Electronic Colloquium on Computational Complexity, Report No. 40 (1999)

Space Complexity in Propositional Calculus

Michael Alekhnovich*, Eli Ben-Sasson’
Alexander A. Razborov!, Avi Wigderson?

October 20, 1999

Abstract

We study space complexity in the framework of propositional
proofs. We consider a natural model analogous to Turing machines
with a read-only input tape, and such popular propositional proof
systems as Resolution, Polynomial Calculus and Frege systems. We
propose two different space measures, corresponding to the maximal
number of bits, and clauses/monomials that need be kept in the mem-
ory simultaneously. We prove a number of lower and upper bounds in
these models, as well as some structural results concerning the clause
space for Resolution and Frege Systems.

1 Introduction

Complexity of propositional proofs plays as important a role in the theory of
feasible proofs as the role played by the complexity of Boolean circuits in the
theory of efficient computations. It is also well recognized that there exists

*Moscow State University, Moscow, Russia mike@mccme.ru. Supported by INTAS
grant # 96-753 and by the Russian Basic Research Foundation

tnstitute of Computer Science, Hebrew University, Jerusalem, Israel. elli@cs.huji.ac.il.

Steklov Mathematical Institute, Moscow, Russia razborov@genesis.mi.ras.ru. Sup-
ported by INTAS grant # 96-753 and by the Russian Basic Research Foundation

$Institute of Computer Science, Hebrew University, Jerusalem, Israel avi@cs.huji.ac.il.
This research was supported by grant number 69/96 of the Israel Science Foundation,
founded by the Israel Academy for Sciences and Humanities, and by a grant from the
Alfred P. Sloan Foundation.

ISSN 1433-8092

a very productive cross-fertilization of techniques between the two fields.
Partly because of this similarity, most of the research in the proof-complexity
area concentrated on complexity measures related to size, which is the most
interesting measure in the circuit complexity framework. In other words,
the main effort in proof complexity was invested in investigating the amount
of time (or at least time-like resources) taken by proofs; we recommend the
excellent recent survey [BP98| for further reading on this subject.

During the workshop “Complexity Lower Bounds” held at the Fields In-
stitute in Toronto in 1998, A. Haken raised the question whether something
intelligent can be said about the amount of space taken by propositional
proofs. Quite surprisingly, it turned out that this very natural question had
been virtually untouched in the past. Apparently, the only early paper de-
voted to the space of proofs is [Koz77], but it dealt only with equational
theories involving no propositional connectives.

Recently Esteban and Toran [ET99] proposed a convenient definition of
space complexity for Resolution which measures the number of clauses to be
kept simultaneously in the memory to infer the contradiction. This model
is analogous to a Turing machine computation, with a special read-only in-
put tape from which the axioms can be downloaded to the working memory
when needed, and erased from the working memory as many times as nec-
essary. They showed some upper and lower bounds for clause space (see
Definition 2.12) and noticed the connection between the clause complexity
for Resolution and the pebbling game on the graph of a derivation.

Our goal in this paper is to generalize the natural notion of space com-
plexity to other propositional proof systems and complexity measures, and
research its properties. The first arising question is how to measure the mem-
ory content at any given moment of time for a specified proof system. Recall
(see e.g. [Kra95]) that the most customary measures for size complexity of
propositional proofs are the bit size and the number of lines. Of these two,
the bit size is by far more important, and can be defined analogously, and
naturally, in the context of space complexity. The only simplification we al-
lowed ourselves is in fact customary for the size complexity as well. Namely,
instead of the bit space we consider the variable space (Definition 2.11) which
is the overall number of occurrences of variables. This changes the complexity
only by at most a logarithmic factor, but makes things substantially cleaner.

It turns out that the line complexity is less adequate a measure for space
complexity than it is a size measure. The reason is quite simple: if the
language of the proof system is sufficiently strong and allows unbounded
fan-in AND gates, then one gets only trivial results. Specifically, we can
prove everything that is provable with just O(1) memory cells, one of them
containing a big AND of all formulae derived at previous steps.

One notable proof system that is not closed under the AND operation is
Resolution, in which case lines are just clauses. In the current paper we in
particular show that the clause complexity, as opposed to the line complexity,

makes perfect sense even for rather strong systems, and can be considered as
its natural replacement in space-complexity studies.

It turns out that all tautologies can be proven within polynomial space for
any “reasonable” space measure (the only potential exception known to us is
the Polynomial Calculus). Specifically, every DNF tautology in n variables
has already a Resolution proof with the clause space (n+1) [ET99], and this
upper bound trivially holds for stronger proof systems. This in itself implies
a quadratic upper bound on the wvariable space, but for the case of Frege
systems we are able to improve it to a linear upper bound in the number of
variables (Theorem 6.5).

These upper bounds determine the range of parameters in which the whole
story develops. We ask which tautologies indeed require that much space,
and which can be proved within, say, (quasi)logarithmic space resources. We
propose some lower bound techniques that in many cases allow us to answer
this question for specific tautologies, proof systems and space measures. It is
worth noting that all these techniques are purely semantic in nature and thus
can be applied to stronger semantic versions of the proof systems in question
(Definition 2.8). Let us also point out that it is not quite clear to which
extent semantic versions of propositional proof systems are actually stronger
than ordinary ones in the context of space complexity. On the contrary, we
show for our weakest proof system (Resolution) and for our strongest one
(Frege System) that the space complexity differs from its semantic analogue
by at most a constant multiplicative factor (Theorem 3.4, Corollary 6.8).

The quintessence of the idea of a semantic proof system is captured by
the “ideal” proof system FC (Functional Calculus), introduced in this paper
which operates with arbitrary Boolean functions. FC is an extremely strong
system that obviously extends any normal propositional proof system in the
sense of Cook and Reckhow [CR79]. Nonetheless, we establish for this system
an 2(n) lower bound on the clause space for the class of “wide tautologies”
which include the pigeonhole principle (Theorem 4.15)%.

For many good reasons, bounded fan-in CNF’s (like Tseitin’s tautologies)
are always preferred in proving lower bounds or separation results. For tau-
tologies from this class (and in the clause space model) we were able to prove
strong lower bounds only for Resolution (Theorem 3.15, Corollary 3.24)2.

Finally, we prove one lower bound in the variable space model that does
not follow from our clause space bounds. Our argument applies in parallel
to both Resolution and Polynomial Calculus, and this situation is already
familiar from the proof size complexity. For example, [CEI96] proved that
every Resolution proof of size S can be transformed into a PC proof of degree
O(v/nlogS), and [IPS97] used essentially the same argument for showing
that every Polynomial Calculus proof of size S can be also transformed into
another PC proof of degree O(y/nlogS). For that reason we find it very

LAn Q(n) lower bound for the resolution clause space of the pigeonhole principle was
independently proved in [Tor99].
2Corollary 3.24 was also independently proved in [Tor99).

instructive to introduce a natural minimal common extension of Resolution
and PC that we call PCR. The above-cited results [CEI96, IPS97| can then
be considered as specifications of one general theorem about PCR which says
that the degree of every size S PCR proof can be reduced to O(y/nlogs).
Our quadratic lower bounds for the variable space are also very naturally
formulated and proved in terms of this new system (Theorem 5.1).

The paper is organized as follows. In Section 2 we define the proof systems
and the space complexity measures we deal with. In Section 3 we prove
structural results and lower bounds on clause space in Resolution. In Section
4 we extend these techniques to handle clause space in the PCR and FC
systems. In Section 5 we turn our attention to variable space in PCR. Section
6 is devoted to some nontrivial upper bounds, showing in particular that PCR
and FC are indeed stronger than Resolution. In Section 7 we discuss some
suggestions for future research.

2 General Definitions

Let = be a Boolean variable, i.e. a variable that ranges over the set {0, 1}.
Throughout this paper we shall identify 1 with True and 0 with False. A
literal of x is either z (denoted sometimes as z') or T (denoted sometimes as
2%). A clause is a disjunction of literals. We write z¢ € C iff the clause C
contains the literal z°.

For any Boolean function f : {0,1}" — {0,1}, Vars(f) will denote its
set of variables. An assignment to f is a mapping « : Vars(f) — {0,1}.
A restriction is a mapping p : Vars(f) — {0,1,%}. We denote by |p| the
number of assigned variables, |p| = [p~1({0,1})|. We say that the restriction
¢’ extends p iff they coincide on p~({0,1}).

The restriction of f by p, denoted f|,, is the Boolean function obtained
from f by setting the value of each z € p~'({0,1}) to p(z), and leaving each
T € p~l(x) as a variable.

We say that an assignment « satisfies f, if f(«) = 1. For Boolean functions
fi,---, fx,g we say that fi,..., fr semantically imply g, fi,..., fr = g, if
every assignment to V = Vars(fi;) U...U Vars(fr) U Vars(g) satisfying
fis- .., [r, satisfies g as well (i.e. Vo € {0,1}V(fi(a) =+ = fela) =1 =
g(a) =1)).

Notation Throughout this paper, a,b will denote Boolean constants,
x,y,z will denote Boolean variables, f, g, h will denote functions, ¢, will
denote formulas, A, B, C, D will denote clauses, «, # will denote assignments,
p will denote restrictions. Calligraphic letters, A, M, N, T will denote sets

of formulas. For n, a non-negative integer let [n] o {1,2,...,n}.

2.1 Sequential Propositional Proof Systems

In this section we introduce the proof systems to be considered in the paper.
We start with the following general concept of sequential proof systems.

Definition 2.1 (Sequential proof systems) Let Y. be some alphabet (e.g.
Y ={T,L, AV, =, 21,29,...}). A sequential propositional proof system
P s defined by:

Lines Fiz a set FORMULA(P) C ¥* with two special formulas
T and L. FORMULA(P) is the set of all possible lines that
may appear in a proof, and we use the words “formula” and
“line” interchangeably.

Interpretation A mapping || || that relates a Boolean function ||¢||
to every ¢ € FORMULA(P), such that ||L|| = 0 and
T =1.

Inference rules Fach inference rule is a (k + 1)-ary relation R C
FORMULA(P)**. If (o1, - .-, ¢k, %) € R we say that v is
derived from @1, ..., @ via the rule R, denoted @1, ..., -
1. We require that:

e cvery inference rule is sound, meaning

o1 e B = llealls - [l =1

e the set of inference rules is implicationally complete,
i.e.,

ol - -5 lleml| = [19]]
implies that ¢ can be derived from 1, ..., o in P.

Definition 2.2 A configuration is a set of formulas. We say that the con-
figuration My semantically implies the configuration Mo (M = My) iff for
any formula ¢ € Mo, {||¢||| ¢ € M1} = ||¢]|. We write M [= ¢ instead of
M E {y} for a single formula .

Definition 2.3 (Derivation) A derivation of a formula 1 €
FORMULA(P) from some set of azioms T C FORMULA(P) is a
sequence of configurations 1 = {Mo, My,...,Mz}. My =0, My = {9},
and for 1 <t <T, M; must be one of the following:

Axiom Download M; <~ M;_1 U {p} for some aziom ¢ € T.

Memory Erasing M, <= M, \ M', for some subset of formulas
M T M.

Inference M; < M,y U {y}, for ¢ inferred from some subset
M C M,_1 by a single application of an inference rule.

A refutation of T is a derivation of L from T.
The t’th step of m is the transition from M1 to My, denoted also by
Mt_1 > Mt.

We now introduce the proof systems we shall use. We define them by spec-
ifying the lines, interpretation (straightforward in most cases) and inference
rules. The first, and simplest, is Resolution:

Definition 2.4 (Resolution) The Resolution proof system is denoted by
R.

Lines A line is simply a clause.
Interpretation QObuvious.

Inference rules The single inference rule is: AVz, BV + AV B.

The next proof system, which has received much attention in recent years,
is the Polynomial Calculus.

Definition 2.5 (Polynomial Calculus) In Polynomial Calculus (denoted
PC) we work within a fized field F.

Lines A line is a polynomial over F, represented as a sum of
monomaials.

Interpretation For a polynomial P(z1,...,x,), ||P|| is the char-
acteristic function of the set of its roots in {0,1}", i.e.,
||P||(e) =1 4ff P(a) =0; L =1, T =0.

Inference rules There are default azioms (= 0-ary rules) enforcing
{0, 1}-solutions and two other inference rules:

DEeFAULT AXIOMS z(1 — z) for all variables z.
SCALAR ADDITION Py, P, F (aP; + 8P,), for a,f3
scalars in F'.

VARIABLE MULTIPLICATION P+ x - P, for x any
variable.

A CNF formula 7 can be easily encoded into a set of polynomials I'7- over
F, such that 7 is satisfiable iff '+ has a common Boolean (i.e., {0,1}) root
in F. The standard translation is as follows: for a clause C' let C, (C_) be
the set of positive (negative) literals appearing in it. Then

FT = {(Hjec_$) : (Hw€C+(1 - "E)) | C e T} :

As we noticed in the introduction, we would like to define an extension
PCR of PC that would be also at least as efficient as Resolution. The obvious
problem with the standard translation is that e.g. the single clause V], x;
will have 2™ monomials after this translation. One way to circumvent this is
to use 2n variables, one for each possible literal, and to add axioms that will
tie x; with the new wvariable z; in the expected manner. Thus we arrive at
the following proof system.

Definition 2.6 (PCR) In PCR (= Polynomial Calculus augmented with
Resolution), as in PC, we work over a fized field F.

Lines A line is a polynomial over the variable set

{xl,...,xn,il,...,in}

(also represented as a sum of monomials).

6

Interpretation For a polynomial P(z1,...,%n, Z1,...,%,) and a €
{0,1}™, ||1P||(a) = 1 iff Py, -y any 1=y, ..oy 1—ay,) = 0;

1=1,T=0.
Inference rules All inference rules of PC, plus the following addi-
tional

DEerAULT AXIOMS z; + Z; — 1 for all .

In PCR, any clause can be coded by a single monomial in the most trivial
way: C is translated into Ilzec_zllzec, . As we noticed above, PCR extends
both Resolution and Polynomial Calculus (over the same ground field F). In
the opposite direction, PCR over the prime field [, is a subsystem of the
system F)(MOD,) in the hierarchy F5(MOD,) considered in [Kra97b].

Definition 2.7 (Frege proof systems) A Frege proof system works with
arbitrary propositional formulas.
Lines A line s an arbitrary formula ¢ over some complete basis.
Interpretation Obuvious.

Inference rules Every inference rule is specified by a scheme

where A;, B are propositional formulas, and altogether there
are only finitely many of them. A formula v is derived from
formulas @1, ..., @, using this inference rule if there is a set
of substitutions o of formulas for the variables appearing in
the scheme such that ¢; = A7 fori=1,...,k and ¢ = B°.

It will be more convenient to prove lower bounds for semantical systems,
which are the “bigger” and “stronger” brothers of the ordinary sequential
proof systems:

Definition 2.8 (Semantic Calculus) Let P be a sequential proof system.
The semantic version of P, denoted P s defined by:

Lines The set of lines of P.
Interpretation Same as in P.

Inference rules The single® semantic inference rule:

901,---,%0k|_¢

for any lines 1, ..., pr, Y of P such that |||, ..., ||ekl| E
4]

3Strictly speaking, we have here an infinite sequence of inference rules, one rule for
each £ =0,1,2,.... The same remark applies to Definition 2.9 below.

7

Remarks

1. When moving to P all that remains of the original definition of P is
the definition of allowable lines (along with their interpretation), and
any semantically valid inference is allowed. In particular, semantical
systems make little sense if we are interested in size measures (see, how-
ever, [Kra97a, Juk97] which proposed to study semantical systems when
the number of premises k in the semantic inference rule is bounded).
As we will see below, the situation with the space measures is just the
opposite: all lower bounds we have been able to prove are in fact valid
for semantical variants.

2. Since any semantically valid inference is allowed in semantical systems,
in general a step in P cannot be verified to be legal in polynomial
time, unless P=NP. In other words, P is not necessarily a classical
Cook-Reckhow proof system [CR79].

3. Since we required the soundness of every inference rule in Definition
2.1, P is always at least as efficient as P.

Now we define the purely semantical system of Functional Calculus (FC)
which works with arbitrary Boolean functions, regardless of their syntactical
representation complexity. In fact our space complexity for FC defined below
in Section 2.2 will simply minimize over all such representations. Although
this system is not natural, it will be a very useful tool for proving lower
bounds for the natural proof systems of Resolution, PC, and PCR.

Definition 2.9 (Functional Calculus) The Functional Calculus is deno-
ted F'C.

Lines A line is an arbitrary Boolean function.
Interpretation Identity mapping.

Inference rules The single rule is the semantical inference rule,
i.e. fi,fay---, fu g, whenever fi, fo, ..., fx E g.

2.2 Space Measures

We shall start by defining space measures over memory-configurations (=
sets of formulas). The most natural space measure is bit space.

Definition 2.10 (Bit Space) Let P be any sequential proof system. For
M a configuration, the bit space of M in P is:

BSp(M) E S cmlel,

where |¢| is the length of the word ¢ in alphabet .

If the given sequential proof system keeps its formulas in the standard
syntactical way: as trees of operations with variables in the leaves, and with
indices 7 of the variables x; written in binary, then its bit space is closely
related to the variable space:

Definition 2.11 (Variable Space for Resolution, PC, PCR, Frege)
For M a configuration, the variable space of M in P is: VSp(M) def

YoemV S(p), where VS(¢p) is the number of occurrences of variables in .

In order to prove lower bounds on the variable complexity for Resolution
and PCR, as an intermediate step we will need lower bounds on the number
of clauses/monomials kept in the memory (see Case 1 in the proof of Theorem
5.1). This is the measure which was considered in [ET99]: it is also interesting
in its own right for the reasons sketched in the introduction.

Definition 2.12 (Clause Space for Resolution, PC, PCR) For M a
set of clauses, let CSr(M) be the number of clauses in M.

For M a set of linear combinations of monomials, let CSpcr(M) be the
number of distinct monomials appearing in M (notice that if a monomial ap-
pears several times in different linear combinations, it is nonetheless counted
only once).

When defining the clause space for FC, we must overcome the following
problem. A line in FC is an arbitrary Boolean function f. Clearly, f can be
represented by many circuits over some complete Boolean basis, each with
a different amount of clauses. The natural way to solve this problem is to
define the clause space to be the minimal number of clauses in any such
representation.

Definition 2.13 (Clause Space for FC) For M a set of Boolean func-
tions over x,...,%,, the clause space of M in FC, denoted CSpc(M), is
the minimal s such that we can choose s clauses with the property that every
f € M can be represented as a Boolean function over the chosen clauses.
Formally:

CSpe(M) € min {s|3(Cy(z1,...,22), Co(z1, - . ., T0), - . .,

Cs(z1, .., xn) V([(21, -, xn) € M)3g(y1, - .-, Ys)
(ng(Cl,...,Cs))},

where C; are clauses, and g runs over arbitrary Boolean functions in s vari-
ables.

We are now ready to define the space of refuting a contradictory set of
axioms 7.

Definition 2.14 (Refutation Space) Let P be one of the above mentioned
proof systems, and pp be one of the above mentioned space measures. Let m =
{Mo, My, ..., Mz} be a derivation (= a sequence of memory-configurations)
in the proof system P. The space of 7 is

pp(m) E max {up(M,;) |0 <t <T}.

For T a contradictory set of formulas, the space of refuting T in P is:

pp(T) o min { pup(7) | ™ a refutation of T in P}.

Remark: Notice that there is some kind of ambiguity in this definition since
for an unsatisfiable set of formulas 7 C FORMULA(P), pup(F) can mean
two different things: the space of F itself (if F is considered as a memory-
configuration M) or the space of refuting F. In each concrete case it will be
clear from the context what does the measure i stand for; in particular, we
will never mix the letters M and 7.

We conclude this section with a summary of the relative strength of dif-

ferent space measures and different proof systems.

Lemma 2.15 For any proof system P defined above except FC, T a con-
tradictory set of formulas over n variables: V.Sp(T) < BSp(T) < O(logn -
VSp(T)).

Lemma 2.16 For any proof system P defined above, T a contradictory sub-
set of FORMULA(P), and p any of the space measures defined above:

pp(T) < pup(T).

Lemma 2.17 For T a contradictory set of clauses and p any of the space
measures defined above: pupcr(T) < pr(T).

Lemma 2.18 For T a contradictory set of polynomials in the variables
{%1,. ..,xn,il, .. .,fn},

we have CSpc(T) < CSpap(T) < CSper(T).

3 Clause Space in Resolution

Resolution is the weakest of the propositional systems we discuss. The re-
search of clause space in Resolution was started by Esteban and Toran in
[ET99]. They in particular defined the following tautologies* CT':

Definition 3.1 (COMPLETE-TREE tautologies) CT), is the following
set of arioms:
{2 vazv...var|ee {0,1}"}

4Throughout the paper we assume that all tautologies are represented in the form of a
contradictory set of formulas 7.

10

and showed hardness of their refutation in terms of clause space. They also
gave an upper bound for any tautology 7 over n variables (we state it in our
language):

Theorem 3.2 [ET99] If T is a contradictory set of clauses over n variables
then CSg(T) < n+1.

This bound is tight for the principle C'T,,.

CT, contains an exponential number of axioms. In this section we de-
fine the class of semi-wide tautologies of polynomial size which are hard to
refute for Resolution in terms of clause space. This class contains such pop-
ular principles as PHP)', onto — PHP,', Count,, GT,. We also show via
a slightly different approach the space hardness of Tseitin tautologies for
expander graphs. All our lower bounds are valid for semantic Resolution.
In fact the semantical and syntactical versions of Resolution turn out to be

equivalent. This is where we start from.

Notation: Throughout Section 3 we do not distinguish between a clause C
and the Boolean function ||C|| computed by it. We sometimes write |M|
instead of CSg(M) for shortness.

3.1 Equivalence of Syntactic and Semantic Resolution

A CNF formula is minimal unsatisfiable if it is unsatisfiable and removing
any clause from it will make it satisfiable. We will need a very useful theorem,
due to M. Tarsi [Tar|, which can be originally found in [AL86].

Theorem 3.3 [Tarsi’s Theorem)] If T is a minimal unsatisfiable CNF for-
mula on n variables and m clauses, then m > n.

We claim that with regard to clause space, semantic and syntactic Reso-
lution are equivalent, up to a constant factor.

Theorem 3.4 For any unsatisfiable CNF T :
CSa(T) < CSr(T) <2-CSi(T)

Proof: The first inequality is a special case of Lemma 2.16. Let m be an
R refutation of 7 with clause space s. We wish to show 7 has a clause
space 2s refutation in R. The only difference between R and R is in the
inference rule, so we focus on this rule. Suppose M;.; was inferred from
M, by the semantic inference rule (M., <+ M; U {C}, M; = C), where
Myl M| < s.

Let p be the unique restriction on the variables of C' such that C|, = 0.
Now we use the soundness of the step to claim that M;|, must be unsat-
isfiable. M|, contains a minimal unsatisfiable sub-formula M’, which, by

11

Tarsi’s theorem, has at most s — 1 variables. By Theorem 3.2, the contra-
dictory set of clauses M’ can be refuted in space s. It is an easy exercise to
adjust this R-refutation and derive C' from M; with the same space s.

We need a space of s cells for saving M,;. Additionally, we use s cells to

derive C' € My, from M;. O]

3.2 Lower Bounds for Semi-Wide Tautologies

In this section we prove lower bounds for Resolution clause space for a number
of principles which include various modifications of the Pigeonhole principle,
counting principles and the principle GT,, (the latter was used in the recent
work of [BG99] to produce a tautology with large minimal refutation width
and polynomially bounded refutation size). These results follow from a gen-
eral lower bound for semi-wide tautologies, also introduced in this section
(Theorem 3.10). We also show how to transform any semi-wide tautology
(and, in particular, any of the above mentioned examples) to an equivalent
3-CNF form while preserving clause space hardness (Theorem 3.15).

Although the techniques of the proofs are very simple, we will use similar
ideas when proving lower bounds for stronger proof systems. Also, these
results will be useful for proving lower bounds for the variable space com-
plexity.

The main idea of our lower bounds is to come up with some set of memory-
configurations A (“A” stands for “admissible”) such that:

e it does not contain contradictory configurations;

e any memory-configuration achievable in small memory is the semantical
corollary of some configuration from A.

Notice that we do not require A to contain all the formulas which can be
derived using small space. We only require that for any such formula ¢, there
exists a memory configuration M € A implying ¢.

In all our cases these “dominating” memory-configurations will be of a
very simple nature, namely, sets of disjoint clauses:

MeA:M:{\/xjj\lgigk},
JEJ;
where J; N Jy = 0 for different 1,4’

Definition 3.5 (Proper 1-CNF’s) M is called a proper 1-CNF if it is a
set of disjoint literals, i.e.
M = {z8 2 x

VIR PR Rl I B

and j;, # ji, for different i1, 1.

12

Remark: Notice that a proper 1-CNF can be naturally identified with a
restriction. We prefer to use the term 1-CNF, because we will use similar
2-CNF’s in order to prove lower bounds for clause space for FC in Section 4,
where ordinary restrictions won’t suffice.

The heart of our lower bounds for clause space for Resolution is the fol-
lowing trivial Locality Lemma which informally claims that small 1-CNF’s
are enough to imply any small space consequence of the axioms. Later on
we shall present an analogous Locality Lemma 4.11 for Functional Calculus,
which will be less trivial.

Lemma 3.6 (Locality Lemma for Resolution) Let M be a proper 1-
CNF. Suppose that M, is the semantical resolution corollary of M (i.e. M,
is a set of clauses and M = M), let |M,| = s. Then there exists M;* C M
such that M{' = My and IM7!| < s.

Proof: Suppose M; = {Cy,Cy,...,Cs}. For any clause C; which is the
semantical corollary of M there exists some z} € M N C;. Thus M, is the
€1 €2

semantical corollary of the configuration M7 = {z5, 23, x5) (]

A contradictory set of clauses is called n-wide if all its axioms have width
(= the number of literals) > n. [ET99] proved that every n-wide tautology
has clause space > n. In Section 4 we shall prove FC lower bounds for these
tautologies. In the case of the weaker resolution system, we can prove lower
bounds for a bigger class of semi-wide tautologies.

Definition 3.7 (Semi-Wide Tautologies) Suppose that T is a contradic-
tory set of clauses which is divided into two groups: T =P U R, where P is
satisfiable.

For M a proper 1-CNF, we say that it is P-consistent iff P U M is con-
sistent. FEquivalently, M 1s P-consistent iff it can be extended to a proper
1-CNF which implies all azioms of P (IM' DO M (M' = P)).

Finally, T is n-semi-wide iff there exists a partition T =P U R such that
P is satisfiable and for every azxiom C' € R, for every P-consistent proper
1-CNF M with |M| < n, it can be extended to a P-consistent proper 1-CNF
M' D M such that M' = C.

Before we show that n-semi-wide tautologies demand clause space at least
n + 1 to be refuted, we give several natural examples.

It is obvious that every n-wide tautology is also n-semi-wide: we let P = (),
and if we fix the values of n — 1 variables by a proper 1-CNF M, any clause
C =iV V.. . Vz{ with N > n can be satisfied by fixing some unassigned
variable (i.e., the variable which isn’t contained in M) z;. In particular, the
COMPLETE-TREE tautology CT), is n-semi-wide.

Another example is the Pigeonhole principle with m pigeons and n holes
PHP] which states that there is no 1-1 map from [m] to [n], as long as
m > n. The propositional formulation of this principle has received much

13

consideration in proof complexity, and is one the major test cases for com-
paring different proof systems. In particular, our (n+ 1) lower bound on the
clause space of refuting PHP]" was independently proved in [Tor99].

We discuss here only the onto-version of this principle which constrains
1-1 maps to be onto. One can easily extend our arguments to other PHP-like
principles and Count,,.

Definition 3.8 (Onto-Pigeonhole Principle) Onto — PHP' is the uni-
on of the following four groups of arioms:

(i) P, S\ \jenmis (i € [m]);

.. def .
(it) Hj = Vlgign zi; (5 € [n]);
def _ _ . . .
(it1) Qivjinj = Tinj V Tizj (02 € [m], i1 # i3 j € [n]);
. def _ _ . o . .
(1) Qijrjs = Tijy V Tijy (i € [ml; ju,J2 € [n], 1 # Ja).

One can see that onto — PHP)' is n-semi-wide if she takes the partition
P UR with P = {Qihiz;j | 7;1)7:2:.7} U {Qi;j1,j2 | iajlaj2} and R = {B | 7’} U
{H,;|j}. The proper 1-CNF M is P-consistent iff it doesn’t put either two
pigeons to the same hole (i.e., contains the literals z;,;, ;,;) or one pigeon
in two different holes (i.e., contains the literals z;;,, %i;,), in other words iff
positive literals in M form a partial matching. Now if n—1 variables are fixed
then when we take the axiom P; we can put ith pigeon to some unassigned
hole (that is, to add the corresponding positive literal). Dually, if we take
the axiom H; we can put some unassigned pigeon to jth hole. Thus we can
always satisfy an axiom from R with some extended P-consistent proper
1-CNF.

Another principle, GT,,, states that in every transitive directed graph which
doesn’t contain cycles of size two, there must exist a source node with no
incoming edges. This principle, formulated in [Kri85], was shown to have
a refutation of polynomial size [Sta96]. Recently, [BG99] used this princi-
ple to produce a tautology of polynomial refutation size and large minimal
refutation width.

Quite surprisingly, this very same principle also shows that large clause
space complexity does not imply large refutation size.

Definition 3.9 GT, is the following contradictory set of azioms over n(n —
1) variables x;; (i,j € [n],i # j) consisting of three groups:

(i) Tij = (ij Nmje) = Tk (1, 7,k € [n],i # J #k);
(it) Cij &« Tij VT (1,5 €[n],i #7);
(iii) S; % gy as (7 € [0])

14

The first group of axioms says that the graph is transitive. The second
group states that there are no cycles of size two. The axiom S; says that
j is not the source node. Clearly this set of axioms is contradictory. To
see that it is §-semi-wide take the partition 7 = P U R where P consists
of the axioms of the first and second groups. Then the proper 1-CNF M
is P-consistent iff it doesn’t contain a cycle of positive literals (i.e. chains
like Liins Ligigs - - - xikil) and it doesn’t contain a chain Tirigs Ligigs « + -y Lig_qip
together with the literal z; ;. Suppose now that M is P-consistent and
assigns not more than 7 — 1 variables and we are to extend it to satisfy
some axiom S; € R. We can choose the index k # j such that no variables
Tki, Tik, ¢ € [n] are contained in M and let M’ = M U {zy;}. Thus GT, is
5-semi-wide.

In the next theorem, which is the main result of this section, we show that
semi-wide tautologies are hard for Resolution in terms of clause space.

Theorem 3.10 For any n-semi-wide tautology T, CSz(T) > n.
Proof: Fix the partition 7 = P U R in accordance with Definition 3.7.

Definition 3.11 (Admissible configurations for 7) We call M admis-
sible iff M is a P-consistent proper 1-CNF and |M| < n.

Consider the set A of all admissible configurations. We claim that the
following holds: for each configuration M, derivable in space < n, there exists
a configuration M~ € A such that M~' E M and |[M™!| < |M|. This is
obviously enough to prove the theorem since A doesn’t contain contradictory
configurations.

We prove it by induction. The basis is trivial: in the beginning of the
derivation the memory contains an empty set. To check the induction step
suppose that M, ~» M, 1, and that there exists M; ' € A such that M;' =
M, M7 < M.

Let us consider the three cases corresponding to the possible derivation
steps: axiom download, semantic inference step and memory erasing.

Axiom Download (M, < M, U{C}, C € T): In this case |M,;| <n—
1 (since there is free space for the new axiom). Thus |M;!| <n —1,
hence it can be extended to P-consistent proper 1-CNF M, +11 which
satisfies C' (if C € R this follows from the definition of semi-wide
tautology, and if C' € P it is obvious). Since C is a clause we can
satisfy it by fixing just one variable. Thus we can assume w.l.o.g. that

M| < M+ 1
Clearly, M, € A and M}, E M1 Also, ML < MY +1<
My +1=[Mp].

Inference step (M, < M;U{C}, M; = C): In this case M;' |
M. By the Locality Lemma 3.6 there exists M,;ll C M;"! such
that Mt_—|—11 F M1 and |Mt_—|—11| < [Mgl

15

Memory Erasing (M;;1 + M;\ M’ C M,) : Analogous to the case of in-
ference step.

Theorem 3.10 follows.]

So far we have strongly used the existence of axioms of width n to show
that a given tautology is semi-wide and thus prove a lower bound of 7 on the
clause space. We now go one step further to show that we can transform any
semi-wide tautology to the following 3-CNF version which requires essentially
the same space as the “standard” version.

Definition 3.12 (Strong Nondeterministic Extensions) For C(Z) a
clause, a strong nondeterministic extension of C' is any Boolean function
f(Z,) such that:

e if C(ad) =0 then f(a,y) =0;

o if x5 € C then there erists an assignment ﬁ to i such that
f e/, Blg| =1.

Example 3.13 One standard strong nondeterministic extension of a clause
C =1z VzoV...V 1z, s the function represented by the following 3-CNF
family over n + 2 clauses and 2n + 1 variables:

{GotU{yjmave; vy |1 <j<n}U{y}.

Definition 3.14 (Extended version of 7) An extended version of the
tautology 7T, denoted T is derived by replacing every axiom C; with
some CNF set of clauses EC; representing a strong nondeterministic ex-
tension of C;, such that distinct £C; use distinct extension variables 1; =

(yﬂ, Yizy - - -, ym)-

Theorem 3.15 If T is n-semi-wide then CSi(T) > n for any extended
version T of T.

Proof:

As in the proof of Theorem 3.10, we are going to define the set of admis-
sible configurations A. After that the proof will be very similar to that of
Theorem 3.10. Let, as before, the partition 7 = P U R is chosen according
to Definition 3.7. For every clause C; € T and every 25 € C; we rigidly fiz
once and for all an arbitrary assignment ﬁ_;'j to the variables ¢; such that the

restriction which sends z; to € and sends ¢; to B;-j forces to 1 all clauses from
EC,.

Definition 3.16 (Admissible configurations for 7) We call M admis-

sible for T ioff there exists a T -admissible configuration M (in ordinary vari-
ables) such that:

16

e for every original variable z§ € M, we also have z§ € M;

e if M contains at least one auziliary variable from §;, then there exists
Ti € M such that the values of all auziliary variables in 1; belonging

to M are consistent with ﬂz].

Consider the set A of all configurations admissible for 7. We claim that the
following holds: for each configuration M derivable in space n, there exists
a configuration M ' € A such that M~ ' = M and M| < |M]|. This is
obviously enough to prove the theorem since A doesn’t contain contradictory
configurations.

We prove it by induction. The basis, inference step and memory erasing
can be handled with the help of the Locality Lemma 3.6, as in Theorem 3.10.

Consider the axiom download. Let M, < M; U {C} C € &C;. By the
induction hypothesis there exist configurations M, * ,Mt with properties
described in Definition 3.16, and such that M, = M; and | M, | < | M.
Case 1: M, ! already contains some auxiliary variable from £C;.

Then we have already assigned in ./(/l{ ! some variable z; with z; € Citoe
such that the values of all auxiliary variables i; in M, ' are consistent with

ﬁij. Either z§ € C or yﬁ“e € C for some ¢ < k;. In the first case we let

MY o Mt U {a: }, and in the second case we let M MU {yiﬁzﬂ}.

1 def

Put also Mt+1 = Mt .

Case 2: M, ! doesn’t contain any auxiliary variables from £C;.
W.lo.g. we can assume that |M\[1| < |M; | (simply leave in M\[l only

those z§ which are really used for fulﬁlling the two conditions in Definition

3.16). S1nce M; ! is T-admissible and lMt N < MY < |IMy| <, argumg

as in the proof of Theorem 3.10, we can find some z; € C; such that Mt

{5} is still T-admissible. Arguing as in Case 1 above, we can extend Mt

with either z§ itself, or with some yﬁ”l to get M, with M} = C.
Theorem 3.15 follows. L

3.3 Tseitin Tautologies

A Tseitin tautology is an unsatisfiable CNF capturing the basic combinatorial
principle that for every graph, the sum of degrees of all vertices is even. These
tautologies were originally used by Tseitin [Tse68| to present the first super-
polynomial lower bounds on refutation size for a certain restricted form of
Resolution (regular resolution).

The main theorem in this subsection is Theorem 3.21 that presents a lin-
ear lower bound on the clause space of Tseitin formulas. This result was
independently obtained in [Tor99].

Definition 3.17 (Tseitin Formulas) Fiz G a finite connected graph, with

V(G)| =n. 0:V(G) — {0,1} is said to have odd-weight if Xycy(gyo(v) =1
(mod 2). Denote by dg(v) the degree of v in G. Fiz o an odd-weight function.

17

Assign a distinct variable x, to each edge e € E(G). For v € V(G) define

PARITY;W o (D.5, e = o(v)(mod 2)). The Tseitin formula of G and o
is:
T(G,0) €)\ PARITY,,.

veV(Q)

If the maximal degree of GG is constant, then the initial size and width of
T(G,o0) are small as well:

Lemma 3.18 Ifd is the mazimal degree of G, then T(G, o) is a d-CNF with
at most n - 2471 clauses, and at most nd/2 variables.

We shall need the following lemma from [Urq95]:

Lemma 3.19 [Urq95] If G is connected, then T'(G, o) is contradictory iff o
is an odd weight function. Moreover, for anyv € V(G) there is an assignment
satisfying all azioms from { PARITY, ,|u # v}.

The space lower bound on Tseitin formulas will be directly connected to
the following notion of expansion:

Definition 3.20 (Connectivity Expansion) For G a connected graph on
n vertices, let ¢(G) be the minimal number of edges that one must remove
from G in order to obtain a graph in which all connected components have
size < /2.

Theorem 3.21 CSx(T(G,0)) > ¢(G) — d(G), where d(G) is the mazimal
degree of a vertexr in G.

Proof:
Our invariant will be a specially tailored sequence of restrictions, defined
hereby:

Definition 3.22 (Admissible configurations for 7(G, o)) Suppose that
M is a proper 1-CNF with |M| < ¢(G). Let E(M) C E(G) be the subset
of edges corresponding to the variables of M. Then G\ E(M) (the graph G
after removing the edges E(M)) has an uniquely defined mazimal connected
component Vipae (M) with |Viyee(M)| > n/2.

We call the proper 1-CNF M with IM| < ¢(G) admissible for T(G, o) if
there exists a proper 1-CNF M' such that M' O M and M' = PARITY,, ,
for any v & Vipaz (M) (in other words, M is consistent with

{PARITY, ;| v & Vinaz (M) }).
Remark: It is important to notice the following monotonicity property:

if M is admissible and M’ C M, then V. (M') D Veu(M) and M’ is
admissible, too. That’s exactly what we need the condition |M| < ¢(G) for.

18

Lemma 3.23 Suppose that M is admissible for T(G, o). Then for any vy €
Vinaz (M) there exists a proper 1-CNF M' O M such that Yv # vy M' =
PARITY, , (in other words we can extend the assignment M to satisfy all
azioms except that of v).

Proof: Let us consider the restriction p which corresponds to M (p(z,) = €
iff ¢ € M). If we apply this restriction to the tautology T(G, o) it will
be partitioned to the independent formulas: T° = /\vew PARITY, , for
different connected components V; of the graph (G \ E(M)), where

a'(v) def o(v) ® @ p(xe).
p(;ea)vsé*
Vinaz (M) is the component with maximal size. By the definition of admissible
configurations, all T* are satisfiable for V; # V;,4:(M). By Lemma 3.19 there
exists an assignment to the edges in Vj,..(M) which satisfies all axioms
except PARITY,, ,». The lemma follows. L]

Let us now finish the proof of Theorem 3.21. Let A be the set of configu-
rations admissible for (G, o). As usual we claim that for each configuration
M, derivable in space c¢(G) — d(G), there exists a configuration M~ € A
such that M~ = M and |[M™!| < |[M|. We prove it by induction. The
basis, inference step and memory erasing can be handled with help of the
Locality Lemma 3.6 just as in Theorems 3.10, 3.15.

Consider the axiom download. Let M, «+ M, U{C}, C € PARITY,,
for some vertex v. The proof splits into two cases.

Case 1: v & Vo (M; 1), Since M; ! is admissible, there exists M} D M
such that Vv & Vyee (M), M} = PARITY,, (and in particular M} = O).
Let 25 € M}, be a literal which forces C to true (i.e. z¢ € C). Let M}, =
MU {ze}. Tt is clear that Vi (M) = Vinge(M; ") (since e 5 v) and
ML e A

Case 2: v € Vo (M), Let us add to E(M; ') all the edges adjacent to v:
E' = E(M;')UE(v). By the induction hypothesis, [M;!| < ¢(G) —d(G) —1
(there’s one free memory cell for axiom download) hence |E'| < ¢(G). Let
V! .. be the maximal connected component in G \ E'. By our remark on

max
the monotonicity, V! . C Vinee(M;'). Fix any vy € V! . and let M’ be

the proper extension of M;"' from Lemma 3.23 such that Yu # vy M’ =
PARITY, ,. Let ¢ € M’ be a literal which forces C to true (i.e. z¢ € C).
Let M,y = M; ' U {z¢}. Tt is clear that Vi (M) 2 Vi D vo, hence

1 max
M, €A

Theorem 3.21 follows.
]

If G is an expander, then the clause space of refuting 7'(G, o) is linear in
the input size, and we get:

Corollary 3.24 There exist arbitrarily large unsatisfiable 3-CNF' formulas
T with CSa(T) = Q(|T)).

19

Proof: Let G be a 3-regular expander with expansion € > 0 (i.e., V(V' C
VIV <n/2 = |E(G)N(V'x (V\V'))| > €[V'])). Let o be an odd-weight
function on V(G). Let T = T(G, o). By Lemma 3.18, 7 is an unsatisfiable
3-CNF formula with O(|V]) clauses and variables. On the other hand, it is
easy to verify that ¢(G) = Q(|V]).]

4 Wide Tautologies and Lower Bounds for
Functional Calculus

In this section we define a natural class of wide tautologies which turn out to
be hard for FC in terms of clause complexity. In Section 5 we will also show
that wide tautologies are hard in terms of variable complexity (and hence bit
complexity) for PCR (and hence for Resolution and Polynomial calculus).

4.1 PCR and FC over multi-valued logic

We start by extending our proof systems to work with multi-valued vari-
ables. The motivation is the usual one: in many cases, the multi-valued logic
is a natural vista to view lower bounds for the Boolean case which is our
true interest. For example, [RWY97] used R-way (read-once) branching pro-
grams to formulate and prove some partial results about the resolution (size)
complexity of the weak (i.e., when m > n) pigeonhole principle PHP/".
Crucial to their results are two dual interpretations of PHP)" in terms of
multi-valued logic; here we are interested only in one of them, the Column
Model. In this model, the pigeonhole principle has the following form: sup-

pose Z1,..., T, are variables of m-valued logic, where m > n (“z; = 4” has
the intended meaning “the i’th pigeon sits in the j’th hole”). Then there
exists ¢ € [m] which is not in the set {z1,...,z,}.

In the proofs of our remaining lower bounds, it will be also very convenient
to treat PH P in this way. In particular, this will allow us to formulate our
bounds in terms of a simple, uniform and concise criterion fulfilled by both
CT,, and PHP!" (Definition 4.9 below).

We need to generalize some definitions from Section 2. Since the system-
atical study of the space complexity for the multi-valued case is not exactly
our intention (we rather view the multi-valued logic as a convenient tool!), let
us confine ourselves only to the minimal set of definitions that are absolutely
necessary to introduce semantical versions of the concrete proof systems we
are interested in.

Definition 4.1 Let us fix some finite domain D. Instead of Boolean vari-
ables, we use multi-valued variables x; ranging over the domain D. A multi-
valued Boolean function f(z1,...,x,) is a mapping from D™ to {0,1}, where,
as before, we identify 1 with True and 0 with False. The notions of a (multi-
valued) satisfying assignment a € D", semantical implication fi,..., fx E g,
as well as the general concepts of sequential proof systems (Definition 2.1)

20

and the semantic version of a given proof system (Definition 2.8) are gener-
alized to the case of multi-valued logic straightforwardly.

Thus, the only remaining thing we still need to define is the set of allowable
lines for the specific cases of Resolution, PCR and FC.

Definition 4.2 (Multi-valued clauses) Suppose that D is some finite do-
main. A multi-valued literal is the formal expression x7, where 7 is some
non-constant function = : D — {0,1}.

A multi-valued clause is a disjunction of multi-valued literals corresponding
to distinct variables

C=ap Va2 V...V, k# 1= jr # ji,

with the straightforward interpretation ||C||(o) = m1 () V ... V Ty (aj,)-
The width of a multi-valued clause is the number of multi-valued literals
wn .

Definition 4.3 Denote by xg the multi-valued literal x;-“, where x; s the
characteristic function of i (x;(i') =1 iff i' =i).

First we define FC over D in a natural way:

Definition 4.4 (Multi-valued functional calculus) Functional Calcu-
lus over the domain D (FC(D)) is the pure semantical system which keeps in
memory arbitrary functions f(x1,...,2,) : D™ — {0,1}. The inference rule
s the semantical one.

The space measure CSpc(p)(M) of a set of such functions M is the min-
tmal s such that we can choose s multi-valued clauses with the property that
every f € M can be represented as an (ordinary!) Boolean function over the
chosen multi-valued clauses (cf. Definition 2.13).

If we restrict the function g in the previous definition to have a certain
syntactic representation we get multi-valued semantical Resolution and PCR:

Definition 4.5 (Multi-valued Resolution) Multi-valued semantical
Resolution over domain D,]A%(D), 18 the system analogous to semantical
Resolution which works with multi-valued clauses instead of usual ones.

The clause and variable complexity are analogous to that of R.

Definition 4.6 (Multi-valued PCR) Suppose that F' is a field. Multi-

valued semantical PCR over domain D, ITC\R(D, F) is the semantical system
which keeps in memory polynomials over F' with literals x7 for all possible
j, 7 as their variables. As in the Boolean case, the interpretation is given by
the characteristic function of the set of roots:

||P||(a1y---yan) =1 iff P[’ﬂ'(&j)/df}r] =0
in the field F. The clause and variable complexity are analogous to that of

PCR.

21

We conclude this subsection with one possible translation from multi-
valued systems to ordinary ones. This straightforward translation preserves
the variable and clause space lower bounds.

Definition 4.7 Suppose that P is some multi-valued proof system over do-
main D, T is a contradictory set of axioms. Replace each multi-valued vari-
able x; with the tuple x1;, Toj, . .., Tm;, where m = |D|. The intuitive meaning
of xij s “v; =17, i.e., the same as of the multi-valued literal x;

Let us denote by PRp(T) the following set of axioms over Boolean vari-
ables x;;:

L ‘/Z‘ilj \ jizj: fO'f' 7;1 7é 2.2;.
L) |:Vi€7r—1(1) zi5/x] | for all g € T.

It is clear that each refutation of PRp(7) can be transformed into the
refutation of 7 without increase in either variables or clauses. Thus we have
the following trivial proposition which shows how to use multi-valued systems
for proving Boolean lower bounds:

Proposition 4.8 For u either clause or variable space, for any multi-valued
system P, any T C FORMULA(P), and any domain D the following holds:

ppo)(T) < pp(PRp(T)).

4.2 Wide tautologies

Now we are ready to generalize the concept of a wide tautology to multi-
valued clauses. This section’s main result is a strong space lower bound for
such tautologies.

Definition 4.9 (Multi-valued wide tautology) A family of multi-valued
clauses T over multi-valued variables x+, ..., x, is wide iff every clause in it
has maximal possible width n.

One obvious example of a (Boolean) wide family is CT',,. The second exam-
ple, and our main motivation, is PHP]'. Namely, suppose that |[D| =m >
n, and let 7% {2ivaiv...vai|ie[m]}. Then PRy(T) = PHP™
By Proposition 4.8, lower bounds for the space complexity of this multi-
valued version imply lower bounds for the space complexity of the ordinary
(Boolean) pigeonhole principle.

Now we show that wide tautologies are hard. The heart of our lower
bounds for FC (and hence for Resolution, PCR) is the Locality Lemma 4.11.

22

Definition 4.10 (Proper 2-CNF’s) M is called a proper 2-CNF iff

M = {xi% vl 2 v 2k v g
it i Ty g TR
where ji, 32, ja 2 are pairwise distinct indices and 1} iz € [m] (not
.717.717.72:"'7.7k p 1= %

necessarily distinct). (In other words, the proper 2-CNF says that for every
¢ € [k] either x;1 = iy or z;2 = if).

Lemma 4.11 (Locality Lemma for FC) Let M be a proper 2-CNF, and
M1 be an arbitrary set of functions semantically implied by M. Then
there exists a proper 2-CNF Mi"' such that M{' = M, and (M| <
2- CSFC(D)(Ml).

Proof: In our proof we will use the following corollary of Hall’s Matching
Theorem:

Lemma 4.12 (Hall’s Theorem) For a family of sets Vi, ..., Vi (not nec-
essarily distinct), if for all index sets I C [k]

vl > 11,
1=y

then the family V1, ...,V has a system of distinct representatives. That is,
there exist v; € V; such that {v1,..., v} are pairwise distinct.

Corollary 4.13 For a family of sets Vi, ..., Vi, if for all index sets I C [k

vl >2-111,

iel
then we can assign to each V; two distinct representatives vy, vis € V; such
that all 2k elements v11,v12, ..., V1, Vgo are pairwise distinct.

Proof: Just apply Hall’s matching theorem to the system
Vla Vla ‘/27 ‘/27 ce. aVka V;c
(]

Let us now prove Lemma 4.11. Replacing M; with the conjunction of
its members, we can w.l.o.g. assume that M contains only one function
f=9(C,...,Cy), where s = CSpc(p)(f) and Cy,...,C, are multi-valued
clauses. Let us gradually construct the required proper 2-CNF M. Suppose
w.lo.g. that M = {20, val,, 25, val, ...,2), VaR,}.

For a clause C denote by V' (C) C [k] the index set of those axioms z , Va9,

of M for which C contains at least one variable z;,z;2 (formally, V(C) o

{j | Je € {1,2} In(z7, € C) }). ForT C [s], let us denote ' = [s]\T, V(T') =
U,er V(C,). Let I' be any maximal subset I' C [s] with the property

VIl <2-r.

23

Then for any I C T,
VIDAVID)| > 2- 1]
(otherwise we could add the set I to I', contradicting the maximality of
T). Hence, by Corollary 4.13, for any clause C, with v € I we can choose
two unique representative indices ji,jo € V(C,) such that ji,jo ¢ V(I).
Let Trep,(c,)s Treps(c,) e two corresponding representative variables from C,,
which lie in the intersection with axioms numbers ji, jo of M. Denote by
sat.(C,) the value of x,p, (¢) which forces C, to True. Such a value must
exist because C,, is a clause in which xrepe (c,) appears for some non-constant
7 (see Definition 4.2).
Let

-1 _ 0 0 . sat1(Cy) sat2(Cy)
Ml - {xj,l v Tja | J € V } U { repll(C:) v mrepz;(C:) | 7€ F} :

Clearly, M7 is a proper 2-CNF. Let us estimate the size of M7 ":
M = V@) + T <20+ || <2-s.
Claim 4.14 M;' = M,.

Proof: We need to show that every assignment o satisfying M ! satisfies
g(C1,Ca,...,C,) as well. Suppose that « satisfies all the clauses of M7'.

Notice that Vy € T C,(a) = 1 (since « satisfies M7, it satisfies 251Gy

rep1(Cy)
ff;w(cﬂ and every one of these representative variables from C,, forces C, to
p2(Cy)

True).

We are going to show that o can be changed in such a way that it will still
preserve the value of all clauses C, ..., C (and hence, of ¢g) but at the same
time will satisfy M. For an axiom 3, V 29, of M either j € V(I') — in this
case the axiom is satisfied since it also appears in M7, or we can choose
the variable z; . which is not a representative variable of any clause C, with
v € T (notice that different clauses can not have representatives from the
same axiom). In the latter case we just set z;. to zero. This doesn’t change
the values of clauses (', ..., Cs, but the axioms of M get satisfied.

Thus we can get the new assignment o/ which satisfies M and such that
Ci(a) = Ci(c) for all 4. Since M = g(C4,...,C;), we have

g(Ci(a),...,Csa)) = g(Ci(d),...,Csa)) = 1.
Lemma 4.11 follows.]

We are now ready to prove our main theorem:

Theorem 4.15 For any wide tautology T over n variables with domain D,
CSremy)(T) > §.

Proof:
The proof is quite analogous to the proof of Theorem 3.10. Let us denote
by A the set of all proper 2-CNF’s of size < 3. As in the previous cases we

24

claim that for any configuration M, achievable in space 7, there exists a
configuration M~" € A such that |[M~'| < 2-CSpgp)(M) and M~ = M.
We prove it by induction.

The inference step can be treated with help of Locality Lemma 4.11.
Namely, if M, = M, take first M, ' as M;&l, and then shrink it to
the required size 2 - CSpg(p)(My41) by applying Lemma 4.11.

The axiom download is also straightforward. Suppose that My — MU
{C}, C € T. Take M;" and choose two literals le, % € C such that x;
and z;, are not contained in M;'. Then let M}, = M;' U {x“ v x”} for
i1, 1o satisfying m (i;) = ma(ie) = 1.

Theorem 4.15 follows. (]

Corollary 4.16 CS55(CT,) > CSp57

scr(CTn) > CSpc(CTy) > n/4.

As said previously, a lower bound on multi-valued logic is also a lower
bound on two-valued, Boolean logic, and thus we get:

Corollary 4.17 For allm > n, CSs=+

—en(PHP™) > CSpc(PHP™) > n/4.

5 Variable Complexity for PCR

Variable space is a very natural space measure since it is tightly connected to
bit space (Lemma 2.15). As mentioned in the introduction, every (Boolean)
proof system which simulates Resolution has variable space upper bounded
by n?. In this section we show that any PCR refutation (over an arbitrary
field) of any wide tautology requires variable space Q(n?). This bound is
tight for both CT,, and PHP;'.

Theorem 5.1 For any wide tautology T over n variables with domain D
and any ground field F', V Sgzp) o (T) = Q(n?).

Proof:
First we need to define some notation. A term x;-rll ... x;r; is multi-linear if
all 71, ..., jq are pairwise distinct. A multi-linear monomial is an expression

a-t, where a € F* and t is a multi-linear term. Finally, a multi-linear
polynomial is a sum of multi-linear monomials. Since we are interested only
in the semantical version of PCR, and because of the identity x?:r;' = xg-”’),
we will assume w.l.0.g. that all our multi-valued terms, monomials and
polynomials are multi-linear. Also, throughout the proof of Theorem 5.1 all
the terms, monomials and polynomials are multi-valued, thus we omit this

word, too. For a term t, let Supp(t) be the set of all j for which a:j appears

in ¢ for some 7. For a polynomial P, Supp(P) ot Usep Supp(2).

There is a natural correspondence between subsets of the set of terms of
a polynomial P and its subpolynomials, thus we sometimes write ¢ € P
when the term ¢ is contained in P, and P; C P which means that P; is a
subpolynomial of P. |P| is the number of terms in P.

25

For p : {z1,...,2,} — D U {x} a restriction and P a polynomial, p(P)
is the polynomial produced after the substitution of the literals z7, j €
p~Y(D) with 7(p(x;)) and cancellation of terms. Notice that since we work
with PCR rather than with PC, there can be many different polynomials
corresponding to the same multi-valued function f : D™ — {0,1}. We say
that such polynomials are semantically equivalent and write P, ~ P,. For
example, z ~ 1 — z in case of Boolean PCR.

Our proof will consist of several stages. The heart of it will be the follow-
ing construction based on Hall’s theorem (we already used a similar idea in
proving Theorem 4.15).

Lemma 5.2 (Matching Lemma) Suppose that P is a polynomial, and t
is some term (not necessarily from P). Then there exists a subpolynomial
[' C P and a restriction p, such that p doesn’t assign the variables of Supp(t)U
Supp(T') and p maps all terms of P\ T to zero (thus, in particular, p(t) =t
and p(P) =T). Moreover, |Supp(t) U Supp(L')| + |p| < |P| + degt.

Proof: Let I' be any maximal subpolynomial of P with the property
|Supp(t) U Supp(T)| < || + degt.

Denote V = Supp(t) U Supp(I’). Then for any subset of terms S C P\ T,
|Supp(S) \ V| > |S| (otherwise we could add S to T" and T’ would not be
maximal). Thus by Hall’s theorem there exists a matching

p: [terms of P\ '] — Supp(P)\V

which gives each term from P\T its unique representative from Supp(P)\ V.
Now we define the restriction p as follows. It maps these unique representa-
tives to the values which force the corresponding terms to 0. Thus p doesn’t
touch the variables from V' and |Supp(t) U Supp(L)| + |p| < degt+ |T'| + | P\
['| =degt+ |P|. m

Let us now prove Theorem 5.1. Suppose that we have some PCR refutation
{Mo, My, ..., Mz} of T. W.lo.g. we can assume that all polynomials in
the memory do not contain non-zero subpolynomials semantically equivalent
to zero (there’s no sense in keeping such subpolynomials). Let us fix the first
moment ¢ when some polynomial from M, contains a (multi-linear!) term
with degree less or equal 5. Let ¢ be any such term which has the smallest
possible degree (in particular, deg? < %), and let P € M, be any polynomial
which contains ¢. Our proof splits into two cases.

Case 1: degt > 7.
In this case we can assume that |P| < £ since otherwise V. S(P) is already

greater than % (recall that ¢ is the smallest degree monomial from M,), and
we are done.

26

Lemma 5.3 Suppose that P is a polynomial with no subpolynomials seman-
tically equivalent to zero, and that t is a term of P. Then there exists a
restriction p which forces P to a mon-zero constant ¢ from F*, and assigns
at most |p| < degt + | P| variables.

Proof: We apply our Matching Lemma 5.2 to the polynomial P and the
term ¢. We get the subpolynomial I and the restriction p which kills all the
monomials from P\ T.

Notice that I' # () since it must contain . Thus by our assumption,
[' % 0, and we can choose an assignment « to Supp(I') which maps it to
some constant ¢ € F*. Let us extend our restriction p to the restriction p’ by
« (this is possible because p and « assign to disjoint sets of variables). Then
p'(P) = cand || < |p| + [Supp(T)| < |P|+ deg . O

The rest of Case 1 is simple. Hitting the first (¢ + 1) lines of the original
refutation with the restriction p from Lemma 5.3, we get a new valid refu-
tation {p(Mp), p(M1), ..., p(M,)} of the principle p(T) (since ¢ € p(M,)
and c # 0).

Notice that since |p| < degt + |P| we have |p| < 3, so p(T) is a wide

3n

tautology over > < variables. Thus by Theorem 4.15 there exists j < ¢

such that p(M;) (and, hence, M;) contains at least 32 monomials. Each
monomial of M had degree > % before applying o', therefore V.S(M;) > 36%2.

Case 2: degt < 7.

Definition 5.4 We say that a polynomial P is d-minimal iff it doesn’t con-
tain a non-zero subpolynomial semantically equivalent to a polynomial of de-
gree < d.

Since t € P, P is not 7-minimal. Let us represent P = Py + Py, where
Py is 7-minimal and Py ~ P with deg Py < % (we can construct such a rep-
resentation by consecutively moving subpolynomials semantically equivalent
to polynomials of degree < % from P; to F).

P does not contain non-zero subpolynomials semantically equivalent to
zero; in particular, Py o¢ 0. However, there still can be several non-zero poly-
nomials Py ~ Py with deg Py < 7. Let P be the polynomial of the smallest
degree semantically equivalent to Py. If there are several such polynomials
we choose arbitrarily one with the smallest number of monomials of highest
degree. Let s be some maximal-degree term of Fj.

Let us now apply our Matching Lemma 5.2 to the polynomial P, and the
term s. It will yield I' C P; and the restriction p which kills the terms from
P \T.

All terms in P are of degree > 7, therefore, similarly to Case 1, we can
assume that |Py| < 2. Hence, |Supp(s) U Supp(T)| + |p| < degs + |P| < 2.

Now we use the fact that M, is the first configuration when a term ¢ of
degree < § appears. It is clear that the step M, 1 ~ M, is a semantical
inference (it can’t be axiom download because all axioms have degree n).

Notice that all terms of polynomials from M,_; have degree greater than 3.

27

Assume also that CS(M,_1) < § (otherwise V.S(M,_1) > ’1‘—;) Now we are
going to arrive at a contradiction from all these assumptions.

First we claim that p can be extended to a restriction p; that doesn’t assign
the variables in [Supp(s) U Supp(T)|, and kills (= sets to zero) all the terms
of M,_;. To see this notice that p has assigned |p| variables and we should
keep unassigned |Supp(s) U Supp(T')| variables, their sum is |p| + |Supp(s) U
Supp(T)| < |Pi| +degs < 3* and we need to kill at most % terms in M,_;,
of degree > n/2 each. We consecutively kill terms ¢ € M,_; by choosing a
free unassigned variable from Supp(t) \ (Supp(s) U Supp(L') U p~'(D)).

Since M,_1 = P we have p;(P) ~ 0. Thus p;(Py + P1) ~ 0 and p (P} +
P)) ~ 0 and p;(Pj)+ T ~ 0 (because p(P, —I') = 0, and p; does not touch
variables from Supp(l')). Since deg(p:(F})) < deg(P;) < n/4 and P is
n/4-minimal, I" should be in fact identically zero.

We proved that p;(Pj) ~ 0. Let d = degs = deg(P}). Notice that every
term of degree d in p;(F}) is also contained in Pj (because a restriction
either decreases the degree of a term, or kills it, or doesn’t change it at all).
Additionally p;(Pj) contains s, because p;(s) = s. Thus we get a polynomial
Py = P{— p;(P}) such that P} ~ Py, deg(P}') < d and Pj contains less terms
of degree d than Pj. This contradicts to our choice of P as the polynomial of
smallest degree with smallest number of monomials of highest degree. Thus
this situation can not take place. Theorem 5.1 follows. (]

As direct corollaries, we obtain the following tight bounds:

Corollary 5.5 VSg(CT,) > VSz53(CTr) > Q(n?).

Corollary 5.6 VSg(PHP;') > VSzz3(PHP') > Q(n?).

6 Upper bounds

In this section we prove some non-trivial upper bounds on FC and PCR
clause space, and on Frege variable space.

6.1 FC and PCR upper bounds for CT),

We start by showing that CSpc(CT,) < $CS;(CT,). This result partially
explains the necessity to use more complicated techniques to prove FC lower
bounds in Section 4.

Theorem 6.1 CSpc(CT,) <n/2+2.
For PCR we get a similar result, with a slightly bigger constant:
Theorem 6.2 CSpcr(CT,) < 2n/3 +6.

Proof: We will prove both theorems 6.1, 6.2 at once.

28

Definition 6.3 We say that an FC-proof or PCR-proof m has k temporary
memory cells if whenever the transition My_1 ~ M, is an aziom download
then CS(M;—1) < CS(m) — k. (Informally, whenever we start downloading
an aziom, there exist at least k free memory cells).

We prove by induction the following claim saying that if we can refute
CT,, in small space, we can also refute CT'., in small space. We give it for
FC but it can be literally carried over to the case of PCR.

Claim 6.4 (Amplification) If there exists an FC-refutation n of CT,, with
CSpc(m) <s+k
such that m has k temporary cells then for all integers £ > 1
CSrc(CTpp) <l-s+k.

Moreover the corresponding refutation also has k temporary memory cells.

Proof: By induction on £ > 1. For the induction step, suppose m, is a
refutation of CTy.,, with CSpc(my) < £- s+ k which has k temporary cells.
We shall use 7, to refute CT'(441).,. We follow the derivation m,;, and we only
have to show how to derive an axiom A € CTy., from CT 4;1)., using small
memory.

Suppose the t'th step of 7, is an axiom download of A € CTy.,. A =
\/f")]”, for some €= {e;,...,e,} € {0,1}". By the induction hypothesis,
CSpc(My_1) < £- s, because M;_; has k empty memory cells. We use
these empty memory cells, and additional s memory cells to derive A from
all axioms B E CT(441)n that agree with A on all variables of A (i.e. B =

AV \/EHEZH z;, for some € y1;-- -, €@r1)n € {0,1}). The total memory of
the new refutation is CSFC(CTM) + s. It also has k temporary memory
cells since it downloads axioms only during the emulation of the refutation

of CT,,.]

We complete the proof of Theorem 6.1 by analyzing the base case and
showing that CSpc(CTy) <2 (s=k =1):

Axiom: 1V Ty ~ (T)/\/> T
Axiom: z; V T ! Axiom: Z; V z9

~ (=(F1V 7o))«»(JEvE))«»(L).

Axiom: Ty V Ty

O

To prove Theorem 6.2 it is sufficient to produce a PCR-refutation of C'T'3
with clause space six and four temporary memory cells (s = 2, k = 4). At the
beginning of the refutation we infer the configuration {x1,z5} in the obvious

29

way. After that the refutation proceeds as follows (we omit straightforward
intermediate transitions):

T x I
(o) ~ T2 ~ T2 ~ M)
T2 Axiom: jl.’f?QZEg Tols T3
1-— .’El 1-— .’fl
> 1 - CEQ i d jl - fl.’fg i (]_ - .i’le.i'?,)
1— 74 T1Ty — T1ToTs

1 — T4 %973
. IR 1).
~ (Axiom: Z1ZoZ3 ~ ()
All the configurations explicitly displayed here have at most four clauses.
Two more temporary clauses are needed to keep intermediate polynomials.

O

6.2 Variable Space for Frege

In this section we show that the variable space complexity of CT,, is upper
bounded by O(n) for Frege systems. It will imply several nice corollaries and
in particular the equivalence of semantical and syntactical versions for Frege
refutations.

To prove this result we essentially use the compact rule of representing
information analogous to Horner’s scheme for quick evaluation of the poly-
nomial P at a given point x:

Pz)=ao+z (a1 +z-(ag+---))-

Let us begin with the case when the language of our Frege system F
consists of the standard connectives =, A, V,— and the constant L (at the
end of the section we will show how to modify our proofs to embrace the
case of Frege systems in other languages). It is easy to see that the standard
simulation of one Frege system by another Frege system in the same language
[CRT79] also preserves variable space up to a constant multiplicative factor.
Therefore, in the following theorem (which is our main result about variable
space for Frege) we can unambiguously use the notation V. Sr(T), and we
can assume in its proof that F contains any prescribed finite set of sound
inference rules.

Theorem 6.5 VSp(CT,) = O(n).

Proof:
We describe an algorithm for refuting C7',,. For this purpose we define the
sequence of read-once formulas @y, ..., @ym-1)_; such that ¢y = (1 V 25 V

..Vxy) and @om-1y_; = (L1 AzaA...AZy), and show how to infer ;1 from
¢ within O(n) variable space, using only two initial clauses from CT,,.

30

Fix 0 < t < 2" and let @1as...a,_1 be its binary representation. We let

def
Pt = T *1 (332 *9 (553 *3 (.- (%—1 *n—1 xn)))):
where x; = Aif q; =1 and *x; = V if a; = 0.

In order to show how to infer ¢;,1 from ¢; and the initial axioms we need
to define one more intermediate formula ;. Let 0 < m < n be the largest
index such that a,, = 0 (thus, t = a0z ...a,, 1011...1), and let

def
(o =z % (22 %2 (23 %3 (- (Tme1 *m-1Tm))))-
In other words, v; is obtained from ¢, by cutting off the maximal suffix
consisting entirely of As.
Define two clauses

A=2M VP V. VTN T,V T V.V Ty,

and
Bi=a'VaP V.. Vil VI, VT V...V,

It can be easily seen that {y;, A;} = ¢y and {¢y, B;} E @i+1- The question
is how to produce compact syntactic inferences.

As we noticed before, we can assume w.l.o.g. that F contains any pre-
scribed finite set of inference rules, and in particular we can assume that F
contains modus ponens. Therefore, it is sufficient to produce inferences of
the tautological formulas (p; A A;) — 9, and (Y, A By) — @441 that use O(n)
variable space. We will consider only the first formula; the second proof is

analogous.
For 1 </ < n, let gpte) A(é wt(é) be the suffixes of ¢, As, ¥, respectively
that are obtained by crossing out the variables z1, ..., z,_; (and we let T/J(z) o

L if ¢ > m). We are going to infer (in linear variable space) all the formulas

(gpge) A Aﬁf)) — wt“) by induction on £ =n,n —1,...,1.

In the base case £ = n we have ¢\ = z,, A" = z,, and we get a
substitutional instance of the axiom (A NA — B).

In order to infer (¢ O A A) w from ((pgeﬂ) A Ag“l)) — 1/}te+1 , wWe

use the rule
ANB —=C

(DVA)AN(DV B)— (DVC)

if a = 0, and the rule

ANB —C
(DNA)A(DV B)— (DAC)

ifag = 1.

We showed how to make the transition from ¢; to ;1. At the end we get
Qotm-1y_1 = L1 NTo A ... A x,, which together with Z; V Z5 V...V Z, implies
contradiction. Theorem 6.5 is proved. (]

31

Corollary 6.6 Any tautological formula ¢ can be inferred from the empty
set of azioms T =0 in variable space O(V Sp(p)).

Proof: W.lo.g. assume that {z,...,x,} is the complete list of variables
appearing in ¢. By induction on the logical complexity of a formula v (not
necessarily tautological) we produce, for any € € {0, 1}", an inference of z{' V
TRV .V xie Vap¥Es@) (g x,) (where, naturally, 1! b and o & V)
that has variable space O(V Sr(%)). Since ¢ is a tautology, this in particular
gives, for any € € {0,1}", an inference of z' Va3 V...V z& V ¢o(x1,...,2,)
with variable space O(V Sr(¢)). Now we only have to modify the refutation
of CT,, from Theorem 6.5 by replacing every formula % in it with (¢ V ¢),
and modifying inference rules accordingly. L]

Corollary 6.7 For any tautology T over n variables

VSp(T)=0(n+ max VSr(p)).

Proof: similar to the proof of Corollary 6.6. Namely, for every e € {0,1}"
we can find ¢, € T such that . — (27 Vz3? V... Vi) is a tautology. When
we need the axiom z{' V5’ V...V z& from CT,, we download this ¢, infer
Ye = (7' Va2 V...V zt) and apply modus ponens.]

Corollary 6.8 Semantic and syntactic versions of Frege systems are equiv-
alent:

VSF(T) <VSp(T) < O(VSﬁ(T))

Proof: As in the proof of Theorem 3.4, we show how to emulate the
semantic inference 7 by a syntactic one. The only difference between se-
mantical and syntactical versions is in the inference step. Assume that
{©1,92,. ., 0k} F 1. Then we can produce the syntactic proof of the tautol-
ogy 1 A\ pa A ... A @, — 1 according to Corollary 6.6 and repeatedly apply
modus ponens. L]

At the end we briefly discuss how to generalize these results to the case of
Frege systems F in arbitrary complete language L. The problem with the
general translation is that the sizes of the resulting formulas may grow very
rapidly. However, at least it is not a problem with the logical constant L: it
can be trivially replaced with z A Z.

Quite fortunately, the specific language that consists of the remaining con-
nectives {—, A, V,—} is known to be the weakest in the sense that it can
be modeled in any other complete language with only linear blow-up in the
variable space. More exactly, the following holds:

Lemma 6.9 (Reckhow [Rec76]) If F is a Frege system over any complete
language L then there are L-formulas NOT(z,z), AND(x,y, z), OR(x,y, z),
and IMP(z,y, z) such that

(1) NOT(x,z) contains one occurrence of x, and AND(zx,y,z), OR(z,y, z),
and IMP(z,y, z) contain exactly one occurrence of each of x and y.

32

(2) The four formulas represent the Boolean functions —x, (xAy), (xVy) and

(x — y); in particular, the truth values of the formulas are independent
of the truth value of z.

Thus we can rewrite the proof of Theorem 6.5 and its corollaries almost
literally replacing our standard connectives with NOT(z,z), AND(x,y, z),
OR(z,y,z), and IMP(z,y, z).

7

Open questions

We conclude this paper with a short list of interesting open questions:

1.

Is there any way to capture the notion of propositional space complexity
in the uniform framework of first-order theories of Bounded Arithmetic?

Find an unsatisfiable CNF 7 in n variables such that V.Sg(T) > w(n)
and 7 has only polynomially many clauses (CT,, has exponentially
many clauses, and the bound in Corollary 5.6 is only linear in the overall
number of variables mn). We conjecture that VSg(T(G,0)) > Q(n?)
if G is a 3-regular expander graph, and even that

VSPCR(T(G, 0')) Z Q(n2)

when char(F') # 2.

. Are there any other interesting fragments of Frege systems, not con-

tained in PCR, for which the notion of variable space makes sense?
(perhaps Cutting Planes, depth 2 Frege, etc.) Can one prove non-
trivial lower bounds for these systems?

. Can we prove the analogue of Theorem 3.4 for variable space? What

can be said about the relation between the syntactical and semantical
versions of other proof systems, w.r.t. either clause or variable space?

. As noted in the introduction, the only interesting proof system which

might demand exponential space is Polynomial Calculus. Can we really
prove super-polynomial lower bounds for it, or, on the contrary, can
every PC refutation be reduced to the form when it uses only sparse
polynomials?

. Is it possible to prove super-constant clause space lower bounds for

PCR-proofs of any bounded fan-in tautology or of Count,? Once more,

we conjecture that Corollary 3.24 can be extended to PCR over any
field with char(F') # 2.

[ET99] Is it possible to find some strong connection between the clause
complexity of a tautology and its minimal refutation width for Resolu-
tion?

33

8 Acknowledgement

We are grateful to Jan Krajicek for several useful remarks.

References

[ALS6]

[BPYS]

[BG9Y]

[CEI96]

[CR79]

[ET99)

[HPV77]

[IPS97]

[Juk97]

[Koz77]

[Kra95]

R. Aharoni, N. Linial. Minimal Non-Two-Colorable Hypergraphs
and Minimal Unsatisfiable Formulas. In J. of Combinatorial The-
ory, Series A, Vol. 43, No. 2, (1986) pp 196-204.

P. Beame and T. Pitassi. Propositional proof complexity: Past,
present and future. Bulletin of the EATCS. See also: Techni-
cal Report TR98-067, Electronic Colloquium on Computational
Complexity, 1998.

M.L. Bonet, N. Galesi. A Study of Proof Search Algorithms for
Resolution and Polynomial Calculus. Manuscript, 1999.

M. Clegg, J. Edmonds, and R. Impagliazzo. Using the Groebner
basis algorithm to find proofs of unsatisfiability. In Proceedings of
the 28th ACM STOC, pages 174-183, 1996.

S. A. Cook, R. Reckhow. The relative efficiency of propositional
proof systems. In J. of Symbolic Logic, Vol. 44 (1979), pp. 36-50.

J. L. Esteban, J. Toran. Space bounds for Resolution. In Proceed-
ings of the 16th STACS, pages 530-539, 1999.

J. Hopcroft, W. Paul, L. Valiant. On Time vs. Space. In J. of
ACM, Vol. 24 (1977), pp. 332-337.

R. Impagliazzo, P. Pudldk, and J. Sgall. Lower bounds
for the polynomial calculus and the Groebner basis al-
gorithm. Technical Report TR97-042, Electronic Col-
loquium on Computational Complexity, ftp://ftp.eccc.uni-
trier.de/pub/eccc/reports/1997/TR97-042 /index.html, 1997.

S. Jukna. Exponential lower bounds for semantic resolution. In
P. Beame and S. Buss, editors, Proof Complexity and Feasible
Arithmetics: DIMACS workshop, April 21-24, 1996, DIMACS Se-
ries in Dicrete Mathematics and Theoretical Computer Science,
vol. 39, pages 163-172. American Math. Soc., 1997.

D. Kozen. Lower bounds for natural proof systems. In Proceedings
of the 18th IEEE FOCS, pages 254-266, 1977.

J. Krajicek. Bounded arithmetic, propositional logic and complez-
ity theory. Cambridge University Press, 1995.

34

[Kra97a]

[Kra97b]

[Kri85]

[RWY97]

[Urq95]

J. Krajicek. Interpolation theorems, lower bounds for proof sys-
tems and independence results for bounded arithmetic. Journal
of Symbolic Logic, Vol. 62, No 2 (1997), pp. 457-486.

J. Krajicek. Lower bounds for a proof system with an exponen-
tial speed-up over constant-depth Frege systems and over polyno-
mial calculus. In P. Ruzi¢ka I.Privara, editor, Proceedings of the
22nd International Symposium on the Mathematical Foundations
of Computer Science (Bratislava, August '97), Lecture Notes in
Computer Science 1295, pages 85-90. Springer-Verlag, 1997.

B. Krishnamurthy. Short Proofs for Tricky Formulas. In Acta
Informatica, Vol. 22 (1985), pp. 253-275.

A. Razborov, A. Wigderson, and A. Yao. Read-once branching
programs, rectangular proofs of the pigeonhole principle and the
transversal calculus. In Proceedings of the 29th ACM Symposium
on Theory of Computing, pages 739-748, 1997.

R. A. Reckhow. On the Lengths of Proofs in the Propositional
Calculus. PhD thesis, Department of Computer Science, Univer-
sity of Toronto, 1976. Technical Report #87.

G.Stalmark. Short Resolution Proofs for a Sequence of Tricky
Formulas. In Acta Informatica, Vol. 33 (1996), pp. 277-280.

M. Tarsi. Personal Communication

J. Toran. Lower Bounds for Space in Resolution. To appear in
CSL99.

G.S. Tseitin. On the Complexity of Derivation in Propositional
Calculus. In Studies in Constructive Mathematics and Mathemat-
1cal Logic, Part 2. Consultants Bureau, New-York-London, 1968,
pp. 115-125.

A. Urquhart. The Complexity of Propositional Proofs. In The
Bulletin of Symbolic Logic, Vol. 1, No. 4 (1995), pp. 425-467.

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
3 5 ftp://ftp.eccc.uni-trier.de/pub/ecce

