodes?

Definition 23 The problem COMPILABLE MAXIMAL INDUCED CSP s de-
fined as:

INSTANCE: a pair (I, (V' k)), where Il is a CSP(F) instance, V' a subset
of its variables, and k an integer. The fixed part is II.

QUESTION: is there a solution with at least k variables for the instance II|V'?

We begin by proving that independent set is not compilable, unless the
polynomial hierarchy collapses.

23

Theorem 24 INDEPENDENT SET is nucompNP-hard.

Proof: We prove that there exists a monotonic reduction from 3SAT to
CowmP-INDEP-SET. Let II be a an arbitrary instance of 3SAT. For each
clause, introduce a triplet of nodes in the graph. Each node of a triple is
used to represent a literal of the corresponding clause. There is an edge
between any two nodes of the same triplet, and also an edge between two
nodes of different triplets if the two nodes represent opposite literals (that is,
the first node is associated to a variable z; and the second one is associated
to its negation —z;).

It has been proved [Papadimitriou, 1994] that a set of clauses of three
literals is satisfiable if and only if the corresponding graph has an independent
set of size equal to the number of clauses in II. Thus, we can take the resulting
graph to be the fixed part and (V, k) (where V are the nodes of the graph
and k is the number of clauses in II) to be the varying part of the Comp-
INDEP-SET instance.

We continue by showing that this reduction is monotonic. Let II; and II,
be two sets of clauses (of length 3) over the same alphabet and assume that
IT; C Iy. Let r(IL;), with 1 <4 < 2, denote the graph associated with the
clauses in II;. Let V be the set of nodes of r(I1;) and let £ be the number of
clauses in II;.

To prove that the above stated reduction is monotonic, we have to show
that r(II;)|V contains an independent set of size k if and only if r(IL)|V
contains an independent set of the same size. However, this is easy by noting
that r(IIy)|V = r(I1,)|V = r(I1;) by the construction of r(Ily). O

The following picture shows the graph associated to the set of clauses
{.Tl \% T V T3, 1 V L9 V _|333}.

T L
T3 T2
" @ s

Let now show what is the graph associated to a larger set of clauses, for
instance {1 V x5 V x3, 021 V 2x9 V —x3, 721 V 29 V 23}

24

The dashed box encloses exactly the nodes of V. This picture makes it
clear that the graph enclosed in the box is exactly the previous one.

Now we prove that the problem of finding a maximal satisfiable set of
variables is nucompNP-complete. This is done by showing that the reduction
used in Theorem 11 is indeed a nucomp reductions.

Theorem 25 CoMP-MAX-IND-CSP(F) is nucompNP-hard, for any non-
trivial set of functions of arbitrary arity greater or equal than two.

Proof: We show that the reduction from INDEPENDENT SET to MAX-IND-
CSP given in Theorem 11 is a nucomp reduction. Let us consider how
the reduction of Theorem 11 works. The instance of INDEPENDENT SET
is composed of a graph G, a subset of nodes V' and an integer k. The
corresponding instance of COMP-MAX-IND-CSP is as follows: there is one
variable for each node of the graph, plus a number of other nodes. There
are some constraints over the variables, depending on the edges of the graph.
This part of the instance can thus be determined knowing G only, so there
is a polysize function f; that gives the set of constraints corresponding to a
graph G.

The varying part of the constraint satisfaction problem (the set of vari-
ables and the integer) can be determined in polynomial time. Let fo(G,n) =
G and g(G, (V' k)) be the function that takes G, V', and k and produces
the varying part of the constraint satisfaction instance. Clearly, (f1, f2, g) is
a nucomp reduction, since f; and f, are polysize and g is polynomial. O

If the domain is finite, COMP-MAX-IND-CSP(F) is in NP, thus is also
in nucompNP.

Corollary 26 CompP-MAX-IND-CSP(F) is nucompNP-complete, for any
nontrivial set of functions of arbitrary arity greater or equal than two, if the
domain is finite.

25

5 Approximability

In this section, we study the approximability of MAX-IND-CSP. We have
earlier completely classified when the decision problem is polynomial and
NP-hard, respectively, and shown that certain compilation techniques can-
not simplify the problem. Unfortunately, we are not able to give such a gen-
eral result about the approximability of MAX-IND-CSP. However, a strong
dichotomy holds in two special cases:

e when all functions have arity 2; and

e when the intersection of the functions equals 0 for all possible argu-
ments.

In these cases, the problem is either trivial or cannot be approximated within
n? for some § > 0, unless P = NP. In the second case, we also show that the
problem is not approximable within n' ¢ for any € > 0, unless ZPP = NP.

We begin by providing some definitions and results concerning approxima-
bility. Solving a maximization problem A given the input instance r means
finding a solution y such that the value of the objective function m4(z,y) is
maximum. Let the optimal value function opt, return the optimal value of
m4 for arbitrary instances = of A.

Given a maximization problem A and a function o : N — (1, 00), we say
that a polynomial-time algorithm P is an a-approzximation algorithm for A
iff for every instance x of A of size n, P produces a solution in the range
[opta(z)/a(n), opt4(x)]. We say that A is approzimable within a factor o
if such an algorithm exists. We measure instances as follows: the size of a
graph equals the number of nodes in it and the size of a CSP instance is
given by the number of variables.

As our starting point, we use the problem MAXIMUM SUBGRAPH PROB-
LEM FOR PROPERTY 7, denoted by Msp(r).

Definition 27 The MAXIMUM SUBGRAPH PROBLEM FOR PROPERTY 7
problem (denoted by MSpP(m)) is the problem defined as:

INSTANCE: Undirected graph G = (V, E), positive integer k < |V|.
QUESTION: Is there a subset V' CV with |V'| > k such that the graph G|V’
has property m?

26

A property 7 of graphs is said to be hereditary iff it holds for all induced
subgraphs of G whenever it holds for G. The property 7 is nontrivial iff
holds for infinitely many graphs and does not hold for infinitely many graphs.

Theorem 28 [Lund and Yannakakis, 1993] There exists an § > 0 such that
MsP(7) cannot be approximated with ratio n’ for any nontrivial hereditary
property that is false for some clique, unless P = NP.

Given an arbitrary instance IT of CSP({f}) (where f is symmetric), we define
the graph Gy as follows: each node in Gy corresponds to a variable in IT and
an edge joins nodes v, w iff I contains the constraint (f, v, w) and/or (f, w,v).
Since f is symmetric, the exact order of the arguments does not matter.

Lemma 29 Let f: D? — {0,1} be a symmetric function such that {f} is
nontrivial. Define F to be the set

{Gn | Il is a satisfiable instance of CSP({f})}.
and let the graph property 7 hold for a graph G ifft G € F. Then,

1. 7 is hereditary;
2. m is nontrivial; and

3. there exists a clique not having property =.

Proof:

1. 7 is hereditary since if ¥ = (V, C) is a satisfiable instance of CSP({f}),
then W|V’ is satisfiable for every choice of V' C V.

2. To see that 7 is nontrivial, first note that any completely disconnected
graph has property 7 since the domain D is required to be nonempty.
Thus, 7 holds for infinitely many graphs. Continue by arbitrarily choos-
ing an unsatisfiable instance ¥ of CSP({ f}) and assume that ¥ contains
c variables. Let X' be an instance of CSP({f}) containing &k variables
and satisfying K, = Gyv. Clearly, ¥/ is not satisfiable since ¥ is not sat-
isfiable. Consequently, Ky ¢ F for any k > ¢ and there exists infinitely
many graphs not having property 7.

27

3. The clique K. does not have property m, as was shown above.

From now on, let F' = {fi,..., f.} be a nontrivial set of functions from D?
to {0,1}. Let f: D* — {0,1} denote the intersection of the functions in F.

Theorem 30 MAX-IND-CSP(F) cannot be approximated within n’ for some
d > 0, unless P = NP. Furthermore, if f(z,y) = 0 for all z,y € D, then

1. MAX-IND-CSP(F) cannot be approximated within n!=¢ for any € > 0,
unless ZPP = NP; and

2. MAX-IND-CSP(F) cannot be approximated within n!/?2~¢ for any € >
0, unless P = NP.

Proof: By definition, f is symmetric. Define F to be the set

{Gq | II is a satisfiable instance of CSP({f})

and let the graph property 7 hold for a graph G iff G € F. By Lemma 29, 7
is hereditary and nontrivial and there exists a clique not having property 7.

We show nonapproximability of MAX-IND-CSP (F') by a polynomial-time
cost-preserving reduction from Msp(w). Let G = (V, E) be an arbitrary
graph. Construct an instance II of MAX-IND-CSP(F) as follows: For each
v € V, introduce a variable z. For each edge (u,v) € E, introduce the
constraint:

{(f,z,y) |1 <i<n}

where x and y are the variables corresponding to u and v, respectively. As
we have noted earlier, this transformation can be carried out in polynomial
time. Furthermore, the size of the maximum satisfiable induced CSP of II
equals the size of the maximum induced subgraph of G having property 7.
By Theorem 28, this number cannot be approximated within n° for some 4.

Assume that f(z,y) = 0 for all z, y € D. Then, the size of the maximum
induced satisfiable CSP of II equals the size of the largest independent set of
G. Hastad [1996] has shown that the size of the independent set cannot be

28

approximated within n' ¢ for any € > 0, unless ZPP = NP, and not within
n'/2=¢ unless P = NP. O

In the proof of Theorem 30, we used the nonapproximability of computing
the size of independents sets for showing nonapproximability of certain M AX-
IND-CSP(F') problems where F' only contains binary functions. This idea
can be extended to functions of higher arity by considering independent sets
in hypergraphs. A hypergraph H = (V,€) is defined by a set V' of vertices
and a set £ of hyperedges where E C V for every EF € £. A hypergraph
is called k-uniform if |E| = k for every E € £. A subset I C V is said to
be independent if I contains no hyperedges from H, that is, £ ¢ I for any
Eef.

Hofmeister and Lefmann [1998] have shown the following result on the
approximability of independent sets in hypergraphs.

Theorem 31 Let £ > 2 be a fixed integer. The problem of determining
the size of the largest independent set in k-uniform hypergraphs cannot be
approximated within n' ¢ for any € > 0, unless ZPP = NP.

Let F = {fi1,..., fa} be a nontrivial set of functions of arity > 2 and let f
denote the intersection of F. Let a be the arity of f.

Theorem 32 If f(dy,...,d,) = 0 for all dy,...,d, € D, then MAX-IND-
CSP(F) cannot be approximated within n'~¢ for any € > 0, unless ZPP =
NP.

Proof: Arbitrarily choose an a-uniform hypergraph H = (V, £). Construct
an instance of MAX-IND-CSP({f}) as follows: for each vertex v, intro-
duce a variable v;, and for each edge {v;,,... ,v;,}, introduce the constraint
(f,vi,,---,v;,). This transformation can be carried out in polynomial time
since a is fixed.

The size of the maximum induced satisfiable CSP of the resulting instance
equals the size of the largest independent set of H. Thus, nonapproximability

of MAX-IND-CSP(F) follows from Theorem 31. O

29

6 Conclusions

In this paper we studied the complexity of problems related to constraint
satisfaction. Since a set of constraints may be unsatisfiable, we considered
the problem of finding satisfiable subinstance of the problem. This is in line
with the aim of satisfying as many constraints as possible.

In the case of constraints with arity greater than or equal to two, we
gave a complete classification of the problem w.r.t. tractability. Indeed, we
proved that, for any set of functions, either the problem is trivial (i.e. always
satisfiable) or it is NP-hard.

Of course, the trivial case is not very interesting. As a result, we ended
up with a NP-complete problem, thus intractable. In order to allow for
fast solving, we considered two possible approaches for solving intractable
problems: compilation and approximation.

With respect to compilation, we proved that the problem does not gain
from compilation: the problem remains hard to solve even if we allow a
time-consuming compilation phase. We also studied the approximability of
the problem and found that it is hard to approximate in several cases.

At least two problems are left open by this work. As said in the beginning
of this paper, we are concerned about problems of constraint satisfaction in
which all constraints have arity greater or equal than two. This means that
our results do not hold if unary constraints are present.

As an example, consider the domain D = {0, 1,2}, and F being composed
of two unary functions:

filz) = 1 iffz=0
fo(z) = 1 iffx>0

Clearly, there are unsatisfiable instances using only these two functions, for
instance {(f1,z), (f2,z)}. We proved that, in the case of binary functions,
the existence of unsatisfiability instances implies the NP-hardness of the
problem. This result cannot be extended to unary functions, as checking
satisfiability of instances using f; and fy; is polynomial, as it amounts to
check whether there are two constraints having f; and f, as function and the
same variable as argument. This can be generalized: checking satisfiability
of instances using only unary functions is always a polynomial task. Finding
maximal satisfiable subinstances is also polynomial.

30

The complexity of problems with both unary and binary constraints is
harder to determine. The fact that unary functions alone are polynomial does
not imply that we can neglect them. Let F' be defined as F' = {fi, fo, f3},
where f3 is defined as:

1 iffr=y=0
Js(xy) = { 0 otherwise
Any instance using f3 only is satisfiable, thus the problem is polynomial.
However, using all three functions leads to NP-completeness. Indeed, inter-
secting the functions f; and f3 we obtain a function that is never satisfiable,
which implies that the problem of satisfiability and maximal induced satisfi-
able subinstance are NP-complete.

Another open question of this paper is whether the problem of maximal
satisfiable induced subinstance is approximable in the case in which functions
with arity greater than two are allowed. Indeed, we proved that the problem
is not approximable only in the special case in which the intersection of all
functions is always equal to 0. This case is useful: it is hard to imagine a set
of meaningful constraints that are all satisfied by the same value. However,
it would obviously be better to have a complete classification.

Acknowledgments

The first author was sponsored by the Swdish Research Council for the En-
gineering Sciences (TFR) under grant 97-301.

This work has been done while the second author was visiting Linkoping
University. He thanks Erik Sandewall for his hospitality and support.

References

[Cadoli et al., 1996] M. Cadoli, F. M. Donini, P. Liberatore, and M. Schaerf.
Feasibility and unfeasibility of off-line processing. In Proceedings of
the Fourth Israeli Symposium on Theory of Computing and Systems
(ISTCS’96), pages 100-109. IEEE Computer Society Press, 1996. URL
= ftp://ftp.dis.uniromal.it/PUB/AI/papers/cado-etal-96.ps.gz.

31

[Cadoli et al., 1997] M. Cadoli, F. M. Donini, P. Liberatore, and

M. Schaerf. Preprocessing of intractable problems. Techni-
cal Report DIS 24-97, Dipartimento di Informatica e Sistemistica,
Universita di Roma “La Sapienza”, November 1997. URL =

http://www.dis.uniromal.it/PUB/AI/papers/cado-etal-97-d.ps.gz.

[Cooper et al., 1994] M. C. Cooper, D. A. Cohen, and P. G. Jeavons. Char-
acterizing tractable constraints. Artificial Intelligence, 65:347-361, 1994.

[Creignou and Hermann, 1996] N. Creignou and M. Hermann. Complexity
of generalized satisfiability counting problems. Information and Compu-
tation, 125:1-12, 1996.

[Creignou, 1995] N. Creignou. A dichotomy theorem for maximum gener-
alized satisfiability problems. Journal of Computer and System Science,
51(3):511-522, 1995.

[Feder and Vardi, 1998] T. Feder and M. Y. Vardi. The computational
structure of monotone monadic SNP and constraint satisfaction: a study
through datalog and group theory. STAM Journal of Computing, 28(1):57—
104, 1998.

[Hastad, 1996] J. Hastad. Clique is hard to approximate within n'~¢. In
Proceedings of the 37th IEEE Symposium on Foundations of Computer
Science, pages 627-636, 1996.

[Hell and Nesetfil, 1990] P. Hell and N. NeSetfil. On the complexity of H-
coloring. Journal of Combinatorial Theory, ser. B, 48:92-110, 1990.

[Hofmeister and Lefmann, 1998] T. Hofmeister and H. Lefmann. Approxi-
mating maximum independent sets in uniform hypergraphs. In Proceedings
of the 23rd IEEE International Symposium on Mathematical Foundations
of Computer Science, pages 562-570, 1998.

[Jeavons and Cooper, 1996] P. G. Jeavons and M. C. Cooper. Tractable con-
straints on ordered domains. Artificial Intelligence, 79:327-339, 1996.

Jeavons, 1998| P. G. Jeavons. On the algebraic structure of combinatorial
g
problems. Theoretical Computer Science, 200(1-2):185-204, 1998.

32

[Jonsson, 1999] P. Jonsson. Boolean constraint satisfaction: complexity re-
sults for optimization problems with arbitrary weights. Theoretical Com-
puter Science, 1999. To appear.

[Karp and Lipton, 1980] R. M. Karp and R. J. Lipton. Some connections
between non-uniform and uniform complexity classes. In Proceedings of
the Twelfth ACM Symposium on Theory of Computing (STOC’80), pages
302-309, 1980.

[Kavvadias and Sideri, 1998] D. Kavvadias and M. Sideri. The inverse sat-
isfiability problem. SIAM Journal of Computing, 28(1):152-163, 1998.

[Khanna et al., 1997a] S. Khanna, M. Sudan, and L. Trevisan. Constraint
satisfaction: The approximability of minimization problems. In Proceed-
ings of the 12th Annual IEEE Conference on Computational Complexity,
pages 282-296, 1997.

[Khanna et al., 1997b] S. Khanna, M. Sudan, and D. P. Williamson. A com-
plete classification of the approximability of maximization problems de-
rived from boolean constraint satisfaction. In Proceedings of the 29th ACM
Symposium on Theory of Computing, pages 11-20, 1997.

[Liberatore, 1998 P. Liberatore. On the compilability of diagnosis, planning,
reasoning about actions, belief revision, etc. In Proceedings of the Sixth
International Conference on Principles of Knowledge Representation and
Reasoning (KR’98), pages 144-155, 1998.

[Lund and Yannakakis, 1993] C. Lund and M. Yannakakis. The approxima-
tion of maximum subgraph problems. In Proceedings of the 20th interna-
tional colloguium on automata, languages and programming, pages 40-51.
Springer-Verlag, 1993. Lecture notes in computer science. 700.

[Papadimitriou, 1994] C. H. Papadimitriou. Computational Complezity. Ad-
dison Wesley, Reading, MA, 1994.

[Preparata and Shamos, 1985] F. P. Preparata and M. I. Shamos. Compu-
tational Geometry: An introduction. Springer-Verlag, 1985.

33

[Reith and Vollmer, 1998] S. Reith and H. Vollmer. The complexity of com-
puting optimal assignments of generalized propositional formulae. Techni-
cal Report 22, Electronic Colloquium on Computational Complexity, 1998.

[Schaefer, 1978] T. J. Schaefer. The complexity of satisfiability problems. In
Proceedings of the 10th ACM Symposium on Theory of Computing, pages
216226, 1978.

34

ftp://ftp.eccc.uni-trier.de/pub/eccc

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

