Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 41 (1999)

Investigating a general hierarchy of polynomially
decidable classes of CNF’s based on short

tree-like resolution proofs

Oliver Kullmann*

Department of Computer Science
University of Toronto

Toronto, Ontario M5S 3G4

e-mail: kullmann@cs.toronto.edu

http://www.cs.utoronto.ca/~kullmann/

September 6, 1999

Abstract

We investigate a hierarchy Gi(U,S) of classes of conjunctive normal
forms, recognizable and SAT-decidable in polynomial time, with special
emphasize on the corresponding hardness parameter hy s(F') for clause-
sets F' (the first level of inclusion). At level 0 an (incomplete, poly-time)
oracle U for unsatisfiability detection and an oracle § for satisfiability de-
tection is used. The hierarchy from [Pretolani 96] is improved in this way
with respect to strengthened satisfiability handling, simplified recognition
and consistent relativization. Also a hierarchy of canonical poly-time re-
ductions with Unit-clause propagation at the first level is obtained.

General methods for upper and lower bounds on hy, s(F) are developed
and applied to a number of well-known examples. hy,s(F) admits sev-
eral different characterizations, including the space complexity of tree-like
resolution and the use of pebble games as in [Esteban, Toran 99].

Using for S the class of linearly satisfiable clause-sets (based on linear
programming) g-Horn clause-sets [Boros, Cramer, Hammer 90] are con-
tained at level 2, and for k > 1 the “k-times nested Horn clause-sets” from
[Gallo, Scutella 88] are contained at level k.

The unsatisfiable clause-sets in G (U, §) are exactly those refutable by
relativized k-times nested input resolution, and the SAT decision algorithm

*Supported by the Natural Sciences and Engineering Research Council of Canada and by
the Communications and Information Technology Ontario.

ISSN 1433-8092

searching through the levels from below quasi-automatizes relativized tree-
like resolution (using oracle U), while by means of hy(F') nearly precise
general bounds on the (relativized) complexity of tree-like resolution (with
oracle U) are obtained.

In order to cope also with full resolution, a (more comprehensive) hi-
erarchy Wi (U) of unsatisfiable clause-sets is introduced, based on a new
form of width-restricted resolution, and relativized general upper and lower
bounds for full resolution are derived, generalizing [Ben-Sasson, Wigder-
son 99] and also releasing the lower bound from its dependence on the
maximal input clause length. Motivated by [Bonet, Galesi 99] we give a
simplified example where the lower bound is tight.

Keywords: satisfiability, polynomial time, resolution with oracles, gen-
eralized input resolution, generalized Unit-clause propagation, width re-
stricted resolution, lower bounds on resolution, generalized Horn clause-
sets, g-Horn, linear autarkies, linear programming, pigeonhole formulas,
pebble games, pebbling formulas

Contents

1 Introduction

1.1 Combining several lines of research
1.2 A general polynomial time decision scheme

1.3 Themainresults

Notation

2.1 Clause-sets and partial assignments
2.2 Resolution
2.3 The Pigeonhole formulas
2.4 Directed graphs and pebble games

A scheme for hierarchies of polynomially decidable (and recog-

nizable) classes of CNF’s
3.1 Theclasses GR(U,S)

IS

-~

16
19

3.1.1 Cancelling “guessing” yields a poly-time hierarchy for #SAT 25

3.2 The hardness hy s(F) of clause-sets
3.3 Canonical reductions
3.4 How to prove upper and lower bounds on the hardness
3.4.1 Upperbounds.
3.4.2 Lower bounds

25

3.4.3 Some easy applications

3.5 Extracting more information (Stalmarck’s algorithm)

Generalized DPL-trees and pebble games

4.1 DPL-trees and their leveled height
4.2 Characterizations of the leveled height for closed trees
4.3 The pebbling complexity of trees

Upper bounds

5.1 General upper bounds 0L
5.2 2-CNF and large random k-CNF
5.3 Generalizations of Horn formulas

5.4 Linearly satisfiable clause-sets for enhanced satisfiability detection

Lower bounds
6.1 The (weak) pigeonhole formulas.
6.2 The pebbling formulas 0L

Tree-like resolution with oracles

7.1 Nested input resolution with oracles

7.2 The correspondence to our hierarchies
7.2.1 The space complexity of (tree-like) resolution
7.2.2 Compilation of the various interpretation for the hardness

7.3 Nearly precise general upper and lower bounds for tree-like reso-
lution (with oracles) L.

7.4 Quasi-automatizing tree-like resolution (with oracles)

Width-restricted resolution

8.1 The known width restrictions
8.2 A new variant of width restricted resolution
8.3 Lower bounds for full resolution with oracles
8.4 The tightness of the lower bound

8.4.1 Linear resolution versus tree-like and full resolution

9 Some final remarks on calculating the complexity of resolution 74
9.1 On the tightness of the general bounds for resolution 74
9.2 The weak pigeonhole formulas 76

1 Introduction

In this article we study a (cumulative) hierarchy (G (U, S))ren, of classes of
conjunctive normal forms (“clause-sets”) and the corresponding hardness pa-
rameter hy, s(F') for clause-sets F, the minimal k with F € G (U, S). Thereby
U and S are sets of unsatisfiable resp. satisfiable clause-sets building the basis

of the hierarchy: Go(U/,S)=U U S.

Membership “F € Gx(U,S) 7?7 as well as SAT decision “F € SAT ?” for
F € Gig(U,S) is polynomially decidable, considering U and S as oracles. An
accompanying hierarchy (”'Zl)keNg of uniquely determined reduction operators
yields canonical normal forms for clause-sets.

Based on general methods, we investigate upper and lower bounds on the
hardness hy; s(F) for various formula classes (including generalized Horn clause-
sets, p-CNF, the Pebbling and the Pigeonhole formulas). Alternative character-
izations of hy s(F') are given, using generalized search trees for DPL-algorithms
and pebble games.

U,k

)

Regarding unsatisfiability, we introduce k-times nested input resolution
with oracle U, providing refutations exactly for the unsatisfiable clause-sets in

G (U,S8) (here S can be ignored).

The natural SAT decision algorithm searching through the hierarchy from
below quasi-automatizes tree-like resolution with oracle U, while we get nearly
precise general bounds on these calculi by means of the hardness hy (F).

In order to obtain also general bounds on full (dag-like) resolution we in-
troduce a new form of width-restricted resolution (using oracle i), which is
polynomially decidable for fixed width and simulates nested input resolution
(generalizing Unit-resolution).

1.1 Combining several lines of research

This article is not one of the short ones, due to the fact that quite a number of
several lines of research are affected, and I want to give a coherent picture of
ideas scattered around in a lot of several articles (and also all details are given).

Ideas are combined belonging on the one side to the field of lower bounds for
proof systems, and on the other side to the research on efficient SAT algorithms
(especially polynomially decidable sub-cases). At the present stage there seems

to be a dividing line between these communities. I hope that this article will
help a bit to close the gap.

The story started for me with

YD83 and GS88, K93, EKM95 ([91, 37, 14, 29]) develop and explore a hierarchy
(Hg)ken, of generalized Horn formulas decidable in polynomial timel);

realizing that the construction can be enhanced and generalized to a hierarchy
Gr(U,S8), k € Ng

by abstracting from the special syntactic properties of Horn formulas and ex-
tracting the recursive structure responsible for the poly-time decidability of the
single levels.?) U and S here are oracles, responsible at the bottom level for
unsatisfiability resp. satisfiability detection (incomplete (of course)).

This hierarchy naturally leads to a concept of k-times nested input resolution
Uk
(denoted by F here) refuting exactly the unsatisfiable clause-sets in G (U, S).

From

K193 ([14]) introduces the concept of k-resolution to give resolution refuta-
tions of the levels Hy; unlike bounded resolution introduced in [36], Unit-
resolution is generalized in this way, but for £ > 3 it is not known whether
derivability of the empty clause is poly-time decidable (see [16]);

I learned this concept of width-restricted resolution, which in fact simulates
nested input resolution, generalizing the equivalence between Unit-resolution
and input resolution (for refutation purposes) in one way.

My interest in these hierarchies was revitalized by

CET96 ([21]) search for tree-like resolution refutations by means of Grobner bases
in time quasi-polynomial in the length of the shortest tree-like resolution
refutation, and also a weaker simulation of full resolution is given;

due to the simple observations

1. their simulation by degree-restricted polynomial calculus can already be
carried out by (some sort of width-restricted) resolution itself;

2. and in case of tree-like resolution they implicitly use the simulation process
of nested input resolution by k-resolution.

Dfor information on general poly-time SAT decision see [42] (section 10) and [33]

2) A similar generalization ', one finds in [75]; see Subsection 1.2 for a discussion.

Indeed, nested input resolution suffices to do the simulation job for tree-like
resolution. It follows that the SAT algorithm naturally linked to the hierarchy
(Gx(U,S)) (searching through the levels from below) quasi-automatizes tree-
like resolution, that is, its running time is quasi-polynomial in the length of the
shortest tree-like resolution refutation.

Furthermore the minimal level A(F') sufficient for nested input resolution to
refute F' (in other words, the minimal level k£ with F € Gy (Uo, Sp), where Uy
and Sp are the trivial oracles) yields nearly precise general bounds

MF) < Compyn(F) < 208:(n(F)+1)-h(F)

for the complexity of tree-like resolution (n(F) is the number of variables).?)

To exemplify the strength of this lower bound one may regard the pigeonhole
formulas, where it is fairly easy to compute A(PHP}') = k and thus to derive
the lower bound from [17].

After reading [BW99] ([5]), exploiting and deepening [21] for resolution lower
bounds?®, I decided to make a paper out of the whole material, to round up the
picture and point out the connections. Additionally to the above topics, the
following has been included:

o A wariant of k-resolution is introduced (in fact a (slight) strengthening),
solving the problem of polynomial decidability and enabling general bounds
on resolution complexity (with oracles) as in [5], but not depending on the
maximal input clause-length:

1 width(F)?

8 n(F) < InCompg(F) < (Inn(F)) - (width(F) + 1) + 2,

where width(F') is the minimal k£ such that the new form of k-resolution
suffices to derive the empty clause. Motivated by [Bonet, Galesi 99] a
simplified example is given where the lower bound can not by improved,
using Krishnamurthy’s original formulas ([52]). This form of width can
also be used for lower bounds on tree-like resolution:

width(F) 4+ 1 < h(F) for h(F) > 1.

e From [30] T learned the notion of space complezity of resolution and its
correspondence to pebble games — now h(F) is just the space complexity
of tree-like resolution; this whole topic is discussed in some detail, using
as intermediate step generalized DPL-trees (extending the correspondence
between tree-like resolution and decision trees from [63]).

3)From Jan Friso Groote I heart that similar bounds have already been mentioned in the
work of Stadlmarck. See [84, 44, 81] and also [41] — in fact his algorithm is essentially related
to our approach, searching for a refutation through levels of increasing “hardness” by the
nested “dilemma rule”. Unfortunately no details are given in the sources.

1) [4] has been the first paper pointing out that direction

e Another nice application of pebble games are the pebbling formulas (intro-
duced in [5], generalizing [8], a forerunner is [51]): here calculating h(F)
gives a very lucid lower bound.

e For an efficient handling of satisfiable clause-sets the oracle of linearly
satisfiable clause-sets is used, introduced in [58] and essentially relying
on linear programming; as I learned from [89], in this way also ¢-Horn
formulas (a common generalization of Horn formulas and 2-CNF’s, see
[11, 12, 13]) are captured.

e Nearly all results (including the general lower bounds) are relativized, using

the oracles ¢ and S.

Before itemizing our main results in Subsection 1.3, in the next subsection
we discuss the algorithmic ideas underlying our approach.

1.2 A general polynomial time decision scheme

Instead on (accidental) syntactic properties of formulas, our approach for poly-
time SAT decision is based on an algorithmic structure enforcing polynomial
behaviour. The basic idea is essentially already expressed in [75].

Consider a language L C X* such that any question “z € L 77 can be split
into
mEL<:>(331€L or mQEL)
where for some “length”
LY = Ny
we have £(z1),£(x2) < £(z). Let the number of possible splittings to be consid-

ered be O(¢(z)).

Using a level k € Ny of “difficulty” or “hardness,” by the following algo-
rithmic scheme we get polynomial time decision ((necessarily) incomplete) of
“e € L 7?7 for any fixed k.

1. At level 0 any oracle (for example some trivial decision criterion) is used
which may return “YES” or “NO” or “not belonging to level 0.

2. At level k > 1 we search for a possibility to split into z; and z2 such that
z1 can be decided at level k — 1 and x5 at level &, in which case we return
“YES” if 21 € L or 29 € L, and “NO” otherwise. If there is no such
possibility then the outcome is “not belonging to level £”.

The output is either the decision “z € L” resp. “z ¢ L” or “not successful.” Tt
is easy to see that the number of leaves in the search tree is E(F)O(k), if the
search for a pair (21, z2) in step 2 proceeds as follows:

First ignore the condition for x5 but just run through all possible z;. If no
z1 is decidable at level £ — 1, then z is not belonging to level k. If 21 € L then
also € L. And in case z1 ¢ L take the corresponding z5 and reduce z to zs,
without regarding other possibilities for 3. (Repeat the whole procedure for
this new z.)

The class of formulas decidable at level k is well-defined if reduction of x to
z9 in case 1 ¢ L is confluent, which is the case for our hierarchy, due to the
concept of stability under enforced assignments (see below).

“Satisfiability-driven” vs. ”unsatisfiability-driven”

Typically SAT decision algorithms are either “satisfiability-driven” such as lo-
cal search algorithms ([80]) or the new type of algorithm in [73], thus output a
proof of satisfiability (typically the satisfying assignment) and do not look out
for unsatisfiability, or are “unsatisfiability-driven” as all refutation search pro-
cedures (like [84] or [21]), and thus output a proof of unsatisfiability (in some
proof system) and do not care much about satisfiability.

In our framework we try to balance these two approaches by using two
“oracles”

U CUSAT, S C SAT

at level 0, one for (certain) unsatisfiable instances, one for (certain) satisfiable
instances (if F' ¢ UUS then F does not belong to level 0). The above algorithmic
scheme may be seen as an “amplification mechanism.”

Throughout the paper the use of ¢/ and § indicates that any oracles for
unsatisfiability and satisfiability stable under enforced variable assignments can
be used. More precisely, arbitrary sets 4 D Uy of unsatisfiable clause-set, where
Uy is the set of trivially unsatisfiable clause-sets already containing the empty
clause, and arbitrary sets S D Sy of satisfiable clause-sets, where Sp just contains
the empty clause-set, can be used, provided that for any F € U resp. F € S,
any variable v and any £ € {0, 1} from

(v—oe)yxF ¢ SAT
we can conclude (v 5> Z) « F € U resp. (v =5 &) x F € S, where “«” denotes

application of a partial assignment, and “7” complementation.

For U this is the same as stability under application of (all) partial assign-
ments. However, for & it is a much weaker notion which only allows us to
consider § on its own (otherwise we also had to consider the complexity of

unsatisfiable formulas emerging from members of § by “wrong” applications of
partial assignments — and such formulas may be much harder than the original
(satisfiable) formulas).

Treat satisfiability and unsatisfiability separately!

The family of hierarchies Gy (U, S) improves the hierarchies TIj from [75] in the
following aspects:

1.

1.3

our hierarchies include the cases of satisfiable clause-sets, where setting one
variable already yields a satisfiable clause-set at a smaller level, ignoring
what happens when setting the variable to the complementary value;

. the concept of “being closed under fixing” from [75] is generalized to “sta-

bility under enforced variable assignments” (see above);

the recognition process conceptually is very simple now;

dividing the ground level Go(U,S) = U U S into U and S emphasizes
the different nature of satisfiability and unsatisfiability detection (a point
which often has been missed by prior research; see [27] for some heuristical
discussions), and, due to 2, opens up the perspective of choosing & and S
completely separately.

The main results

Due to the length of the present article, I hope the following listing of the main

theorems, lemmas and definitions will help the reader.

Section 3: Introducing the hierarchies

1.
2.

In Definition 3.3 the classes G (U,S) C CLS are defined.

Lemma 3.5 proves their universal property.

. And Lemma 3.7 gives polynomial time upper bounds on their (SAT) de-

cision.
The hardness functions hy,s : CLS — Ny are defined in Definition 3.9.

Lemma 3.10 gives the running time of the general SAT decision algorithm
searching through the hierarchy from below (and thus computing also the
hardness).

In Lemma 3.11 important stability properties of the hardness are formu-
lated.

10.

11.

12.

13.
14.

15.

16.

o . , kU
. Definition 3.12 introduces the reductions —— for clause-sets (general-

izing 1-clause-elimination), extracting the aspect of reduction by enforced
assignments from the definition of the classes G (U, S).

. In Lemma 3.13 it is shown that the relations =% are terminating and

confluent.

. Generalizing 1-clause-propagation, the (uniquely determined) reduction

operator rz,;l :CLS — CLS is defined in Definition 3.14.

Using these canonical reductions, the unwersal property from Lemma 3.5
is generalized in Lemma 3.15.

In Subsection 3.4.1 it is discussed how Lemma 3.15 gives a general method
for upper bounds on the hardness hy s(F).

While the general method for lower bounds is given in Lemma 3.17 and
Subsection 3.4.2.

Lemma 3.18 gives some easy upper and lower bounds on the hardness.

And in Lemmata 3.19 and 3.20 examples are given where these bounds
are attained.

Lemma 3.21 proves the strictness of the hierarchies w.r.t. unsatisfiability.

. . . . kU
Finally in Definition 3.22 one finds strengthened reductions ’T> captur-

ing Stalmarck’s central concept of reduction.

Section 4: DPL-trees and pebble games

. Definition 4.1 introduces the concept of (U, S)-DPL-trees.

In Definition 4.2 the leveled height hy s(T') of DPL-trees is given.

. Theorem 4.3 shows the correspondence between the hardness of clause-sets

and the leveled height of DPL-trees.

. In Subsection 4.2 various characterizations of the leveled height h(T') in

case of “closed trees” are given (where no “open leaves” are allowed, and
thus only the shape of 7' is of importance).

Theorem 4.6 gives a characterization of A(T) in terms of embeddable full
binary trees, and shows that the leveled height is the same as the pebbling
complezity of T'.

10

Section 5: Upper bounds on the hardness

1.

Lemma 5.1 obtains an upper bound on the hardness h(F') (using only the
trivial oracles) of uniquely satisfiable clause-sets F'.

. While Lemma 5.3 gives an upper bound on h(F') for satisfiable F' in terms

of the number of satisfying assignments.

. And Lemma 5.5 gives an upper bound on the hardness for unsatisfiable

clause-sets in terms of the maximal clause-length.

Lemma 5.7 determines the hardness for large random p-CNF.

. Upper bounds on unsatisfiable A(F') for the hierarchy of generalized Horn

formulas are given in Lemma 5.10.

. Lemma 5.12 shows that unsatisfiable g-Horn clause-sets have hardness at

most 2.

In Subsection 5.4 linearly satisfiable clause-sets are considered, used in
Lemma 5.14 to handle also satisfiable generalized Horn and ¢-Horn clause-
sets.

Section 6: Lower bounds on the hardness

1.
2.

Lemma 6.2 determines the hardness of the (weak) pigeonhole formulas.

And Lemma 6.7 gives a natural lower bound on the hardness for the
pebbling formulas.

Section 7: Tree-like resolution with oracles

Uk

. In Definition 7.1 k-times nested input resolution b wusing oracle U is

mtroduced.

. Theorem 7.5 shows the correspondence between the necessary level k of

Uk
nested input resolution + and the hardness hy (F') for unsatisfiable clause-
sets.

. In Subsection 7.2 also the connection to the space complezity of resolution

is discussed, and the wvarious characterizations of the hardness hy s(F)
are assembled.

Theorem 7.8 gives quasi-precise general upper and lower bounds on tree-
like resolution (with oracles).

. And Theorem 7.10 proves the quasi-automatizability of tree-like resolution

with oracles.

11

Section 8: Width-restricted resolution

1.

Subsection 8.1 discusses the two known variants of width restrictions for
resolution.

. Definition 8.3 introduces a new form of width restriction with oracles (our

“standard form”). widthy(F') is the minimal width needed for deriving
the empty clause.

Lemma 8.5 gives the relations between the three forms of width restric-
tions.

Lemma 8.6 shows that deciding derivability by the new form of width
restriction is in polynomial time (for fixed width).

In Lemma 8.7 the inequality widthy(F) 4+ 1 < hy(F') is proven (and thus
nested input resolution can be simulated by this form of width restricted
resolution). Corollary 8.8 states the corresponding lower bound for tree-
like resolution.

. Lemma 8.9 gives an ezample for constant width but where the hardness

nearly is the number of variables.

In Theorem 8.11 general upper and lower bound for (full) resolution with
oracles in terms of widthy (F') are proven.

. And in Subsection 8.4, Lemma 8.13 an example is given, where the lower

bound of Theorem 8.11 is (nearly) tight.

Section 9: Final remarks on the complexity of resolution

1.

2

In Subsection 9.1 the applicability of the general bounds on tree-like and
full resolution is discussed.

. And in Subsection 9.2 additional information on the weak pigeonhole for-

mulas is provided. Two alternative proofs for a lower bound on tree-like
resolution are given, and strengthened in Corollaries 9.6 and 9.7 by includ-
ing also both types of dual clauses (expressing “onto” and “functionality”).

Notation

The notions about clause-sets and partial assignments in 2.1 are used through-
out the paper, while the (basic) notions on resolution in 2.2 are used from

Section 7 on. The Pigeonhole formulas defined in 2.3 are considered in Subsec-
tions 6.1 and 9.2, and the notions on (directed) graphs and Pebble games in 2.4
are used in Subsections 4.3, 6.2, 7.2 and Lemma 8.9.

12

2.1 Clause-sets and partial assignments

Let VA be the (infinite) set of variables. A literal z is either a variable z = v
or a complemented variable x = ¥ for v € VA. The complement T of a literal z
fulfills = x. The underlying variable of a literal z is var(z) € VA.

A clause C'is a (finite) set of literals without clashes, that is CNC = 0, where
C'is the set of literals obtained from C' by element-wise complementation. The
set of all clauses is CL. A clause-set is a (finite) set of clauses and the set of all
clause-sets is denoted by CLS, while p—CLS is the set of clause-sets containing
only clauses of length at most p. Horn clause-sets F' are characterized by the

condition that every clause C' € F' contains at most one positive literal (that is,
|CNVA| < 1). HO is the set of all Horn clause-sets.

A special clause is the empty clause L := 0 € CL, and a special clause-set
is the empty clause-set T := 0 € CLS. Two clauses C1,C4y clash on z if x € C
and = € Cs.

For C C CLS let ¢t .= {F € C:YC € F[|C| > 2]} be the sub-class of

clause-sets not containing the empty clause or a 1-clause.

For a clause C' its set of variable var(C) is {var(z) : # € C'}, and for a
clause-set F' we set var(F') := (Jop var(C). We denote by n(F) := | var(F)|
the number of variables in F, by ¢(F') := |F| the number of clauses in F' and by
£(F) =) ccp |C] the number of literal occurrences in F. p(F') is the minimal
p € Ng such that F € p—CLS.

A partial assignment ¢ is a map from V C VA into {0, 1}. We use var(yp) :=
V and n(¢) := | var(p)|. The set of all partial assignments is called PASS. We
write (€1 — €1,... y &y —> €4, for literals z; and truth values ¢; to specify
partial assignments.

We regard partial assignments as subsets of VA x {0, 1} not containing both
(v,0) and (v,1) at the same time for any v € VA, and hence for two partial
assignments 1, s € PASS we have p1 Ny € RPASS, while 1 Uy € RASS iff
¢1 and gy are compatible. Note that also) € RASS (the empty assignment).

The following correspondence between partial assignments and clauses is
used: For a clause C let pe := (x — 0: 2 € C) denote that partial assignment
which maps all literals of C' to 0, while for a partial assignment ¢ with finite
var(y) the clause Cy, :={z: ¢(x) = 0} contains all literals = set to 0 by ¢.

PASS acts on CLS via ¢ * F for a partial assignment ¢ and a clause-set F',
where ¢ x F' € CLS is obtained from F' by eliminating all clauses containing a
literal z assigned truth-value 1 by ¢ and cancelling all literals assigned truth-
value 0 by ¢ from the remaining clauses.

We say that a class C C CLS is stable under partial assignments if C is
stable under the action of RASS, that is, for all F' € C and ¢ € RASS we have
p*x Fel.

13

modp(F) := {¢ € PASS : var(y) C var(F)A ¢« F = T} is the set
of all partial assignments satisfying F (the set of all “partial models”), and
mod(F) := { ¢ € PASS : var(p) = var(F) Ao+ F = T } is the set of all “total

models.”

By SAT = {F € CLS : mod,(F) # 0} the set of satisfiable clause-sets
is denoted, and by USAT := CLS \ SAT the set of unsatisfiable clause-sets.
If a clause-set F' has exactly one satisfying assignment, that is |mod(F)| = 1
(& |mody(F)| = 1), then F is called uniquely satisfiable. The set of all uniquely
satisfiable clause-sets is denoted by S.A7T-1.

t

By F'ZF’ we denote satisfiability-equivalence of F' and F’ (that is, either
both clause-sets are satisfiable or both are unsatisfiable). A reduction is a rela-
tion between satisfiability-equivalent clause-sets.

A partial assignment ¢ is called an autarky for F ([69]), if for all clauses
C € F we either have var(p) Nvar(C) =0 or ¢ x {C} = T. More generally a

partial assignment ¢ is called an autarky modulo contraction for F if o+ F C F
sat

holds (= ¢ % F = F).

A renaming is a bijection ¢ from the set of literals onto itself such that
for all literals z we have ¢(Z) = o(z). Application of renamings to clauses

and clauses-sets is defined in the natural way: o(C) = {o(z) : # € C'} and
o(F)={0o(C):C € F} (yielding again clauses resp. clause-sets).

The closure of HO under renaming is called

RHO :={o(F): F € HO and o renaming }.

2.2 Resolution

A clause R is the resolvent of clauses C7,Cy (called the “parent clauses”) iff
C1,Cy clash on a literal z and R = (C; \ {z}) U (C2 \ {Z}). The variable
var(z) is called the resolution variable here. (Note that any two clauses have at
most one resolvent, since otherwise the resolvent would be tautological, which
is forbidden by our notion of clauses.)

A resolution tree T, deriving a clause C' from a clause-set F', for short
T:FFC,

is a binary tree (directed from the root to the leaves) labeled with clauses, such
that the leaves are labeled with clauses from F', the root is labeled by C', and
the clause labeling an inner node is the resolvent of the clauses labeling its two
direct successors. We use T : F C’ C C to express that T': F F C" for some
sub-clause C' C C of C.

As usual, F = C denotes Vo : o« F = T = ¢+ {C} = T. Since [7] it is
known that F' |= C holds if and only if F - C' C C.

14

A resolution tree T is called regular ([87]), if there is no subtree 7' : F + C'
of T containing a resolution variable v with v € var(C’). And T is called an
input resolution tree if for each node the distance to a leaf is at most one.

By #1lvs(T') we denote the number of leaves of T', by c¢l(T') the set of clauses
labeling the nodes of T, and by #cl(T') := |cl(T)| the number of (different)

clauses in T'. n(T') := n(cl(T)) is the number of variables occurring in T

The complexity Compir (F') of tree-like resolution for refuting a clause-set
F is defined as the infimum of #lvs(T') for resolution trees 7' : F' = L, while
the complezity Compr (F') of (full) resolution for refuting F' is the infimum of
#cl(T) for T: FF L.

2.3 The Pigeonhole formulas

The variables of PHP}" € USAT for m > k > 0 are v; ; for 1 < i < m and
1 < j <k, expressing “pigeon i is in hole 57, and the clauses are

PHP] := P U N[
po= { {vijhici<e }1§i§m
N o= {{vh,j’1’i2,j}}1§i1<i2§m71§j3k'

We have n(PHP}') = m - k, and ¢(PHP}') = m + im(m + 1) - k for k > 1
(PHPF = {L}). The m positive clauses of length k in P;* express “each pigeon
¢ is in at least one hole j,”, and the negative 2-clauses in N;® express “no two
pigeons i1, 15 are in the same hole j.”

2.4 Directed graphs and pebble games
Notions for directed graphs

Consider a directed graph G. The set of nodes (or “vertices”) we denote by
V(G). Foranode v € V(G) let ds(v) resp. dp(w) be the set of direct successors
resp. direct predecessors of v in G. v is called an input or output if dp(v) = @
resp. ds(v) = 0 holds. G is called a dag (“directed acyclic graph”) if G does not
contain a non-trivial cycle.

A directed graph G’ can be embedded into G if there is an injective map
f:V(G") = V(G), such that for all nodes v, w € V(G’) the existence of a path

from v to w in G’ implies the existence of a path from f(v) to f(w) in G.

And G’ is called a minor of G, if an isomorphic copy of G’ can be obtained
from G by a series of deletions or contractions of edges or deletions of isolated
vertices.

15

It is not hard to see that a directed graph G’ can be embedded into a directed
graph G if and only if G’ is a minor of G, in which case we write G’ < G. The

relation G’ < G always ignores possible labelings of the graphs. To denote that
G and G’ are isomorphic (& G' < G A G<G') weuse G = G

A tree T in the context of pebbling is a dag without non-trivial undirected
cycles and with an unique output, the root of T'— thus, here the direction of
the edges of a tree is opposite to the convention we use throughout the rest of
the paper:

In the context of DPL-like algorithms (and also for resolution trees) we
regard a tree as a splitting process, thus evolving i1t from the root, while here
we take the point of view of, say, a proof in an aziomatic calculus, which starts
from the leaves and combines already proven formulas to new ones. When using
the relation 7" < T for trees in fact the direction does not matter (if only both
trees share the same orientation).

Notions for the pebble game (see [74])

For a dag G we denote by peb(G) the minimal number of pebbles needed to
pebble G, where shifting of pebbles is also allowed. More precisely:

A “pebbling” of G is a sequence (g1,...,9gm) of mappings g; : V(G) — Ng
(g:(v) = 0 means that v is unpebbled) such that for each 1 < i < m we have:

-9:(v) 0, gi(w) # 0, v # w = gi(v) # gi(w) (at the same time two
different nodes can not be pebbled by the same pebble);

- gi(v) # 0 = dp(v) =0 or i > 1 and either g;—1(v) # 0 or Yw € dp(v) :
gi—1(w) # 0 (or both) (that is, a new node can be pebbled only if all direct
predecessors are already pebbled).

New nodes other than inputs must not be pebbled in parallel, that is, for each
i there is at most one node w with g;(w) # 0, dp(v) # @ and g;—1(w) = 0.
Furthermore all outputs v of G (an thus actually all nodes) must have been
pebbled, that is there is 1 < ¢ < m with g;(v) # 0. The number of pebbles
used by (g1, ..., gm) is the maximum of | J; ¢; <, 9:(V(G)). Now peb(G) is the
minimum of the number of used pebbles over all pebblings of G.

3 A scheme for hierarchies of polynomially de-
cidable (and recognizable) classes of CNF’s

In this section two main concepts of this paper are introduced:

16

o the hierarchies (G (U, S))ken, of poly-time recognizable and SAT decid-
able classes of clause-sets, “amplifying” the (incomplete) oracles U, S for
unsatisfiability resp. satisfiability detection;

e the corresponding hardness functions hy s : CLS — Ng.

The basis for these hierarchies is the following “leveled” algorithm for poly-time
(incomplete) SAT decision (solving the recognition problem at the same time).

The algorithmic idea

One very basic method to decide the question “F € SAT ?,” the core of DPL-
like algorithms, is to look whether the question can be decided trivially, that is,
whether F = T or L € F holds, and otherwise to choose a variable v € var(F)
and split the problem into two subproblems as shown in Figure 1.

F

/N

(v—o0)* F (v—=1)xF

Figure 1: Splitting into two subproblems

Now, as discussed in general in Subsection 1.2, a scheme to enforce polyno-
mial running time is to introduce a level k € Ny of “difficulty” or “hardness”
and to require that for a suitable chosen variable at least for one branch the
level must go down, while for the other branch the level must not go up. More
specifically, we proceed as follows for F' € CLS:

1. We search for a variable v € var(F) and ¢ € {0, 1} such that (v = &) x F
can be decided at level £ — 1. If no such pair (v,e) exists, the output of
our procedure is “level > k.” Otherwise we fix the first such pair (v, ¢) we
encountered.

2. If (v — €) * F has been found satisfiable, then we are already done with
the output “satisfiable with level < £.”

3. Otherwise reduce F to F' := (v =) * F', and see whether F’ can be
decided at level k (recursively).

4. If F' has been found satisfiable resp. unsatisfiable at level k, then the same
holds for F.

5. In case F’ could not be decided at level k, output “level > k.

17

Using f(k,n) for the number of leaves of the corresponding search tree for level
k and n variables we get

f(k,0)=f(0,n)=1
flk,n)<2n-fk—=1,n—1)+ f(k,n—1) for k,n>1

and thus f(k,n) < (n + 1)%%.

Two points of the above algorithms need special attention:

(i) In step 2 we equip our approach with some guessing ability (namely to
guess the right truth value for up to k variables) — without that (as in
[75]) basically we get a hierarchy for #SAT, as discussed at the end of
Subsection 3.1.

(i1) The abort of the search in step 5 is essential for the polynomial upper
bound. We show that in our setting this abort is justified, since no other
choice of (v,&) could have done better.

It remains the problem what to do at level 0: We use two (incomplete) oracles
for satisfiability and unsatisfiability detection at level 0, assuming that they
contain the most basic satisfiable and unsatisfiable instances and that they are
stable under enforced assignments, an important (new) condition which justifies
step 5 from above.

The hardness

Since the above family of hierarchies covers CLS, by starting with level 0 and
successively increasing the level until the input can be decided, we obtain a
complete SAT algorithm. The first successful level we call the hardness of the
input.

The thorough study of this “hardness” may be seen as the main contribution
of the present article. Later we will see that this concept stands in intimate
relation to the complexity of tree-like resolution, and allows much simplified
lower bound proofs. Furthermore, for the first time we also give tools for lower
bounds on satisfiable clause-sets, while prior work in this direction considered
only unsatisfiable ones.

The organization of this section is as follows.

1. In 3.1 the classes Gi(U,S) are introduced, which are the k-levels as dis-
cussed before, while i/, & are the oracles for unsatisfiability resp. satisfi-
ability. The universal property and closure properties of these classes as
well as a decision algorithm are given.

18

2. The general SAT decision algorithm obtained by searching through the
levels from below is the subject of Subsection 3.2. For a given clause-set F'
the first successful level is called the hardness of F', and basic properties
are discussed.

3. Parameterizing reduction by enforced assignments, in 3.3 the concept of
k-reductions, naturally related to the classes Gy (U,S) and generalizing
Unit-clause propagation in a canonical way, is investigated.

4. The general method to prove upper and lower bounds on the hardness is
discussed in 3.4. Some applications are given, including the strictness of
the hierarchies w.r.t. unsatisfiability.

5. The first instance of a general SAT algorithm searching through levels of
increasing hardness has been “Stalmarcks algorithm.” In 3.5 we discuss his
special form of reduction rule (additionally exploiting the relation between
the branches (v,0) and (v, 1) when running through the loop in step 1 of
the above algorithm).

3.1 The classes G (U,S)

If a clause-set F' contains a 1-clause {z1} € F, then we can reduce F to Fy :=
(x1 = 1) % F. If again F; contains a l-clause {z3} € Fy, we can reduce F; to
Fy .= (22 — 1) x F;. Now the partial assignment (z; — 1, 2 — 1) is a basic
example for an enforced assignment:

Definition 3.1 A partial assignment ¢ € RASS is called enforced for a clause-
set F, if for all v € var(p) flipping the value of ¢ on v yields an unsatisfiable
clause-set:

(v—= () x FeUSAT.

A class C C CLS 1is stable under enforced assignments if for any F' € C
and any enforced assignment ¢ for F we have px F € C. 1

Some easy remarks (for ¢, ¢’ € RASS and F € CLS):

1. The following assertions are equivalent:

(a) ¢ enforced for F,
(b) V¢’ € mody(F) : ¢ C ¢/,
(c) V¢’ €modi(F): ¢ C ¢

2. ¢ enforced for F' = ¢ * FZF.

19

3. ¢ enforced for F, ¢’ C ¢ = ¢’ enforced for F.

4. For F' € USAT every partial assignment ¢ is enforced, and thus C C
USAT is stable under enforced assignments iff C is stable under partial
assignments (at all).

5. For I' € SAT we have:
(a

¢ enforced for F = var(yp) C var(F);

)
(b) ¢, ¢" enforced for F = ¢, ¢’ are compatible;
c enforced for F' and ¢’ enforced for o * F' =—> © U ¢’ enforced for F';
¥ ¥ ¥ pUe
d) ¢, ¢ enforced for F' and ¢ N’ =) = ¢ enforced for ' * F.
¥, P plrle 14 14

6. For any family (C;);er of classes C; C CLS such that all C; are stable
under enforced assignments, | J,.; C; as well as [, .; C; is also stable under
enforced assignments.

icl i€l

Definition 3.2 A class C C CLS allows substitution if for every F' € C with
var(F) # 0 there is (v,¢) € var(F) x {0,1} with (v — ey« FeC.

If C CUSAT is stable under partial assignments then C trivially allows substi-
tution. But a satisfiable clause-set need not to have any enforced assignments,
and thus ¢ C SAT which is stable under enforced assignments may not allow
substitution.

For any family (C;)icr of classes C; C CLS such that all C; allow substitution
also Uie] C; allows substitution.

Definition 3.3 Consider Y CUSAT and S C SAT fulfilling
(J)UDUy ={FeCLS: LeF}, 8E§D8e:={T}
(ii) U, S are stable under enforced assignments and allow substitution.
Let
GoU,S) :=U, GiU,S):=S.
For k > 0 we define the classes Gg_l_l(l,{,S), Gi_l_l(U,S) as follows:
F e G (U, 8) iff either F = {1} or there is (v,) € var(F) x {0, 1} with
(v—oe)yx FeGlU,S) and (v 5 E)x F € Gh ., (U,S).
F € G 1 (U, S) iff either F =T or there is (v,¢) € var(F) x {0, 1} with
(v—e)*x FeGiU,S) or
((v—oe)x FeGLU,S) and (v = E)x F € G, (U,S)).
Finally G (U, S) = GY(U,S) U GLU,S). 1

20

If not specified otherwise, in the sequel i, S denote arbitrary sets according to
Definition 3.3.

Since trivially F' € Gp(r) (U, S) for all F € CLS, we have

U GR,8)=uUSAT, |] Gi(U,S)=SAT.

keNg keNg

Obviously the classes G5, (i, S) are monotonic increasing in ¥ as well as in S,
that is, for € € {0, 1} we have

U'USD8= G,U',S)DG;U,S).

Since G (U, S) does not depend on S, we often use G2(U) instead. If i and S
(¢)

are clear from the context, we simply write G ’.

Compared with the hierarchies TIj from [75], the main improvement is the
now well-defined realm of possible oracles:

- the condition “stability under enforced assignments” ensures in the nat-
ural way that SAT decision as well as recognition is poly-time, since no
backtracking at step 5 of the algorithm in the introduction to this section
is necessary (see Lemma 3.7, part 1);

- “stability under enforced assignments” also allows to handle the oracles
U and S separately (not so the condition “stability under partial assign-
ments” used in [75]);

- considering Uy and Sy reveals the basic capacities of all hierarchies;

- with respect to the new “guessing capacity” for satisfiability see the dis-
cussion at the end of this subsection.

Lemma 3.4 The Gi(U,S) form a cumulative hierarchy, that is, for all k > 0
we have Gp(U,S) C Gr41(U,S).

Proof: By induction on n(F') we prove
VFeECLSVO<k<k :FeGr=FeGy.

For n(F) = 0 we have F' € G+ by definition. So assume n(F) > 0.

k = 0: In case of F € S there is (v,¢) € var(F)x {0, 1} with (v =)« F € S
since S allows substitution. By induction hypotheses we get (v — e)x F' € Gy
and thus, since (v = ¢) x F € SAT, by Definition 3.3 it follows F € Gy If
F € U then choose any v € var(F'). Since U is stable under partial assignments
we have (v = 0) % F, (v = 1) * F € U, and thus by induction hypothesis and
Definition 3.3 we get F' € Gy as well.

21

k > 0: Here the assertion follows immediately by induction hypothesis and
Definition 3.3 applied to Gf and Gg:. 1

Next we show the unwersal property of these classes, basic for all proofs of
containment of another hierarchy.

Lemma 3.5 Consider any family (Sk)ren, of classes Sy, C CLS of clause-sets.
Assume

1. Sm CGn(U,S) for some m > 0;

2. fork > m and F € Sk \ Sk—1 with var(F) # § we have F € Gi(U,S) or
there is (v,e) € var(F) x {0, 1} with

(v—oe)yxF € Sk
and

(voe)x FESAT = (v 5)« F € Sy,
ThenVk eNg:k>m= S, CGrU,S).
Proof: By induction on n(F') we prove
VFeCLSVEk>m:FeSy=FeG(U,S).

If n(F) = 0 then F' € Gj. Thus consider n(F) > 0. Let £ > m be minimal with
F eSS, If k=m, then F € G,. So assume k > m. If F' € (G, then we are
done. Thus there is (v,e) € var(F) x {0, 1} according to the above condition,
and by immediate applications of the induction hypothesis F' € G, follows.

Note that the “or” in condition 2 of Lemma 3.5 is not exclusive — it simply
says, that when under certain circumstances we already know F € Gy for a
certain F, then we do not have to provide (v,¢) for that F.

The following corollary gives the basic closure properties of our hierarchies.
For a class C C USAT the condition of “being stable under formation of super-
clause-sets” is used, which means that for F € C and F’/ € CLS with F' D F
also F’ € C holds, which for example is fulfilled for ;.

Corollary 3.6 Closure properties of the classes Gy (U, S)

1. AllGyx(U,S) are stable under enforced assignments and allow substitution.
2. IfU and S are stable under renaming, then so are all Gx(U, S).

3. IfU is stable under formation of super-clause-sets, then so are all G} (U).

22

Proof: For part 1 let Si be the closure of Gy under enforced assignments and
use commutativity of the application of compatible assignments (that substi-
tution is allowed follows by definition). For part 2 let Si be the closure of Gy
under renaming, and for part 3 let Sg be the closure of G, under super-clause-set
formation. 1

Using part 1, we easily see that for arbitrary k1, ks € Ng the equality
Gy (Gr,(U), Gi, (U, S)) = Gry4r, (U, S)
holds, and thus the hierarchies can be obtained inductively for £ > 0 by

Grer1(U,8) = G1(GU), Gy (U, S)).

In Figure 2 algorithm
D:CLS xNg = {0, 1, ¢}
is given computing

D(F.k)y=c€{0,1} iff FeGiU,S)
D(F, k) = ¢ iff F g G(U,S).

Compared to [75] the recognition process need not to be handled separately and
is conceptually much simpler.

Lemma 3.7 1. Algorithm D terminates and gives the correct answer.

2. Consider the search tree reflecting the (recursive) calls of D. This tree has
at most (n(F)+1)% leaves. The work at each inner node can be performed
in time O(¢(F)) (using the random access model).

3. If the decisions “F € U ?” and “F € S ?” each requires time O({(F)9)
for some q > 1, then D has total running time O(£(F)? x n(F)%).

Proof: Part 1: Termination is obvious since any step eliminates at least one
variable. To see that for F with D(F, k) = ¢ € {0,1} we have F € G, (U,S),
note that e gives obviously the right SAT status and use Lemma 3.5. And
for D(F k) =¢ = F ¢ Gi(U,S) assume there is F with D(F, k) = ¢ but
F € Gx(U,S) and consider such F with minimal n(F). Now a contradiction is
obtained using Corollary 3.6, part 1.

Part 2: Consider the function f : N02 — Ny given in the introduction to
this section

f(k,0) = f(0,n) =1
flk,n)=2n-flk—1,n—1)+ f(k,n—1).

23

PROCEDURE D(F € CLS, k € No) : {0, 1, ¢};
BEGIN
IF £ = 0 THEN
IF F € Y THEN RETURN 0 ELSE
IF F € S THEN RETURN 1 ELSE
RETURN ¢;
ELSE IF F = {1} THEN RETURN 0
ELSE IF F =T THEN RETURN 1
ELSE
FOR (v,¢) € var(F) x {0,1} DO
(+) IF D((v —)+ F,k— 1) = 1 THEN
RETURN 1
ELSE IF D((v — ¢) * F,k — 1) = 0 THEN
RETURN D({v = &) % F, k);
END FOR;
RETURN ¢;
END D.

Figure 2: Algorithm D for G5, (U, S) decision

f(k,n) is an upper bound on the number of leaves and fulfills f(k,n) < (n+1)%*

proved by induction on n as follows. For n = 0 or k = 0 we have (n + 1)2% =1,

while for n, &k > 1:

flk,n+1)

2n+ 1) - f(k =1, n)—i—f(k,n)
2n+1)- (n+1)** V4 (n+) = (n+ 1) (n+ 3)

<
< (n+2*(n+2)=((n+ 1)+ 1)*.

For the amount of work needed at each inner node observe that, given sufficient
“pointer support,” the loop over the (v, ¢) just visits each literal occurrence only
twice.

Part 3 now follows immediately. 1
The upper bound on the running time of D in Lemma 3.7 is quite rough, since
our concern here is neither to discuss tuned versions of D nor implementation

details. So for example in case of k¥ = 1 the above bound gives for the worst
case just a cubic upper bound, while linear time is sufficient ([25, 23, 93]).

Corollary 3.8 If the decisions “F € U ?” and “F € S ?” can be done in poly-
nomial time then membership as well as SAT decision for each class Gy (U, S)

24

is also polynomial time. 1

3.1.1 Cancelling “guessing” yields a poly-time hierarchy for #SAT

If for F € CLS we find (v —>e)x F € G} _,(U,S) then we are “satisfied” and
output the result — since why should we bother investigating also the other
branch?

In fact, if we cancel step (#) in D (corresponding to step 2 in the algorithm
from the introduction to this section), that is, if we define for F € CLS with
var(F') # () the alternative counting hierarchy

Fe#Gr1U,S) —
A(v,e) (v =)« FeH#Ge(U,8) N{(v—oE)« F € #Gr1(U,S)

without differentiating between satisfiability and unsatisfiability as in Definition
3.3, then it is easy to see that D can be easily tuned (without compromising
the time bounds) to output |mod(F')|, the number of satisfying assignments,
provided & is 8 or any class of satisfiable clause-sets for which | mod(F')| can
be “reasonably computed” (depending on our goals for running time).

Thus, without the guessing possibility instead of investigating SAT decision
we would investigate #SAT solving (a much harder problem (see e.g. [72])),
which is interesting in its own right, but of subordinate interest for this article.

Due to its symmetrical definition, actually the counting hierarchy behaves
often nicer (on satisfiable instances — on unsatisfiable instances there is no
difference), so for example from the fact that #Go(U,S) = U U S is stable
under partial assignments it follows that all #G (U, S) are stable under partial
assignments. Since this assumption is fulfilled for Uy U Sy, we get for the basic
choice of oracles that w.r.t. counting application of partial assignments makes
the problem only easier, which is a distinct difference to the problem of SAT
decision — here fixing a variable to the false value can render an easy satisfiable
instance into a hard unsatisfiable one.

3.2 The hardness hy s(F') of clause-sets
Definition 3.9 For F € CLS:

hus(F) = min{keNy: FeGy(U,S)}
h(F) = hUo,So(F)' |

The hardness functions hy s(F') are monotonic decreasing in ¢ and S, that is

U’ 2”,8/ 2 S—=VFelLlS: hu/ys/(F) < hu’S(F).

25

For F € USAT the hardness hy s(F) does not depend on S, thus we write
often hy (F') instead.

In Figure 3 the SAT decision algorithm
D* : CLS - {0,1} x Ny
is given, computing D*(F) = (e, k) such that F € G5, (U, S) and hy s(F) = k.

PROCEDURE D*(F € CLS) : {0,1} x Ny;
BEGIN
FOR k = 0 to n(F) DO
IF D(F, k) #¢ THEN
RETURN (D(F, k), k)
END FOR
END D*.

Figure 3: The SAT decision algorithm D*
Lemma 3.7 immediately yields

Lemma 3.10 Algorithm D* terminates and computes the correct answer. The
decisions “F €U ?” and “F € S ?” are called each at most O(n(F)*hu.s(F))
times, and if their running time is bounded by O(¢(F)?) for some ¢ > 1, then
D* has total running time O(L(F)? % n(F)*hu.s(F)), 11

As a consequence we get in Subsection 7.4 that on unsatisfiable inputs the
running time of algorithm D* is quasi-polynomial in the length of the shortest
tree-like resolution refutation. For upper and lower bound on the hardness see
Subsection 3.4 and Sections 5, 6.

Due to their importance, the next lemma reformulates the stability proper-
ties from Lemma 3.6.

Lemma 3.11 For F € CLS and an enforced assignment ¢ for F we have
hy s(¢* F) < hys(F).

IfU is stable under formation of super-clause-sets, then for F' € USAT and
F' D F we have hy s(F') < hy s(F).

Thus for F € USAT and an autarky (modulo contraction) ¢ for F under
the same assumption hy s(p * F) = hy s(F) holds.

IfU,S are stable under renaming then hy s is invariant under renaming. 1
Application of autarkies may decrease as well as increase the hardness on

satisfiable instances, since for example on the one hand every satisfying assign-
ment is an autarky, while on the other hand for example guessing the value

26

for a pure literal in F as 0 (opposed to the autark assignment z — 1) may
substantially enlarge the possibilities for enforced assignments.

Without guessing, in the counting hierarchies, application of autarkies can
not increase the hardness, provided § is stable under application of autarkies (or
under formation of sub-clause-sets). Furthermore, if Go(U,S) =U U S is stable
under partial assignments, then w.r.t. the counting hierarchy also for F' € SAT
we have hy s(p * F') < h(F) for every ¢ € PASS.

3.3 Canonical reductions

If a clause-set F' contains a I-clause {z} € F, then F and (z — 1) « F are
satisfiability-equivalent. Iterated elimination of 1-clauses, called Unit-clause
propagation, is the most elementary and also the most important reduction for

SAT decision.

In case of {z} € F the partial assignment (z — 1) is enforced for F. Ap-
proximating reduction by general enforced assignments we introduce in this sub-
section the concept of k-reduction w.r.t. U. The practical importance of this
concept has been demonstrated in [57], where 2-reduction w.r.t. Uy has been
applied successfully (yielding the fastest SAT solver (at this time) for random
k-CNF’s at the threshold).

The unique result of reducing a clause-set F' by k-reductions w.r.t. i is
called r¥ (F) (the special case of k = 1 and U = Uy corresponds to Unit-clause
propagation). Using this normal form we obtain alternative characterizations

of the levels Gx (U, S).

Definition 3.12 The relation F ﬂ)F' between clause-sets F,F' € CLS is
defined for k € Ng as follows:

1 P20} if F el and F # {1}
2. Fﬂ)(v — &)« F for k > 1 iff there is (v,¢) € var(F) x {0,1} with
(v—=eyx FeGy_(U).
By By the reflexive-transitive closure of KU s denoted.

For FF 2 B/ there is an enforced assignment o for F with F/ = o F and
thus FZ F'. The opposite direction holds if using 4 = US AT, that is

1,USAT
—_

F F' <= 3y enforced for F with px F = F'.

Note that the reduction concept is cumulative:

0<k<k and F24 p — p 2% pr

27

Lemma 3.13 The relations ﬂ) are terminating (well-founded) and conflu-
ent.

Proof: Since any reduction step eliminates at least one variable, termination
is obvious.

To show confluence, by the diamond lemma ([71, 47]) we only have to show
“local confluence,” that is, for

FEL P and P2 P
there is F'* with
Fy 25 F* and Fy 28 e
So assume F; = (v; = &)« F and (v; > &)« F € Gg_1(U) fori =1, 2.
In case v1 = vy and &1 = Z5 we have Fy, F» € G_,(U), and thus
J o LRy

Otherwise, if vy ¢ var(Fy) or vy ¢ var(Fy) then Fy = Fs.

So assume vy € var(Fs) and vy € var(Fy). Due to Lemma 3.6, part 1

(va > ea)* Fy = (v1 = 1) * ({(va = e2) *x F) € G—1(U)
(vi = e1)* Fo={va > E2)* ({v1 — 1)+ F) € Ge—1(U)

holds, and thus
Flﬂ)<1)2—)5>*F1 :<’U1 —)a>*F2&F2 |

Definition 3.14 For F € CLS and k € Ny let v¥ (F') be the (unique) F' € CLS

with F 225 F' such that there is no F" with F' £ F". We use T instead
of rgu‘

For F € CLS and C C CLS we use F € C mod ri‘ for the assertion that
there is F' € C with v (F) = ¥ (F"). 1

71 is just unit-clause propagation (additionally with 71 (F) = {L} in case L is
created). First (full) use of ry in a “DPLL-like” algorithm I’'m aware of one

finds in “OKsolver” ([57]).
Note that rZ(Fl) = rzlf(F2) is equivalent to the existence of F’ with

kU kU
F1 —)*FI and Fg—)*FI.

Some easy properties of rfj for F € CLS are

28

2. (P (F)) =Y (F)

max(p,q)

3. (a) hus(rf(F)) < hus(F)
(b) hus(F)> k= hys(F) = hus(r(F))

4. FEGk(U,S) modeiFEGk(u,S).

Using the concept of k-reduction, the universal property from Lemma 3.5 can
be rendered more easily applicable:

Lemma 3.15 Consider a family (Sk)ren, of classes Sy C CLS and assume

1. Sm CGn(U,S) for some m > 0;

2. for k > m and any clause-set F € Si \ Sk—1 with var(F) # § we have
F € Gp(U,S) or there exists (v,¢) € var(F) x {0, 1} fulfilling:

(a) there is a clause-set F. € CLS with hy s(Fe) > hys((v =€) x F)
and F. € S;_1 mod rzlf_l, and

(b) if (v o€y« F ¢ SAT then there is a clause-set Fr € CLS with
hu’s (Fg) > hu’5(<v — E> * F) and F- € S mod Tzl;{‘

Then Sy C Gy (U, S) for all k > m.

Proof: We prove S; C G by induction on k.

The case k = m is covered by assumption. So assume k > m. Consider
F € Si and assume F' ¢ Gj. Thus n(F) > 0and F ¢ Sg_1 (since otherwise by
induction hypothesis F € Gi_1 C Gy).

Now there are (v,¢) € var(F) x {0, 1} and clause-sets F., Fr with

hZ/{,S(Fs) Z huys((l’ — E> * F), F. € 5;,_1 mod 7“?_1
huys(Fg) > hu7§(<v — E> * F), <1) — 6> * I ¢ SAT = F- € S mod TZI;{.
By definition there is F! € Sg_1, r¥_(F.) = vi{_,(F!). By induction hypothesis
we get F! € Gg_1, thus F: € Gi_1, and we conclude (v = &) % F € Gj_1.

If (v 5¢e)*x F € Gy_1 € SAT, then by definition F € Gj. Otherwise we
have Fr € Sk mod 7!, and hence there is FL € S, rif (Fx) = ¥ (FL). Again by
induction hypothesis FL € Gy, = Fr € G, = (v > &) x F € Gy,.

Altogether F € Gi. 1

We conclude this subsection with alternative characterizations of the hier-
archies G (U, S) in terms of k-reductions.

29

For F € USAT we have hy(F) < k if and only if #/(F) = {L}. For
F € SAT k-reduction alone is not sufficient to determine satisfiability (the
strongest possible reduction yields 1447 (F) = T < F € SAT-1), but we have
to alternate it with guessing. More precisely, hy s(F) < k holds if and only if
the following non-deterministic algorithm is successful:

WHILE k > 0 reduce F := r¥(F):
IF F = T then “success”,
ELSE guess a variable v € var(F) and € € {0, 1},
SET F:={(v—oe)*« Fand k:=k—1.

IF (finally) £ = 0, then we have “success” iff F € S.
Lemma 3.16 For F € CLS and k > 0 we have
FeGLU,S)
iff there is ¢ € RASS with n(p) < k and an ordering

var(p) = {v1, ..., Un(p)}

such that
Fae) €8
holds, where
Fo = rH(F)
Fio= (v = p(01)) * Fo)
Fy = rfo((va = p(v)) x F)
Fate) = T8 n(o)((Vn(e) = ¢(tn(g)) * Fagg)—1)- B

3.4 How to prove upper and lower bounds on the hardness

Throughout this article, the following considerations are basic for proving any
upper or lower bounds on the hardness hy s(F).

3.4.1 Upper bounds
Suppose we want to show the upper bound
VFeC: hys(F)<u(F)
for § # C C CLS and u : C — Ny. For that purpose consider

Sp={FeC:u(F)<k}

30

for k € Ny and let m be the minimal k with Sy # . Now due to Lemma
3.15 it suffices to show that S,, C Gp(U,S) holds, and that for & > m and
F € Si\Sk—1 with var(F) # 0 for which hy s(F) < k is not already known there
is a variable v € var(F) and ¢ € {0, 1} fulfilling the following two conditions:

- without decreasing the hardness, (v — €) * F' can be transformed into F.
such that F, € Si_1 mod ri’_l;

- if (v =5 e)yx F ¢ SAT, then (v — E)x F can be transformed into Fr without
decreasing the hardness such that Fr € S mod rzlf.

To transform a clause-set F into F’ with hy s(F') > huyg(F)‘r’), besides choosing
F' = F we know the following general means (see Lemma 3.11):

- application of renamings (supposed U (and §) are stable under renaming);

- elimination of clauses in case of ' € USAT (supposed U is stable under
formation of super-clause-sets).

3.4.2 Lower bounds
Lemma 3.17 Consider a family (Sk)ren, of classes Sy C CLS and assume

1. Sy NGpm-1(U,8) =0 for some m > 1;

2. for k > m and any F € S; we have F ¢ Go(U,S), and furthermore
F & Gr_1(U,S) holds true, or for all v € var(F') and € € {0, 1} there exist
clause-sets F., Fz fulfilling the following conditions:

huys(Fg) S hz,{yg((i) — E> * F), hz,{yg(Fg) S hu75(<v — E> * F);

-if (voeyx F € SAT then F. € Si_1;
-if (voeyx F eUSAT then F. € Sy_q or Fr € Sg.

Then for all k > m we have Sx N Gi_1(U,S) = 0.

Proof: Assume that there is k > m with Sy N Gr_1 # 0 and consider the
minimal such k: A contradiction to the minimality of k& is immediately obtained
from Definition 3.3. 1

Now suppose we want to show the lower bound

VF €C:hys(F)>s(F)

5)it is not required that the transformed clause-set is satisfiability-equivalent to the original
clause-set; furthermore, we use “transformed” here only for better intuitive understanding,
while in fact apart from the hardness condition there need not to be any relation between F'

and F’

31

for § # C C CLS and s : C — Ny. For that purpose consider
Sk :={FeC:s(F)>k}

for k € Ng and let m be the minimal £ > 1 with S; # Sp_1 (m = 1+ mins(C)).
If now conditions 1 (using this m) and 2 of Lemma 3.17 are fulfilled, then that
lower bound in fact holds true.

To transform a clause-set F into F’ with hy s(F') < hy s(F), besides choos-
ing F' = F the following general means are provided by Lemma 3.11:

- application of renamings (supposed U (and §) are stable under renaming);

- addition of clauses in case of F € USAT (supposed U is stable under
formation of super-clause-sets);

- application of enforced assignments.

3.4.3 Some easy applications

The next three lemmas are very easy applications of the methods from Sub-
sections 3.4.1 and 3.4.2, so for the proofs we just state the needed facts on
splitting, that is, how the formulas under considerations behave under splitting
as in Figure 1.

Lemma 3.18 1. For F € CLS we have

(a) h(F) <n(F)
(b) h(F) < e(F).

2. For F ¢ USAT we have

(a) h(F) < c(F)
(b) h(F) > min|C].

Proof: For Parts la, 1b split on any variable: In both branches at least one
variable disappears, and in at least one branch at least one clause disappears.

For Part 2a additionally note, that ¢(F) > 1 and ¢(F) =1 & F = {1}
holds. And for Part 2b observe that by splitting on a variable the minimal
clause length can decrease at most by one. 1

The upper bound A(F) < n(F) is tight on unsatisfiable instances (see the
next Lemma 3.19), while A(F) < ¢(F) is tight on satisfiable instances (see
Lemma 3.20). Using the parameter p(F) (the maximal input clause length)
the first upper bound will be refined on unsatisfiable instances in Lemma 5.5.

32

Both upper bounds actually hold for hardness w.r.t. the counting hierarchies

#Gr(U,S) (recall Subsection 3.1.1).

By applying Lemma 3.11 the lower bound can be strengthened somewhat
(FeUSAT):

h(F)> max min_|C]|.
T @ERASS CegpxF

Lemma 3.19 For finite V C VA let
Fy . ={CeCL:var(C) =V} (€ USAT).

Then h(Fv) = n(Fy) = |V|.

More generally we consider U stable under renaming. Then either for all
finite V.C VA we have Fy € U (and thus hy(Fyv) =0), or there is m € Ny such
that for all finite V.C VA

Fy el < |V|<m
holds. Now we have hy(Fy) = max(0, n(Fy) — m).
Proof: Fp={Ll}, and for any v € var(Fy) and € € {0, 1} we have
(v =) x Fy = Fy\yy). 1
Lemma 3.20 Let Ny be the class of clause-sets F € CLS containing only dis-

joint negative 2-clauses, that is |C| =2, C CVA and C # C' = CNC' =0
holds for all C,C" € F. (Thus Na C SAT N2-CLSNHO.)

Then for F € N3 we have hysat s, (F) = ¢(F).
Proof: For F € N3 and v € var(F) the following holds:

-{v—=0)*x FeNy c{v—0)xF)=c(F)—1;

-{v—=> 1)« F € SAT, and for {v,w} € F we have {w} € (v = 1) x F' and
(W—Dx((vo>1D*F)=(w—0+FeN,. |1

We conclude this subsection by discussing the strictness of the hierarchies

(Gk (U, S))keNu~

Lemma 3.21 IfUU £USAT and U is stable under renaming, then for all k > 1
there is Fi, € USAT with hy(F) = k.

33

Proof: Consider F; € USAT \ U with minimal n(F). For k > 2 let o} be a
renaming with

var(og(Fr—1)) N var(Fr_1) = 0,
choose a variable vy, ¢ var(ox(Fj—1)) U var(Fx_1) and define
Fr={CU{w}:C€F1} U{CU{Tr}: C € or(Firon) }.

Since for any v € var(Fy) we have (v = 0) *x Fi, (v = 1) x Fy € U, it follows
hy(Fy) = 1. For k > 2 on the one side we have

(vg = 0) % Fy, = F_1, (vg = 1) x F, = Fx_1 mod renaming.

On the other side for any v € var(Fg) \ {vx} and € € {0, 1}, let ¢’ := 1 in case
of v € var(Fi_1) and ¢’ := 0 otherwise and note

(vik — €'Yy * ((v — €) * Fg) = Fx_1 mod renaming.
By Subsections 3.4.1 and 3.4.2 we obtain the assertion. 1

Without ¢/ being stable under renaming, the hierarchies may collapse, as the
following example shows.

Choose vg € var(F) and let Fy := { {vo}, {vo} }. Define
U:={FcUSAT : -3o € PASS [¢* F = Fy] }.
Obviously U is stable under partial assignments and contains Uy. Now
GoU)=U, GYU)=USAT,
since for F € USAT in case of vy ¢ var(F') we have F € U, and otherwise we
have (vg = 0) * F,{vo = 1)« F € U.
3.5 Extracting more information (Stalmarck’s algorithm)

In this final subsection of Section 3 we show how the core concept of Stalmarck’s
algorithm (see [84, 44, 81]) can be motivated within our approach as an attempt
for more efficient use of the information gained in the search for reductions.

Recall (Subsection 3.3) that for £ > 1 we can apply the reduction
JRILN (v—oE)*x F
for F € CLS and (v,¢) € var(F) x {0, 1} if and only if

(v = ey« F) = {1} (1)

34

holds. The obvious way to search for such a reduction is to run through all
possible pairs (v,) (independent of each other) and to try whether condition
(1) holds true. Is there is a more efficient way, using for the current pair (v, ¢)
some information on previously regarded pairs (v', &) 7!

We treat here another path: Given the (unsuccessful) computations on all
pairs (v,e), is there a chance to get nevertheless something out of it? A first
step is to link the branches (v,0) and (v, 1), as it is (in effect) the case for the
Stalmarck algorithm.

Assume

ri1 (v =€) ¥ F) = Fe # {1}

for e = 0, 1. Naturally in the course of computing F; the corresponding enforced
assignment ¢. for (v —) * F' with ¢. x ((v =€) x F) = F. can be computed
without additional effort. Now by the simple fact

If the partial assignments g, 1 are both enforced
for (v — &) x F', then @g N ¢1 is enforced for F.

in case of ¢g N1 # @ in fact we found an additional reduction for F':
F — (poNe1) * F.
To put this into a simpler form, note that for (w — §) C o N 1 we have
Vee{0,1}:(v—e)* ((w—d)x F) 221 11},

and thus the following definition adequately expresses the above reduction pro-
cess (applied recursively).

For k£ = 1 there is no additional reduction, that is
H(v =)« F)£{L}=r{((v 2 e)*x F)={(v—=e)x F

and thus . — (). Therefore at level 0 of the new reduction hierarchy we use

nu . o,uU
already —— instead of —— .

Definition 3.22 The reduction ——% is the same as —2 . Consider k > 1.
For F € CLS and (w,§) € var(F) x {0,1} we have

F’“—:ﬁ (w—3) F
if there is v € var(F) with
Vee{0,1}: <v_>a>*(<w—>5>*p)%*u},

where “—x” denotes the reflexive-transitive closure of “—”.

For F e USAT let hz:l;(F) be the minimal k > 0 with F%* {L}. 1

35

The relations % (again) are all terminating and confluent, and we have
1
S (hu(F) = 1) < W5 (F) < hu(F) — 1

for FF € USAT. The reductions FoHo, build the core of Stalmarck’s algorithm

+
(besides other obvious rules to handle general formulas; to handle satisfiability
no special means are given).

In [41] an extended version of Stalmarck’s algorithm is presented, using ad-
ditionally certain resolution-based reductions (see [60] for an in-depth discussion
of such reductions).

Consistent use of all branches

Consider any I C var(F) x {0, 1} such that for all (v,£) € I enforced assignments
@y, for (v — €) * F have been computed (w.lo.g. v ¢ var(py.)).

Using the general facts (for ¢, ¢’ € RASS and F € CLS)

e ¢ is enforced for F iff for all literals with (z — 1) C ¢ the 1-clause {z}
is implied by F;

e more general, ¢ is enforced for ¢’ x F' if for all with (z — 1) C ¢ one
has F |E Cyr U {z};

we get
FEG ={CusagU{z}:(v.e) eI A(z—>1)C oy}

Since G; € 2-CLS, we can decide in linear time whether Gy € USAT holds, in
which case we infer F € USAT . And if

GrE{z}

for some literal z, then (z — 1) is enforced for F', and thus we have found a new
reduction for F'.

4 Generalized DPL-trees and pebble games

In this section the concept of generalized DPL-trees and its relation to the
hierarchies (G (U, S))ken, is investigated.

DPL-trees are binary trees where every branching is a splitting on a vari-
able as in Figure 1. Thus DPL-trees are the search trees for the most basic

36

SAT algorithms (with leaves labeled by elements of Uy or Sy). DPL-trees for
unsatisfiable clause-sets F' immediately correspond to decision trees solving the
“search problem” for F' as defined in [63]®), and are also known as semantic

trees (see [88]).

We consider a generalization, called “(U,S)-DPL-trees,” where leaves can
be labeled by elements of U or &, or can be left open in case there is some
leave labeled with an element of §. The immediate correspondence to (general-
ized) tree-like resolution refutations with “oracles” (in case of “U-DPL-trees”)
is studied in Section 7.

Introducing the leveled height hy s(T') of (U,S)-DPL-trees we are able to
characterize clause-sets F' with hardness hy s(F') < k as those clause-sets having

a (U,S)-DPL-tree T with hy s(T) < k.

For closed DPL-trees (no open leaves are allowed — always fulfilled for un-
satisfiable clause-sets or for the counting hierarchies) the leveled height hy s(T)
is a well studied quantity, equal to the pebbling complexity of T minus 1.

4.1 DPL-trees and their leveled height

Definition 4.1 A DPL-tree for F € CLS is a binary tree, the nodes labeled
with clause-sets by

Fr : V(T) — CLS,

such that Fr(root(T)) = F holds, and for each inner node w of T with direct
successors wy, wy there is a variable v € var(Fr(w)) with

Fr(w:) = (v = &) % Fp(w)

fore € {0,1}. v is called the branching variable for w.
Now consider U,S according to Definition 3.3.

A node w of a DPL-tree T 1is called an U-node if all leaves below w are
labeled with elements of U, while w is called a S-node if there is a leaf below w
labeled by an element of S. If w either 1s an U- or a S-node, then w s called a
(U, S)-node. The same terminology as for nodes is used for the corresponding
subtrees of T. (Thus we call a DPL-tree an (U, S)-tree for example, if the root
of T is an (U, S)-node.) 1

Clearly every F' € CLS has a (U, S)-DPL-tree T, and any such tree T' for F
is an U-tree if I € USAT and a S-tree if FF € SAT.

6)

given any assignment ¢ with var(y) = var(F), find a clause C' € F falsified by ¢

37

Definition 4.2 The leveled height hy,s(T) for a DPL-tree T is defined by
mnduction on the composition of T' as follows.

If T is trivial, then hy s(T) := 0.

Otherwise let T' consist of subtrees Ty and Ts:

o if one of Tv, T is not an (U, S)-tree, or hy s(T1) = hu s(T3), then
hu s(T) := max (hy s (Th), hus(T2)) + 1;

o otherwise (that is, both Tv,T> are (U, S)-trees, and hy s(Th) # hu s(13))
hy s(T) := max (hu,s (Th), huys(Tz)). |

Theorem 4.3 The hardness hy s(F) for F € CLS is equal to the minimal
leveled height hy s(T') of (U,S)-DPL-trees for F.

Proof: The proof is an easy application of the considerations in Subsections

3.4.1 and 3.4.2.

Let piz¢ s(F) be the minimal leveled height hy s(T') for (i, S)-DPL-trees T
for F. Obviously we have

huys(F) =0& /Lz,{ys(F) =0.
To show hy s(F) < pizs s(F) let
Sk Z:{FECESZLLU’S(F) Sk}

for k > 0. Consider k¥ > 1 and F € Sj, with var(F) # (. Let T be an (U,S)-
DPL-tree for F with hy s(T) = pus,s(F), and let v be the branching variable at
the root of T' with associated subtrees Tq, T7.

By definition of hy s(T') there is ¢ € {0,1} such that T; is an (U, S)-tree
with

hus(T) < hu s(T).

Thus (v = ¢) x F € Sgp_1.
If T; is an U-tree, then T¢ must be an (U, S)-tree, and we get

(v —=>E)«x F € Sk.
For the opposite direction hy s(F) > pizs s (F) define
Sg = {F e CLS : /lz,{yg(F) > k’}

for k > 0. Consider F € S for k> 1 and v € var(F), e € {0,1}.

38

First suppose (v = &) x F' € SAT. If now
(v—=>e)x F ¢ Sk_1,

then there is a S-DPL-tree T; for (v — ¢) * F with hy s(T.) < k — 2, and thus
tar,s(F) < k —1 by combining T, with the trivial tree labeled (v —) % F.

Now assume (v — &) x F' ¢ SAT. If
(v—>e)xFégSp_1and (v 5> E)* F & Sk,

then by combining the corresponding (i, S)-DPL-trees we get py s(F) <k —1
as well.

4.2 Characterizations of the leveled height for closed trees

Definition 4.4 A closed (U,S)-DPL-tree for F € CLS is an (U,S)-DPL-
tree for F' where all nodes are (U, S)-nodes, that is, where all leaves are labeled
with elements fromUUS. Since for closed (U, S)-DPL-trees T the leveled height
huy s (T) does not depend on the labeling, we use h(T') instead. We say that T
has level k if h(T) < k. 1

Every U-DPL-tree is closed by definition. Thus for unsatisfiable clause-sets
considering only closed DPL-trees is no restriction.

Since the counting hierarchy (recall Subsection 3.1.1) does not use “guess-
ing,” also here only closed DPL-trees are relevant. Thus the hardness of F' €
CLS for the counting hierarchy w.r.t. i/, S by virtue of Theorem 4.3 is equal to
the minimal level of a closed (U, S)-DPL-tree for F.

In the remainder of this section we give alternative characterizations of the
leveled height A(T) for (arbitrary) binary trees (regarding them as closed). The
definition of A(T') is simplified as follows:

h(T) = 0 if T is trivial, while in case T consists of two subtrees T3, T5

WT) = {max(h(Tl),h(Tz)) %fh(Tl)géh(Tz) &)
max(h(Tl),h(TQ)) + 1 if h(Tl) = h(TQ)

holds. Thus T is of level k iff either T is trivial or one of its two subtrees is of
level k — 1 and the other is of level k.

Trees of level 1 are exactly those trees only allowed for input resolution.
In Section 7 we will obtain a very natural form of (generalized) nested input
resolution by translating DPL-trees into resolution trees.

Any tree of level k contains at most k nested level-1-trees (see Figure 4):

A tree T is of level k& > 1 iff there is a level-1-tree Ty such that 7T can be
obtained from Ty by replacing the leaves of Ty by suitable trees of level £ — 1.

39

Figure 4: k-level trees: V’s are (k — 1)-level trees

Finally one can characterize trees T of level k as those trees where for all trees
T’ obtained from T" by permuting the order of the subtrees v at the “backbone”
of T (see Figure 4) or at any other level of the recursive composition, and for
any node in 7" there is a path to some leaf of length at most k in T".

Historical remarks

Equation (2) was considered the first time in [70]: There binary trees T' coding
arithmetic expressions have been considered, and h(7T') was used for the “number
of accumulators necessary to calculate the expression.”

In [32], and independently in [49], the average leveled height A,, for trees
with m internal nodes (that is, with m + 1 leaves), where all trees of the same
size are considered to be equally likely, has been computed as A, ~ log, m.

[77] gives an alternative definition for the quantity h(7'), applicable to trees
of arbitrary degree (and in fact to dag’s):

Consider a (rooted) tree T, directed from the leaves to the root. Let

(v1,...,Um)

be a topological sorting of the nodes of 7', that is, for nodes v;,v; with v; # v;
such that there is a (directed) path from v; to v; we have i < j. Fori <i<m
let w; be the number of edges (v;,vx) in T with j < i < k (corresponding to
auxiliary results which have to be stored). Now the “width” of (vy,...,vp) is
the maximal w; for 1 < 7 < m, and the width of T" is the minimal width of a
topological sorting of T'. For binary trees T" we have

h(T) = width of T

which can be easily proved by induction on the composition of T

40

Apparently this above notion of “width,” applied to dag’s GG, has been the
first appearance of what now is called the pebbling complezity peb(G) of G (that
is, peb(G) = 1 + (width of G) for any dag G).

4.3 The pebbling complexity of trees

All the following characterizations of the level height are “virtually well-known”
(see [74] for an overview on pebbling), but we hope that our compilation is of use
nevertheless, due to the somewhat scattered character of this knowledge. The
relation to the “space complexity of resolution” (see [30, 86]) will be discussed
in 7.2.

Let By the complete binary tree of height k € Ny (thus #lvs(T) = 2%). The
following lemma states some auxiliary results on binary trees.

Lemma 4.5 1. Consider two binary trees T, T" with T' < T.
(@) h(T") < h(T).
(b) peb(T”) < peb(T).

2. peb(Bk) = h(Bk) +1=k+1.

Proof: Part lais obvious, using for example the characterization of the leveled
height according to Figure 4.

For part 1b note that since 7" is binary, and contractions and eliminations
of edges are permutable, for the process of transforming 7" into T’ (as a minor)
we only have to consider contractions of “singular” edges (u,v) where (at the
given stage) u is the only predecessor of v. Now by an easy induction on the
number of elimination steps one proves peb(G’) < peb(G) for any dag’s G and
G', where G’ is obtained from G by eliminating edges or isolated nodes, or
contracting singular edges.

Part 2 follows by an easy induction on the leveled height k. §
Theorem 4.6 Consider a binary tree T.

1. For any k € Ny we have:

(a) h(T) <k & Bey1 £T;
(b) h(T) >k < By <T.

2. h(T) = peb(T) — 1.

41

Proof: Part la, direction “="” follows by Lemma 4.5. Part 1b, direction “=”"
follows by induction on the composition of 7"

If T is trivial, then we have h(T') = 0. So let T' consist of two subtrees Ty, T,
with A(T1) < h(T)—1 and h(T2) < A(T). In case of h(T2) < h(T)—1 actually we
have h(T1) = h(T2) = h(T)— 1, and thus we can apply the induction hypothesis
to both T and T and get the assertion. Otherwise we have h(T3) = h(T), and
now we can apply the induction hypothesis to T5.

Part 2: Assume h(T') > peb(T") — 1. Thus Bpep(r) is minor of 7' by part 1b,
and furthermore by Lemma 4.5 we have peb(T") > peb(Bpep(r)) = peb(T) + 1.
Thus in fact A(T) < peb(T) — 1 must hold.

Finally we prove h(T) > peb(T) — 1 by induction on the composition of T'.
If T is trivial, then we have h(T) = 0 and peb(T) = 1. So let T' consist of
two subtrees 71,7y with A(T1) < A(T) — 1 and h(T2) < A(T). By induction
hypothesis we get
peb(T1) <
peb(Tz) < hA(T)+1.

Now by pebbling first 75 within T using h(7") + 1 pebbles at most, keeping one
pebble at the root of Ty, then pebbling T within 7" using h(T') pebbles at most
(altogether at most ~(T') 4+ 1 pebbles are needed), and finally pebbling the root
of T' we obtain peb(T) < A(T) + 1. 1

Immediately from part 1b of Theorem 4.6 we get the following lower bound
on the number of leaves #1vs(T') for a binary tree T'. The first appearance of this
bound in the literature I'm aware of one finds in [32]. To point out the simplicity
of the proof (which is underlying the lower bound for tree-like resolution in [21])
we give here additionally a direct proof.

Corollary 4.7 For any binary tree T we have h(T) < log, #lvs(T), that is
F#lvs(T) > 20(T),

Proof: Induction on #lvs(T)

In case of #1vs(T) = 1 we have h(T) = 0. So let’s assume that T' consists of
two subtrees T1,To. W.l.o.g.: #lvs(T1) < #lvs(T2). Now induction hypothesis
applied to 77 and 75 yields

h(Th) < log, #lvs(Th) < log, #lvs(T) — 1
h(Tz) < log, #lvs(Ty) < log, #lvs(T)

and hence, by the definition of leveled height, we have h(T) < log, #lvs(T). I

42

5 Upper bounds

For the following classes of clause-sets we give upper bounds on the hardness in
this section:

1. General upper bounds for uniquely satisfiable clause-sets as well as for
clause-sets with very many satisfying assignments, and also for unsatisfi-
able p—CLS are given in Subsection 5.1.

2. 2-CLS NUSAT and large random p—CLS one finds in Subsection 5.2.

3. In Subsection 5.3 two different forms of generalizations of Horn formu-
las, the hierarchy of generalized Horn formulas and q-Horn formulas are
considered (first only w.r.t. unsatisfiability).

4. Finally, for the handling of satisfiable instances, in Subsection 5.4 the ora-
cle 8§ = LSAT of linearly satisfiable clause-sets in proposed. In this way
also satisfiable g¢-Horn formulas (and hence 2-clause-sets and (generalized)
Horn formulas) can be captured.

5.1 General upper bounds

In this subsection we derive some general upper bounds on the hardness h(F)
from known upper bounds on SAT decision. The focus is to point out the
principal relations, while the numerical values likely are not of practical interest.

For satisfiable clause-sets, according to Lemma 3.16 the following cases are
the extreme cases for F € G}c Uu,S):

(i) (F) € S (“no guessing”)
(i1) 3 € PASS : n(p) < k A ¢+ F €S (“pure guessing”).
For the basic choices i = Uy, S = Sy this means

1} a l E ./4 ; - u lng L l = are C()Ill alne(] 1n (; 0,€0),
11) a l E ./4} are 1n (; 0,90 whnic ave SD E Hl()d l Wlt n SD < .
S k U S P k

From the “satisfiability coding lemma” ([73]) we get (first) information about
the level where F' € SAT-1 will be detected (eventually):

Lemma 5.1 For F € SAT-1, F # T there is ¢ € RASS with

1
n(sﬁ)ﬁ(l—m)'”(F) and ri(p* F)=T,

43

and thus

1
h(F) < (1- m) n(F)+1. 1

Any F belonging to case (ii) has very many satisfying assignments, namely
| mod,(F)| > 27~

Now, as shown by Edward Hirsch ([46]), also the converse is true if we restrict
ourselves to p-CLS, that is, there is an upper bound on the hardness h(F)
depending only on the maximal clause-length p(F) and the proportion § of
satisfying assignments. We make use of the following constants.

Definition 5.2 Consider p € No. Forp < 1 let 7p := 1, and for p > 2 let 1
be the unique positive solution of Y F_, z~' = 1. Furthermore ap =log, 7. 1

For example az = 0, ag = 0.694.., a4 = 0.879.., and ap, — 1 for p = oo.

1 —1log, 4
Lemma 5.3 Define k(p,d) := ST %80 +p—1for0<d<1andp>2.
Qp
d¢(F
Consider F € SAT with p(F) > 2. Let §(F) := %‘ Now there is

)
¢ € mod,(F) with n(y¢) < k(p(F),d(F)), and thus
h(F) < k(p(F),6(F)). B
From the well known upper bound on p—CLS decision, obtained indepen-

dently in [69] and [64], we now immediately obtain a general upper bound on

h(F) for unsatisfiable F € USAT .

To capture the use of 1-clause-elimination in the algorithms from [69, 64], we
call a binary tree T a k-U-tree for F if T' can be obtained from an /-DPL-tree
Ty for F' by applications of the following transitions:

- replacing node labels G by G’ with G LI G,
- cutting off subtrees when their root labels become an element of /.

The subsequent lemma follows obviously from Theorem 4.3 and Corollary 4.7.

Lemma 5.4 For any F' € USAT and any k-UU-DPL tree T for F we have
hu(F) < h(T) + k < log, #lvs(T) + k. 1

Using the clarified upper bound methods presented in [59, 60, 56], from
[69, 64] on gets in fact the existence of a 1-Uy-DPL-tree T for F € CLS with

#lvs(T) < 2. 7
T

Lemma 5.5 For F' € USAT we have h(F) <2+ aypy_y - (n(F)—1). 1

For F € 2-CLS NUSAT we get h(F) < 2. A direct proof for this one finds in

Lemma 5.6.

Whether the improved 3-SAT algorithms in [78, 94, 56, 79, 59] can be simu-
lated by tree-like resolution (and thus also yield upper bounds on the hardness)
is not known yet.

5.2 2-CNF and large random k-CNF

Lemma 5.6 For F € 2-CLS NUSAT we have h(F) < 2. More precisely, in
case of F # {L} there is v € var(F) with ry({v =) *x F) = {L} fore € {0,1}.

Proof: If for ¢ € PASS and F € 2-CLS we have ¢ x F € CLS™, then ¢ is an
autarky for F. Thus for any variable v € var(F') either there is ¢ € {0, 1} with

r1({(v =€) x F) C F and hence we found a reduction e r({(v—e)xF), orv

is as required (which eventually must be the case). 1

Now let’s have a look at random p—CLS. For n,c > 0 let
p-CLS(n,¢) ={FeCLS :n(F)=nAc(F)=cAYCeF[|C|=p]}

and consider the uniform distribution (all members of p—-CLS(n,¢) are equally
likely). From Theorem 2 in [3] it follows that for n — oo and arbitrary ¢ > 8n?
for any F € 3-CLS(n, ¢) and any variable v € var(F) the (random) clause-sets

F.:=(v—oe)*«F)N2CLS

fulfill ¢(F:) > 2n(F.) and (thus) are unsatisfiable for both ¢ € {0, 1} with proba-
bility tending to 1. We conclude A(F') < 3, and by Lemma 3.18 in fact A(F) = 3.
More generally (without going into details), it is not hard to generalize this re-
sult to the following lemma.

Lemma 5.7 For all p > 3 there are constants K, > 0 such that for all ¢ > 0
there is ng such that for all n > ng and all K, -nP~! < ¢ < 27 . (;) with
probability greater than 1 — e any F € p-CLS(n,c) is unsatisfiable and fulfills
h(F)=p. 1

5.3 Generalizations of Horn formulas

We recall the result of [45], that Unit-clause propagation finds a contradiction
for F' iff F' contains an unsatisfiable renamable Horn formula:

Lemma 5.8 For F' € USAT we have h(F) < 1 iff there is F' C F with
F' e RHONUSAT. 1

45

[37] introduced a hierarchy of generalized Horn clause-sets, which, following
the notation in [14]7) is given as follows:

Definition 5.9 H; := HO is the set of all Horn clause-sets. For k > 1 we
have F € Hy, if and only if there is an ordering

F={Cy,...,Cn}
of the clauses, and there are sets
pcvic---CV,CVA
of variables, such that
{CGi\Vi:1<i<m}e€ Hp
holds. 1

Lemma 5.10 Consider F € Hi \ Hi_1 for k > 1 and n(F) # 0 together with
variable sets V; according to Definition 5.9. Choosing v € V; for the minimal
indezx ¢ with V; # 0 we have

(v—> 1)« F € Hy_1 and (v = 0)*x F € Hy.
By Lemmas 3.5 and 5.8 it follows that for all k > 1 and F € Hy NUSAT we

have h(F) < k.

IfHOY C S, then HO C G1(Uo, S) and thus Lemma 3.5 yields that now for
all F € Hy we have hy, s(F) < k.

(Actually then Hy C #Gx(Uo, S) holds.} I
Some remarks:

1. Trivially we get HOT C S by choosing for S the set of clause-sets F
satisfiable by (v — 0 : v € VA). However in this way we do not get stability
under renaming of the classes Gx(Uo, S).

2. Choosing § = RHONSAT as (essentially) in [75] ensures stability under
renaming. However, to us the larger class LS AT introduced in the next
subsection seems to be a more natural choice, since LS AT does not depend
on accidental syntactical properties.

7) [14] also extended the levels of the hierarchy in the natural way to cover CLS completely
while [37] considered only satisfiable clause-sets

46

3. In order to cover fast 2-SAT decision, [24] uses reduction by autarkies if
one 1s encountered to build up a generalization of the hierarchy (Hk).s)
We did not use this sort of “intermediate autarky testing” here because
of the lack of canonicity (at this time).

In [11] the class of “q-Horn formulas” has been introduce, further explored

in [12, 13, 33, 35, 89].

Definition 5.11 The class QHO(Co) of “g-Horn clause-sets w.r.t. pattern
Cy” for a clause Cy 1s the class of all clause-sets F € CLS, such that for each
clause C € F either |C'\ Cy| < 1 holds, or |C'\ Cy| = 2 is the case, and then
CNCy=0 must hold.

The class of q-Horn clause-sets is defined as

QHO = |] QHO(Cy). B

Co€eCL

Immediately

QHO(L) = 2-CLS

follows, and for a Horn clause-sets we have

F eHO = F € QHO(var(F)).

Since QHO is stable under renaming, also RHO C QHO holds. As shown in

[11, 12], recognition of QHO as well as SAT decision can be done in linear time.

From the results of [89] it follows, that for F € QHO in case of F € SAT
we have hy, s, (F) < 1, where & is the class of “linearly satisfiable clause-sets”
introduced in the next subsection, and in case of F' € USAT one gets h(F) < 2.
We give an alternative proof of these facts, based on the above characterization
of QHO, while [89] uses the “complexity index” from [12].

Lemma 5.12 1. QHO s stable under partial assignments.
2. F € QHO(Co)t = ¢ is an autarky for F with pg—* F € 2-CLS.
3. Fe QHONUSAT = h(F) < 2.

4. Consider S containing all F € SAT with the property, that there is a
satisfying assignment ¢ € mody(F) such that for all clauses C € F there
is at most one literal x € C with p(z) = 0.

Then QHOT NSAT C S and thus hiuy s(F) <1 for Fe QHONSAT.

8)However going back to [31], where fast 2-SAT decision by the autarky argument is pre-
sented, not referring to [69] (their algorithm in fact has exponential running time on 2-C LS

as shown in [61]).

47

Proof: Parts 1 and 2 follow immediately from the definitions.

Part 3: By part 1 we have r(F) € QHO. By part 2 there is F/ C rq(F)
with F/ € 2-CLSNUSAT. Lemma 5.6 gives h(F') < 2, and thus we conclude
h(r (F)) < h(F) < 2 = h(F) < 2.

Part 4: Note that the autarky ¢z from part 2 has the property that in each
affected clause there is at most one falsified literal, and that the same property
also holds for any autarky of a 2-clause-set. N

In the subsequent subsection we introduce a polynomially decidable class of
satisfiable clause-sets fulfilling the condition from Part 4 of Lemma 5.12.

5.4 Linearly satisfiable clause-sets for enhanced satisfia-
bility detection

Lemma 3.20 shows drastically the weakness of algorithm D* for satisfiability
detection if using & = Sp. So it seems to me, while the choice of Uy 1s a very
natural candidate for the basic unsatisfiable cases, for satisfiability additional
algorithmic resources are necessary.

Motivated by the following “duality result” in [58] (in its turn motivated by
[38]), I propose the use of autarkies as the fundamental mechanism for complet-
ing the above approach:

For each clause-set F' and each clause C' € F either
there is a resolution refutation of F' using C' or there is
an autarky ¢ satisfying C' (but not both).

Now as an interesting (polynomial time) oracle Sy for satisfiability detection
at level 0 we regard

81 = [,S.AT

Definition 5.13 [58] A partial assignment ¢ is called a linear autarky for
F € CLS if there 1s a “weight function”

wZVA%Q>0

such that for all C' € F we have

Z w(var(z)) > Z w(var(z)).

zeC p(z)=1 zeC,p(z)=0

The set LS AT of linearly satisfiable clause-sets is the set of all clause-sets
satisfiable by a linear autarky. 1

48

Note that a linear autarky in fact is an autarky. In [58] it is shown that
reduction of F' € CLS by linear autarkies can be performed in polynomial time
and results in an unique linear-autarky-free sub-clause-set Fi, C F'. We have

F e LSAT iff Fl, = T, and thus £LSAT is polynomially decidable.
It is obvious from the definition of LS AT that

o LSAT is stable under enforced assignments as well as under renamings,
and allows substitution;

e LSAT contains all satisfiable clause-sets having a satisfying (partial) as-
signment falsifying at most one literal per clause, and thus by Lemma 5.12

we have QHOY N SAT C LSAT (and also 2-CLS N SAT C LSAT).

Furthermore it is shown in [58] that all “matched clause-sets” introduced in
[35] are contained in LSAT. Lemmata 5.10 and 5.12 immediately yield the
following assertions (using also Lemma 3.6, part 2).

Lemma 5.14 1. Gx(Uo,S1) is stable under renaming for all k > 0.
2. FeHy fork>1= hy, s, (F) <k

3. Fe QHONSAT = hMD,Sl(F) <1 |

The problem whether for F' € CLS there is a renaming o with o(F) € Hy
has been shown NP-complete in [29] for & > 2 (while for £ = 1 the problem is
poly-time ([2])). In contrast, the classes Gk (Uo, S1) are stable under renaming,
and thus contain all ¢(F) for any F' € Hy and any renaming o. So it seems
to me that the classes Hy simply are too small, due to the focus on (simple)
syntactic structures defining these classes.

6 Lower bounds

Using the (easy) general lower bound method from Subsection 3.4.2, we obtain
lower bounds on the hardness h(F) for the pigeonhole formulas (here actually
we can determine the hardness exactly) and the “pebbling formulas” in this
section.?) The relation to the complexity of resolution will be discussed in some
depth in Section 9.

91t seems to me also worthwhile to give a nice lower bound on the hardness for Tseitin’s
graph formulas ([87]): To describe the effect of splitting here is (again) easy. See [67] for a

treatment of tree-like resolution.

49

6.1 The (weak) pigeonhole formulas

The determination of hardness for the pigeonhole formulas (recall the definition
in Subsection 2.3) is fairly easy, due to their simple recursive structure:

Lemma 6.1 Consider m > k > 1 and a variable v € var(PHP}').

1. There are partial assignments pq, p1 € RASS such that for e € {0,1} we
have

P * ((v —) * PHPZI) = PHPZq“__l1 mod renaming.

2. ¢y can be chosen as p1 = @i U p? where i corresponds to I-clause-

eliminations (and thus gives a 1’—%>-reduction) and @? corresponds to
eliminations of pure literals (and thus is an autarky).

Proof: For ¢ = 1 the variables in the same column as v are eliminated by
1-clause-eliminations, while for the variables v’ in the same row as v the literals
v/ become pure.

For ¢ = 0 note that the case k = 1 is trivial, while for k£ > 2 just choose a
variable v’ in the same row as v and apply the case ¢ = 1 to v'. 1

Lemma 6.2 For all m > k > 0 we have h(PHP}') = k.

Proof: The lower bound h(PHPL') > k follows immediately from Lemma 6.1,
part 1 and Lemma 3.17.

For the upper bound h(PHP}') < k consider the classes
S ={e*PHPY :m >k >0 A ¢ € PASS }

and recall the discussion from Subsection 3.4.1. For F' € Sk and v € var(F) by
definition of S; we have (v — 0)* F' € Si. So it remains to consider (v — 1)* F.
Assume F = ¢ « PHPY® and v € var(F) C var(PHP}') and let @1 be as in part
2 of Lemma 6.1.

If ¢ and ¢} are incompatible, then 1 € (v — 1) ¥+ F. Otherwise one can
cancel those (left) clauses in (v — 1) * F' which would be canceled in PHPL' by
¢? and obtain F’ C (v — 1) x F with

pr Lo, o (901 (v > 1) % PHPZ])) =px* PHPZ“__l1 mod renaming.

Hence (v — 1) x F' can be transformed by renaming and elimination of clauses
into an element of S,_; mod r;. 1

50

6.2 The pebbling formulas

In [5] the following class of formulas, called “pebbling formulas” here, has been
introduced, generalizing a construction of [8], and in fact adapting a construction
from [51] (Theorem 3.1.13). The reader might recall Subsection 2.4.

Definition 6.3 Consider a dag G with unique output o(G) € V(G). Assume
for each node w € V(G) distinct variables wq, w, € VA:

PF(G) = (o(G)o — 0,0(G)1 — 0) *
{ Ty bvedp(w) U {wo, w1} 1w € V(G) A g€ {0,134} I

The following properties of PF(G) are obvious from the definition (using d(G)
for the maximal in-degree of G):

PF(G) e USAT (due to the assignment (o(G)g —= 0,0(G)1 — 0)),
- n(PF(G)) = 2|V(G)| -2,

- ¢(PF(G)) < [V(G)] - 219,

- p(PF(G)) < d(G) +2.

To describe the effect of splitting on a variable for PF(G) we need the following
definition.

Definition 6.4 For W C V(G) let b((W) be the set of nodes v € V(G) “below
W7, that is, for which there is a (directed) path (possibly trivial) from v to some
member of W.

Forw € V(G), w# o(G) let

o Gly—o be the subgraph of G induced by b({w});
o Gy—1 be the subgraph of G induced by b(V (G) \ b({w})) \ {w}. 1

Lemma 6.5 Consider w € V(G), w # o(G) and ¢ € {0,1}.
1. There is ¢ € RASS with
¢ * ((we = 1) * PF(G)) = PF(Gys1).
2. There are ¢, ¢’ € RASS with

v * ((we = 0) * PF(G)) = PF(Gy—o0),
¢ * ((we = 0) x PF(G)) = PF(Gy=1)-

51

Proof: For Part 1 we can choose ¢ in an obvious way as an autarky for
(we — 1) * PF(G) (with (wz = 0) C), and for Part 2 we can choose ¢ as an
autarky for (w. — 0) * PF(G) (with (ws — 0) C), while for ¢’ we use part 1
with (wz — 1). 1

To ensure that pebblings of Gy, and G, 1 can be combined to a pebbling
of G we need the following (obvious) auxiliary lemma.

Lemma 6.6 Consider w € V(G), w# o(G) and € € {0, 1}.

1. For v € V(Gy—e) all direct predecessors of v in G are also contained in
Gy with the only exception that for e = 1 and v € dsg(w) the direct
predecessor w of v is missing in Gy—1.

2. V(Guwso) U V(Gus1) =V(G). 1
Lemma 6.7 h(PF(G)) > peb(G).

Proof: Consider w € V(G), w # o(G). By Lemma 3.17 and Lemma 6.5 we
have to show

peb(Gy—1) > peb(G) — 1 or peb(Gy—o) > peb(G).

So assume peb(Gy—1) < peb(G) — 2 and peb(Gy—0) < peb(G) — 1. Consider
the following pebbling of G (possible due to Lemma 6.6) which uses at most
peb(G) — 1 pebbles and thus yields a contradiction:

First pebble the nodes V(Gy—0) by an optimal pebbling for G, using at
most peb(G) — 1 pebbles, and keep one pebble on w (but delete the rest). Now
pebble the nodes V(G 1) using at most peb(G) — 2+ 1 pebbles by an optimal
pebbling for G 1. 1

7 Tree-like resolution with oracles

The close relation between the hierarchies (G (U))ken, of unsatisfiable clause-

sets and tree-like resolution is the subject of this section. Leveled (and gen-
U,k
eralized) resolution calculi F are introduced allowing exactly falsification of

the formulas in G(U). The (minimal) level k (= hy(F)) yields “quasi-tight”
bounds on the size of tree-like resolution proofs.

U,k
1. In Subsection 7.1 the hierarchies F of k-times nested input resolu-

tion, using U for the axioms, are introduced and their basic properties

u
are given. Ignoring the levels, - is just tree-like resolution using oracle .

52

u
2. In 7.2 the correspondence between F-proofs and /-DPL-trees as well as
the equivalence

Uk
Fr 1l e hy(F)<k

are shown. The different characterizations of the hardness hy (F') obtained
in this paper are discussed.

3. In 7.3 the “quasi-tight” bounds
2"(F) < Compypgy(F) < 208 (n(F)+1) hu(F)

are derived, where ComptR(u)(F) is the minimal size of a tree-like resolu-
tion refutation using oracle Y.

4. Finally one finds in Subsection 7.4 the “quasi-automatization” of the

calculi ﬁ (measuring the tree-complexity) by algorithm D* from Subsec-
tion 3.2. (In this sense the hierarchies (G9(U))xen, contain all clause-sets
refutable by “short” tree-like resolution proofs (and for 4 = Uy exactly
those are included).)

7.1 Nested input resolution with oracles

Definition 7.1 For F € CLS and a clause C':

U0
FEEC:opcxFel.

U,k
Generally we have F + C for k € Ny if there is a resolution tree T with
U,k
T:F | C,
which in turn is fulfilled if h(T) < k holds (recall equation 2 in Subsection 4.2)
and there is a clause-set Fy € CLS with T : Fo &+ C such that for all C' € Fy we

U,0 u Uk
have F = C. We use - instead of & in case the parameter k does not matter.
Finally for F € USAT :

u
Compyg) (F) := min {#lvs(T) [T : F-L1}. 1

In order to understand the transformations used in the subsequent subsection
n detail, the following three easy auxiliary lemmata are needed.

The first lemma states that shortening the axioms or applying a partial
assignment to the set of axioms as well as “undoing” such an assignment can
only simplify resolution proofs. (With a little bit more care one shows that this
holds not only for the “exterior” structure of resolution proofs as trees, but also
with respect to the labeling by clauses, that is, the number of different clauses
can also be preserved.)

53

Lemma 7.2 For any clause-sets F, F' € CLS, clauses C, resolution trees T
and partial assignments ¢ € RASS we have

1. If T : F+ C, and for each C € F there is C' € F' with C' C C, then
there is T' < T withT' : F' = C' C C.

2. IfT:FFC and px{C}# T (& ConNC = 0) then there is T' < T with
T :px FEC' CC\Cy.

3. IfT:px FFC, then there isT' =T with T : FFC'CCUC,. 1
U0

Next the basic properties of the relation Foare given. (For part 4 stability
of Y under partial assignments is used.)

Lemma 7.3 For clause-sets F € CLS, partial assignments ¢ € PASS and
clauses C, C' we have

Uo,0
1. (G)F}_CC}HCOEFZCQQC,

USAT 0
(b)) F + CoFEC;

U0 U0
2 forCo,NC=0: px FFC & FFC,UC;

u,0 u,0
3 FFEFC&SpexF L

u,o0 U0
J.FFECandCCC' = FFC'. 1

Uk

)

Finally the basic properties of F are stated. For the proofs use inductions
on the composition of resolution trees and the two previous lemmas.

Lemma 7.4 For clause-sets F € CLS, clauses C', resolution trees T', k € Ny
and partial assignments ¢ € RASS we have

Uo
1. (a) If T: FEC then there is T' <T with T : FFC' C C.
Uo
(b) And if T : FFC, then also T : FFC.
u u

2. If T: FFC, then for any clause C' O C there is T' < T with T' : FFC".

u
3. FFC & FE=C.

u u
4. If T:FFC and ¢« F # T, then there is T <T withT' : ¢ x FFC' \ C,,.

54

u u
5. If T: o« FEC and CNCy, = 0, then there is T" < T with T' : FFC,UC.

Uk Uk
6. FFC&SpcxFE 1.1

Using Uy, the first level of generalized tree-like resolution is exactly input

resolution, that is we have
Up,1
FF C < FF(C'CC by input resolution.

U,k
And regarding Figure 4 (Subsection 4.2) we see that generally F' + C holds iff

there is a k-times nested input resolution tree deriving C' where the clauses at
u,0
the leaves are derived from F using F .

u
Ignoring the levels k, the calculi F are just tree-like resolution using oracle
U for the axioms. Especially we have

ComptR(UD) = Comp;g -

7.2 The correspondence to our hierarchies
Theorem 7.5 Consider F € USAT .

1. Every U-DPL-tree T for F can be transformed into a (regular) resolution
u
tree T' : FEL with T' < T. If T is of minimal size, then T' = T.

u
2. Vice versa, each resolution tree T' : F'\-1 can be transformed into an U-
DPL-tree T' for F with T' < T. If T is of minimal size, then T' = T.

3. Compyry) (F) = min{ #lvs(T') : T' is U-DPL-tree for I }.
u Uk
4. hy(F)=min{h(T): T:FrL}=min{k: FF L}
Uk
5. Finally for any clause C' we have F = C iff hy(pc * F) < k holds.

Proof: Part 1: Induction on the composition of T
U0
If T is trivial, then F' € U, and thus F'+ 1. So assume T consists of two
subtrees Ty, 7] w.r.t. splitting variable v.
Applying the induction hypothesis to Ty and 77 we obtain resolution trees
T! < T. with
u
T!:(v—>e)* FFL

€

55

for £ € {0,1}. By Lemma 7.4, part 5 we obtain T/ < T! with

u U
T FH{v}, T/ :FH{v}

and combining them we get T as required.

Remark: If for the constructions in Lemma 7.4 one does not use weakening
(part 2), then here it is also possible that already 7§’ or Ty’ derives L — as
we will discuss in Remark 2 below this situation corresponds exactly to what is
known as “intelligent backtracking” (for ordinary DPL- and resolution trees).

Part 2: Induction on the composition of T'

U0
If T is trivial, then F + L1, and thus F € 4. So assume T consists of two
subtrees Ty, T with resolution variable v.

By Lemma 7.4, part 4 we obtain 7! < T, with

u
T!:{(v—e)x FFL
for e € {0, 1}. Induction hypothesis yields #4-DPL-trees T.' < T for (v —) * F.
In case of v ¢ var(F') (which may happen due to weakening) choose one of them,
while otherwise combining them gives 7" as required.

Part 3 follows directly from parts 1, 2. For Part 4 use Theorem 4.3, while
Part 5 follows from part 4 and Lemma 7.4, part 6. 1

Remarks:

1. Parts 1 to 3 generalize the equivalence between semantic trees, tree-like
resolution and branching trees for the search problem (see [88, 63]).

2. The process of cutting off unnecessary branches in the proof for Part 1
(without using weakening as mentioned there) can already by applied to
the computation of T itself, when traversing the tree in depth-first order:

For each node w of the Y-DPL-tree its corresponding clause C'(w) can be
computed without much additional work (only the working path has to
be considered, and thus also space remains polynomial), and in case we
get v ¢ var(C'(w')) for one direct successor w' of w where v is the splitting
variable at w, then the other branch for the second direct successor w” of
w does not need to be processed.

In case of (pure) tree-like resolution this technique is known as “ntelligent
backtracking” (see [92]) or “conflict directed backtracking” (see [82]), while
the enhancement of DPL-algorithms by adding the derived clauses C'(w)
to the input formula in the process of evolving the DPL-tree (as done in
[82, 92] up to a certain clause-length) actually enables the DPL-solver to
gain (in principal) the power of regular resolution (here with oracles U).

56

3. The easiest (non-trivial) case of a tree of level two is a tree consisting just
of two input resolution trees (thus having the form of a V). According to
Lemma 5.6 this special case suffices for unsatisfiable 2-clause-sets, while by
Lemma 5.12 for unsatisfiable ¢g-Horn clause-sets “Y-proofs” are required,
that is, additionally an initial segment of input resolution is needed.

“V-proofs” are responsible for the strengthened reductions from Subsec-

tion 3.5. For example the reduction F' LN (v =€) * F is applicable iff
U

(v > ey« FF L while F % (v =)+ F is applicable iff (v = e)x F - L

by such a “V-proof” (using).

4. From Lemma 5.10 we get that for unsatisfiable generalized Horn formulas
Uo k
F € Hp we have F L, strengthening [14] who used a form of width-

restricted resolution (see Subsection 8.1). In [91] “LLRI resolution” (“lin-
ear layered resolution”), a restriction of linear resolution'?), has been in-
troduced to proof unsatisfiability for Hs. If F + L by LLRI resolution
then in fact h(F) < 2.

7.2.1 The space complexity of (tree-like) resolution

In [30] the concept of space complexity for resolution has been introduced (refin-
ing [15]). The minimal space spacer (F') needed for a resolution refutation of F'
is the minimum of max; <;j<m ¢(F;) over all sequences (F1,. .., Fp,) of clause-sets

fulfilling

- Fy CF, L€ Fy;

- for each 2 < i < m there is exactly one C € F; \ (F;—1 U F), for which
again there must be clauses D, E' € F;_; such that C' is the resolvent of
D, E.

spaceg (F) is equal to the minimum of peb(G) for resolution dag’s G deriving
1 from F 'V, Allowing only resolution trees, they arrive at spaceir(F') which
is the minimum of peb(T) for T': F'F L. By Theorems 7.5, 4.6 and 4.3 we get

spaceg (F) = h(F) + 1

10)Let P = (C1,...,Cm) be a linear resolution proof of L from F', that is, for 1 < : < m
the clause C; is either resolvent of C;_; with an input clause from F or with an ancestor
clause C; for j < ¢ — 1. Consider the list L = (j1,... ,jx) of indices j of ancestor clauses
C; used in ancestor resolution steps (in order of appearance). Now P is LLRI iff we have

Jr < jrg1 for 1 < r < k, and furthermore the sequence (Cj,,...,C;,) of ancestor clauses

1 Ik
fulfills C;, 2 G

41
11) ¢

if using resolution trees to define spacer(F'), one pebble on a node pebbles at the same
time all other nodes with the same (clause) label

57

for all F €e USAT.

How to characterize spacer(F) and how to relate it to space;r(F) and
Compg(F) is not known yet'?). Lower bounds for Tseitin’s formulas and the
Pigeonhole formulas on spacer are given in [86].

7.2.2 Compilation of the various interpretation for the hardness

Altogether we gained the following characterizations of the hardness hy s(F)
for clause-sets F' € CLS (the first two hold also for satisfiable clause-sets, the
last three only for unsatisfiable clause-sets):

1. hy s(F) is the first level of success of algorithm D* from Subsection 3.2.

2. hy s(F) is the minimal leveled height hy s(T) of an (U, S)-DPL-tree T'
(Theorem 4.3).

3. hy(F)+ 1 is the minimal pebbling complexity of an #/-DPL-tree T' (The-
orem 4.6).

U,k

)

4. hy(F) is the minimal level such that nested input resolution F derives
L (Theorem 7.5).

u
5. hy(F)+1is the minimal pebbling complexity of a resolution tree 7": F'+L
or the minimal space complexity of such a derivation.

7.3 Nearly precise general upper and lower bounds for
tree-like resolution (with oracles)

Since regular resolution trees T have depth at most n(T'), the number of leaves

of T' can be bound by A(T).
Lemma 7.6 For every regular resolution tree #lvs(T) < (n(T) + 1)*™) holds.

Proof: Induction on h(T)

In case of h(T') = 0 we have #lvs(T) = 1. So assume h(T) > 0. Consider T
with A(T) < 1 and #lvs(Ty) =: m, and consider subtrees 71, ... ,Ty, of T' with
h(T;) < h(T) — 1 such that replacing the leaves of Ty by the T; yields T.

Since T is regular, we have m < n(7T) + 1. Now by induction hypothesis

#lvs(T) = E#lvs SZ)< Z (n(T)—}-l)h(T)_l

m n(T)+1
i=1 i=1

:(()) 3

12) according to [85], Theorem 6 in [30] is false

58

Any resolution tree T' can be transformed into a regular one ([87]). This can
be seen by Theorem 7.5, parts 2 and 1 (transforming 7" into a DPL-tree and
back — the regularization is hidden in Lemma 7.4, part 4), or directly by the

following procedure:

Find a minimal irregular subtree 7" : F' = C’ of T'. Consider a resolution step
in 7" with resolution variable v € var(C"), and cut off that branch contributing
the sign of v opposite to the sign of v in C. Simplify the remainder of T' (by
cutting off further branches) to obtain a resolution proof T;. Repeat the process
with 77 until a regular tree T, is obtained.

Since this procedure only prunes the resolution tree, the following lemma is
obvious.

u
Lemma 7.7 For every resolution tree T : F FC' there 1s a regular resolution

U
tree 7' : FFC with T' <T. 1

(However, the number of (different) clauses in T is not preserved by this
transformation. In [40] in fact a super-polynomial separation between regular
resolution and (full) resolution is shown.)

Using Corollary 4.7, Theorem 7.5 and Lemmata 7.6, 7.7 (together with
Lemma 4.5, part 1a) we get

Theorem 7.8 For any clause-set F' € USAT the following relations between
the hardness hy(F) and the complezity of tree-like resolution (using U) hold:
9hu(F) ComptR(Z/{)(F) < 9loga(n(F)+1)-hu (F)

log, COHlPtR(u)(F)
log, (n(F) +1)

Since the case of tree-like resolution is of special importance, we spend a

< hu(F) < logy Compyg gy (F). B

corollary on it:
Corollary 7.9 F € USAT = 2"F) < Compr(F) < 2'08(n(F)+1)A(F) g

Similar bounds are mentioned (without proofs) in [81]. The lower bound
20(F) on the complexity of tree-like resolution can not be improved without
using further data of F (see Lemma 3.19 and use the general upper bound
Compr(F) < (F) for F e USAT).

An alternative for proving lower bounds on tree-like resolution, using a no-
tion of “width,” is provided in Corollary 8.8 (see Lemmas 8.13 and 9.1 for
applications). However this method is strictly weaker than using Corollary 7.9,
which follows from Lemma 8.7, part 5b and Lemma 8.9 (together with Lemma
6.7). See also Section 9 for a compilation of our results on the complexity of
tree-like resolution, where the relation to the lower bound on tree-like resolution
from [5] (using a different form of “width”) is discussed.

59

7.4 Quasi-automatizing tree-like resolution (with oracles)

In [10] (motivated by [21]) the notion of automatizable proof systems S has been
introduced, which is a proof system (here for unsatisfiable clause-sets) admitting
to find a S-refutation in deterministic polynomaal tsme in the size of the shortest
S-refutation, and it is shown that unless factoring is feasible Frege systems are
not automatizable (for further information in that direction see [1]).

In [5] the question is raised whether (at least) tree-like resolution is quasi-
automatizable, that is, whether a tree-like resolution refutation can be found in
time quasi-polynomial in the size of the shortest tree-like resolution refutation.
In fact if using ¢ indeed as oracle (counting a request “F € U ?” as one step),
then tree-like resolution with arbitrary oracle U is quasi-automatizable:

Theorem 7.10 If counting a request to oracle U as one step, the running time
of SAT decision algorithm D}, (see Subsection 3.2) is bounded by

O(L(F) - 210gz(n(F)+1)~2hu(F)) < O(ComptR(u)(F)2log2(n(F)+1)).

Only impairing the running time of D}, by a constant factor, in fact a resolution

u
tree T : FL can be computed with h(T) = hy(T) and
#lvs(T) < 2'082(n(F)+1)hu(F) < ComptR(u)(F)Ing("(F)-I-l).

Thus tree-like resolution with oracles U is quasi-automatizable. If the class U 1s
polynomually decidable, then wn fact tree-like resolution with oracle U 1is quasi-
automatizable in the non-relativized sense (counting each step), where for U
other than Uy we just consider the polynomial decision algorithm for U as proof
system for the arioms of the resolution proofs.

As a special case we obtain quasi-automation of tree-like resolution by algo-

rithm D;f,o .

Proof: The bounds on running time follow by Lemma 3.10 and Theorem 7.8,
From a successful computation of D}, on input F' we easily extract a /-DPL-tree

u
for F', which is transformed into 7' : F -1 by Theorem 7.5, part 1. 1

8 Width-restricted resolution

The subject of this section are resolution restrictions regarding the length of
clauses. Tt is well known that input resolution and 1-clause resolution (at least
one parent clause is always a l-clause) have the same power w.r.t. refutation
([20]). Ts there a generalization for nested input resolution (with oracles) as
defined in Section 7.1 7!

60

In Subsection 8.1 the two known variants of width-restricted resolution are
discussed: The well-known “bounded resolution” introduced in [36] (all occur-
ring clauses must not surmount the size limit), and the less known form intro-
duced in [14] (for each resolution step at least one parent clause obeys the size
limit). Since both forms have their drawbacks (the first can not handle Horn
formulas, while for the stronger form it is not known, whether derivability of
the empty clause for fixed size limit is poly-time decidable), a new variant (with
oracles) is introduced in Subsection 8.2 (which in fact is a (slight) strengthening
of the second form).

We show that the corresponding hierarchies (Wy (U))ken, of unsatisfiable
clause-sets subsume the hierarchies (G5 (U))ken,, while the reversal is essentially
false.

In Subsection 8.3, Theorem 8.11 an analogue to the bounds on tree-like
resolution in Theorem 7.8, this time for full resolution, 1s proved, generalizing
the lower bound from [5] to the use of oracles (and removing the dependency
on the maximal input clause length).

Motivated by [9], in Subsection 8.4 a width-lower bound for Krishnamurthy’s
formulas ([52]) is given, showing that the general lower bound for full resolution
is tight for this example. The new form of width here pays off in allowing us
to use the original formulas with their long clauses and applying just some
elementary graph theoretic observations (while [9] had to translate them into

3-CNF).

8.1 The known width restrictions

In the literature there exist two different forms of “k-clause resolution.” The
most popular version, introduced in [36] as “bounded resolution” and further
elaborated for example in [39, 35, 5], allows only resolution steps where both
parent clauses as well as the resolvent have length at most k. The corresponding
hierarchy of unsatisfiable clause-sets is defined as follows.

Definition 8.1 For k € Ny let W), be the set of clause-sets refutable by resolu-
tion proofs T : F' = L using only clauses of length < k, that is cl(T) € k-CLS.
The corresponding hardness parameter is called

width’(F) =inf{keNg: Fe W, }. 1
This form of restricted resolution has the following nice properties (k € Ny):
1. For constant k the classes W/ are polynomially decidable (by computing

the closure under resolutions where both parent clauses and the resolvent
are of length at most k).

61

2. The classes W) are stable under partial assignments, renaming and for-
mation of super-clause-sets. Furthermore the hierarchy is strict.

3. In [5] (translating [21] into resolution) the general lower bound for full
resolution
(width! (F)—p(F))?
Compg(F) > A —
for F € USAT has been shown, while for tree-like resolution one has

COHlptR(F) Z 2Widthl (F)—p(F))

4. Already in [36] a sequence (F,) of unsatisfiable clause-sets F,, € 3-CLS
with n(F,) = n, ¢(F,) < 8n and

idth'(F,) > ——
W (Fa) 2 6(log, n)?

has been given.

However, as a main drawback the fact has to be considered, that, due to
width’(F) > p(F)

for minimal unsatisfiable F', no level W/, contains HO NUSAT . (It is the same
(avoidable, as we will see) sensitivity on the input clause-length p(F) which
spoils somewhat the lower bounds under 3.)

Consider for example
Fn = { {Ul},{H,UQ},... ’{Ea"' Jvn—lavﬂ}’{aa"' avn—lam}} € HO

where we have n(F,) = n and Compr(F,) = ¢(F,) = n+1, but p(F,,) = n and
thus width’(F,) = n. It follows that the procedure “A(F)” given in [5], testing
whether “F € W/ ?” holds for k = 0,..., width’(F), has running time nfn),

In order to be able to handle (generalized) Horn clause-sets, another form
of width restricted resolution called “k-clause resolution” has been introduced
n [14], directly generalizing 1-clause resolution by requiring (only) that for all
resolution steps one parent clause has to be of length at most k:

Definition 8.2 For k € Ny the classes WY contain those clause-sets F having
a resolution refutation T : F - L such that for each resolution in T (at least)

one parent clause has length < k. By width” (F) the minimal k € Ng with
€ W/ for F e USAT is denoted. 1

Here we have the following properties:

62

1. W/ is stable under partial assignments, renaming and formation of super-
clause-sets. Furthermore the hierarchy is strict.

2. W' = G (Uo).
3. W is polynomially decidable as shown in [16].

4. Hy C W/ for all & > 0 (recall Definition 5.9), which was the original
motivation in [14] to introduce this resolution restriction.

5. Obviously we have width”(F) < width’(F) for all F € USAT, while
Lemma 8.5 in the next subsection shows width’(F) — p(F) < width” (F).

However, it is not known whether the classes W} for k > 3 can be decided in
polynomual time.

In the next subsection we propose a strengthened variant of width restricted
resolution, combining all above (positive) properties, and including furthermore
our hierarchies G(U).

8.2 A new variant of width restricted resolution

The (obvious) decision procedure for “F € W/ 7”7 extends F in a series of steps
F = Fy,Fy,...,F, by adding a clause C; of length |C;| < k to F; which is
derivable from F; by a single resolution step:

A D1, Dy € F; : C; is resolvent of Dy, D».

Now we are eliminating the limiting dependency on p(F') and get at the same
time the generalization for using oracles (in a poly-time manageable way) by
admitting such clauses C; with |C;| < k which are derivable by generalized input
resolution:

U1
F; + C;.

Definition 8.3 Suppose U 1is stable under formation of super-clause-sets. For
F € CLS and k € Ny consider a sequence F' = Fy, Fy,... | Fy, of clause-sets
such that for 0 < i < m there are clauses C; ¢ F; with F;w = F; U {C;}
fulfilling U1
|C;| < k, var(C;) C var(F), F; F C;

while for F, no such Cp, exists (obviously m < Zf:o 21 ("(Z.F)) = O(n*)). Due to
the additional assumption on U, WS(F) = Fp, 1s uniquely determined. Now
let Wi (U) be the set of clause-sets F with L € WEH(F). The corresponding
hardness parameter is called

widthy (F) = inf{k € Ng: F € Wi (U) }.
We use width(F') := widthy, (F). 1

63

In Lemma 8.7, part 6b an alternative characterization of WH (F) is given.

Again all W (i) are stable under partial assignments, renaming and forma-
tion of super-clause-sets. The first two levels of the hierarchy (W (U))ken, do
not go beyond the hierarchy (GY(U))ken,:

Wo(ld) = GY(U), Wa(U) = G5U),
while from Lemma 8.9 it follows that W§ (C Ws(U)) is not contained at any

level of (G(U))ken,-

In order to emphasize the close relation especially to the second form of
width-restricted resolution considered in the previous subsection, we also rela-
tivize this hierarchy:

Definition 8.4 Suppose U 1is stable under formation of super-clause-sets. For
k € Ng let W/!(U) be the set of clause-sets F € USAT such that there is

u
T : FEL where for all resolution steps in T at least one parent clause s of

length at most k. For F ¢ USAT let

width!,(F) :=inf {k € No: F € W/U)}. W
Obviously we have Widthzl//,D(F) = width”(F).
Lemma 8.5 For any FF € USAT and any k € Ny we have

1. (a) Wé ZUQ, G?(UO) Nk-CLS g Wé,
(b) width'(F) — p(F) < width(F) < width'(F).

2. (o) Wi'U) = GoU) =U, W'U) = G(U);
(b) Wil U) € Wi(U) € Wiy, (U);
(c) widthy (F) < widthy; (F) < widthy (F) + 1.

Proof: Part la: If F € G{(Uy) then F is refutable by 1-clause-elimination,
yielding a resolution proof using only clauses of length < p(F).

Part 1b: width(F) < width’(F) is obvious from the definitions. To prove

width'(F) < width(F) + p(F), let k := width(F). Consider the sequence of F;
Ug,1
and C; from Definition 8.3: F; - C; = ¢¢, *x F; € G1(Uo) = ¢c, * F; € WI;(F),

and thus there is T : F; - C' C C; with c|(T) € (p(F) + k)-CLS.
Part 2a is obvious from the definitions. Part 2c is just a reformulation of part

u
2b. For Part 2b first consider F € W}/ (U), and let T': F L be as in Definition
8.4. Assume there is a clause C € cl(T) with |C| < k and C' ¢ WY (F), and

64

u
choose C such that the corresponding subtree T’ of T' with T’ : F FC is minimal,
and thus

(*) VD ec(THY\{C}:|D|<k=DeWHF).

By induction on the composition of 7’ we prove that in fact for all D € cl(T")
U1
we have WH (F) F D, yielding the contradiction C' € W¥ (F):

U0
If D is a leaf of 7", then FF+ D. If D is the resolvent of clauses Dy, D5,
then w.l.o.g. |D1| < k, and thus by () we have D; € W¥ (F), while induction

u,1 U1
hypothesis yields WH(F) Dy. We conclude WH(F) + D. /

Finally consider F' € Wy (i) and the sequences of F; and C; from Definition
8.3. Using part 2a we have ¢¢, x F; € W[(i), and thus (using the construction

u
from Lemma 7.4, part 5) there is T; : F; FC; such that for each resolution step
in T; one parent clause is of length at most 1 + |C;| < 1+ k. All T; together
yield F € Wll/-}-k(u) |

Lemma 8.6 Using U as oracle, decision of “F € Wi (U) 27 can be performed
in time O (n3*+2 4 ((F) - n?+2 4 1).

Proof: Using the notations of Definition 8.3, we have m < O(nk)7 while for
each F; up to O(n*) many possible clauses C; have to be tested, and the decision

Ui
“Fi+ C; 77 can be performed in time O(¢(F;) - n(F)? + 1), where one can
estimate £(F;) < L(F)+ O(n(F)*). 1

Comparing this result to the unknown status of poly-time decidability of the
classes W/ C Wi (Uy) for k > 3 we see that the reason for the problems with
deciding W}/ is not the strength of these classes but the lack of some refutation
power to round up the refutation process.

The basic technical properties of the hierarchies (W (U))ken, are given in
the next lemma.

Lemma 8.7 For clause-sets F, Fy, Fy € CLS, partial assignments ¢ € RASS
with var(p) C var(F), literals x and numbers k, ki, ks € Ny we have:

1. WH :CLS — CLS is a closure operator:

(a) F CWH(F),
(b) Fi C Fy = Wi(F1) CWi(Fy),
(c) W (WE(F)) = WE(F).
2. (a) px F e Wi(U) = Cp € Wi, ,\(F),

(b) C € W(F) = gc+ F € Wi(U).
3. If{x} € WH(F) and (x — 1)+ F € W (U) then F € Wi(U).
4‘ Glocl(sz(u)) g Wk1+k2(u)‘

5. (a) GR(U) S Wi_1(U) for k> 1,
(b) widthy (F) < hu(F) — 1 for hu(F) > 1.

Uk—|Cl+1
6. (a) If |C] <k, var(C) C var(F) and WH(F) + |C| hold, then also
C € WH(F).

(b) WH(F) is the smallest clause-set F € CLS with F C F and

YC eCL :var(C) Cvar(F) A hy(pcx F)+|C|<k+1=CeF.

Proof: Part 1 follows by definition (for part 1b use stability of &/ under for-
mation of super-clause-sets).

For Part 2a use Lemma 7.4, part 5, and for Part 2b use Lemma 7.4, part 4.

Part 3: We have WH ((z — 1)+ F) C WH(F) since (z — 0) x WH(F) e U
and thus (z — 1) is enforced.

Part 4: First we prove by induction on n(F) that
VkENg: FeGI(WilU)) = F € Wi (U).

The case n(F) = 0 is trivial. According to the definition of G1, for n(F) > 0
there is a literal with var(z) € var(F) and

(x = 0)x F € Wi (U), (1)
(x = 1) % F € GY(Wi(U)). (2)

From (1) we get by part 2a
{z} e Wil (F),
while from (2) by induction hypothesis
(x = 1)x F e Wi (U)

follows, and thus F' € W41 (U) by part 3.

We conclude G9(Wy (U)) C Wi41(U). Now the assertion of part 4 follows
by induction on kq: The case ky = 0 is trivial, while for k1 > 0 we have

Gr, Wi, (U) = GI(GR, -1 (Wi, (U))) © GY Wiy =14k (U)) © Wiy ks (U).-

66

Part 5a follows from part 4 by induction as follows (k > 1):
GI(U) € Wo(Ud),
Grpr(U) = GI(GLU)) C GI(Wi—1(U)) C Wi (U).

Part 5b is just a reformulation of part 5a.

U k—|C|+1
Part 6a: WH(F) + C is equivalent to pc * WH(F) € G2—|C|+1(u)'
Now by parts ba and 2a we obtain

o * Wi (F) € W_io)(U), = C € W (W (F)) = W (F).
Finally Part 6b is a direct conclusion from part 6a. I

Corollary 8.8 For all F € USAT with hy(F) > 1 we have

gwidthy (F)+1 < ComptR(u)(F)'

Proof: By Lemma 8.7, part 5a and Lemma 7.8. 1

Since width-restricted resolution does not pose structural restrictions on the
shape of the derivation, and thus is inherently dag-like, the reverse direction of
Lemma 8.7, part 5 seems to be “essentially false,” which in fact can be concluded
from Theorems 13, 14 in [8] or from Corollary 6.1 in [5]. We strengthen the
argumentation by using the concept of hardness h(F).

Lemma 8.9 Consider the pebbling formulas PF(G) from Definition 6.3. Using
d(G) for the mazimal in-degree of G we have

width' (PF(G)) < 2-d(G) + 2

for any dag G.

According to [19], there is a sequence (G)men of dag’s with d(Gy,) = 2 and
peb(Gp,) > Q(m/logm). Thus by Lemma 6.7

m

width' (PF(Gm)) < 6 < & - 1—— < h(PF(G))

ogm
for some constant k > 0 and sufficiently large m.

(Furthermore Compgr (PF(Gy,)) < O(m) holds.)

Proof: A resolution refutation of PF(G) works as follows:

)

Running through the nodes of GG in a “pebbling manner,” consider for each

node w # o(G) the clause-set
F(w) = { {va(v)}uedp(w) U {wo,wl} TwE V(G) = {O7 1}dp(w) } U
{ {vo,v1} v edp(w) }.

67

Since F(w) E {wo, w1}, we have F(w) F {wq, w1}, where any resolution proof
uses trivially only clauses of length at most

n(F(w) =2 - |dp(w)| + 2.

For w = o(G) one would obtain the clause {o(G)g,0(G)1} which in fact is the
empty clause here due to the assignment {(o(G)o — 0,0(G)1 — 0) used for the
definition of PF(G). 1

Thus we have spaceig (PF(G)) > peb(G) (recall Subsection 7.2.1). Further-
more it seems to me that also spacer (PF(G)) can not be less than peb(G) (at
least if using the resolution refutation from the proof of Lemma 8.9), which
would refute a speculation in [86] about a (close) relation between spacer (F')

and width(F).

8.3 Lower bounds for full resolution with oracles

Definition 8.10 For U stable under formation of super-clause-sets and clause-
sets I' € USAT let Compgy) (F) be the minimal number of clauses Fcl(T)

for resolution trees T : FIL—{J_‘ |
For all F' € USAT we have
Compg,yy,) (F)) = Compr/(F)
by the standard transformation underlying Lemma 7.2, part 1.3

Theorem 8.11 For F € USAT with n(F) # 0 we have

1 widthy (F)?

5 n(p) < nCompran(F) < (Inn(F))- (widthy (F) + 1) +2.

Proof: For the lower bound we have to generalize the proof from [21, 5].
Consider a fixed d € Ryq.

For a clause-set F' let
L(F)={CeF:|C|>d}

be the “large clauses” in F', and let

p(F) ;= min{|L(c(T))]|: T: FﬁJ_}

U0
13) Consider T : Fy + L such that F IO— D for all D € Fy, that is, there is Cp € F with
Cp C D. Replacing axioms D € Fy in T by C'p and simplifying the tree accordingly (in an
uniform manner) we obtain T’ : F' + L with #cl(T') < #cl(T).

68

be the minimal number of large clauses needed in a resolution refutation (using
U) of F. Furthermore we use

0 if2-n(F)<d
b(F) =) d o
+ T Fa if2-n(F)>d
and for k € Ny let
T :={ F €USAT : u(F) < b(F)**'}

(note that n(F) < d implies u(F) = 0 and thus F € Tg).
For all £ > 0 the inclusion

T C Gi(To) (3)
holds, which is proven as follows (recall Lemma 3.5):

Consider £ > 1 and F € Ty. If y(F) = 0 then F € T'y. So assume p(F) > 1.

u
Consider T': F'+L with |L(cl(T))| = p(F). Choose a literal z whose number
#. of occurrences in L(cl(T)) is maximal and thus fulfills

J UA(T)) _ dop(F)

#e 2 3 lF) 2 on(FY)

Obviously we have (z = 0) x F € Ty. If u({(z = 1) * F') = 0 holds true, then
(x = 1) x F € Ty and we are done already. So assume p((z — 1) x F') # 0.

Applying (z — 1) to T (compare Lemma 7.2, part 2) we obtain a resolution

u
tree T : (z = 1) x F L where #,; many large clause have been eliminated. We
conclude

H(<m—>1>*F)SN(F)—#rSN(F)_;l:ﬁEg -

= u(F) - b(F)™" < b(F)* < b((x = 1) »)

and hence (proving (3))
(x =51« FeTg_1.y/

For level 0 we have
Lo C Wiay (U) (4)

by the following argumentation: Consider F' € T'g. If u(F) = 0 then obviously
F € Wq U). So assume p(F) > 1. Thus n(F) > d holds, implying b(F) < 2
and hence actually p(F) = 1 holds. We conclude F € W[&J (U) and thus by
Lemma 8.5, part 2b I € W 4 () is the case.

69

By (3), (4) and Lemma 8.7, part 4 we get for all £ >0
L C Wiaj4r (U),
and thus widthy (F) < |[d] + min{k € Ng: F € T} for all F € USAT. The

definition of 'y in turn says

bl

in{keNg: Felg}=4" ifp(F) =0
min : =
’ g max([log, gy p(F)] —1,0) else

and thus, using p(F) < Compg) (F) we obtain for all F' € USAT

widthy (F) < 0<di<nzf;L(F) (|d] + max([logb(F) CompR(u)(F)] - 1,0)) (5)

In order to estimate (5), consider the function
fd) =d+ log_:_¢

for 0 < d < s and parameters s,c > 2 fulfilling Inc < s (if Compg,(F) = 1
then widthy (F) = 0, while the general upper bound Compg(F) < 2707+ — |
yields In(Compg) (F)) < 2 - n(F)).

We “guess” dy := /s - In¢.'®

For the second addend in f(d) we get

Inc Inc

1 s = =

OgS_dU ¢ Inc S Inc dO, (6)
—In(l—4/%%) /5°

using V0 < z < 1:e” < 1, which is equivalent to —In(1 — z) > 2.

Now finally by (5) and (6) (with s := 2n(F'), ¢ := Compg) (F) and exclud-
ing the trivial case Compg)(F') = 1):

widthy (F) < |do] + max([log2 2n(e) Compg g (F)] = 1,0)

< do) +[do] = 1< 2-do = 2\/2n(F) - In Comppgy (F),

Easy transformations yield the lower bound of the assertion.

The upper bound is obtained as follows for F' € USAT (using n := n(F)):

widthy, (F)
i n
Comprn () < Wik, (P-4 0= Y. 2(7)-(a+)

=0
< (2 . nwidthM(F) + 1) . (n + 1) <6 nwidthM(F)-}-l.]

1) We have f'(d) =1 — in_cd m. Doing the formulation d < s we get s —d = s and

—In(1- %) & %, and thus the equation f'(d) = 0 becomes 1 — lr‘TC . ;2 =0,=d=+Vs-lnc.

ol

70

8.4 The tightness of the lower bound

In [52] a sequence of unsatisfiable clause-sets, called (GTy,)men in [9], has been
introduced, coding

Every finite transitive directed graph without cycles of length two
must have an input node.

Definition 8.12 For m € N we define GT,,, € USAT as follows:

GTy, has m - (m — 1) many variables
var(GTp) = {vij; : 4,7 €{l,...,m} and i # j}.
There are three types of clauses in GT,,
GT. = { Aijk, Bij, Cj i, j,k€{l,...,m} and |{i,j,k} =3}
where the clauses
Aij k= {75, Uk, vig}
express transitivity, the clauses
Bij = A{vij vji}

express that there is no 2-cycle, and the clauses

Cyi= vy i€ {L,...,mp\ {j})

state that every node j has at least one direct predecessor. 1

Krishnamurthy’s conjecture that these formula have no polynomial size res-
olution refutations was refuted in [83] by showing in fact

Compr(GT,n) < O(U(GT,)) = O(m®) = O(n(GT,,)¥?).

Recently in [9] it has been proven that also several resolution restrictions admit
polynomial length resolution refutations. Furthermore by splitting the long
clauses C; € GT,, into 3-clauses in the standard way (using new variables)
they obtain MGT,, € 3-CLS and they prove

Compr(MGT,,) < O(n(MGT,,)*?) and width'(MGT,,) > Q(v/n(MGT,,)).

Thus the general lower bound for (full) resolution from [5] (see Remark 3 in
Subsection 8.1) can not be improved (much) without using further data from
the formula F.

We prove the analogous result for our lower bound from Theorem 8.11,
whereby now we do not have to split the long clauses (profiting from the fact
that the dependency on p(F) is eliminated) but can use GT,, itself, and thus
the lower bound proof for the width becomes much simpler.

71

Lemma 8.13 For m > 2 we have width(GT,,) = m — 2, where for m > 3 the

estimation m — 2 > m‘/n(GTM) holds. (Furthermore h(GTp,) =m —1 is

the case for m > 1.)

Proof: First we regard the width lower bound. In the course of the proof
only clauses C' are considered with var(C) C var(GT,,). Regarding C' as a set
of undirected edges between nodes from {1,...,m}, let s(C) be the size of a
maximal independent subset ¢! C C' (“independent” means, that C’ does not
contain an (undirected) circuit; in other words, s(C') is the number of edges in
a spanning forest for C').

Furthermore we say that C' has property € (written €(C)) if C' is a (non-
disjoint) union of signed (directed) circuits:

Here a positive literal v; ; € C corresponds to a “forward edge” from ¢ to j,
while 7; ; € C corresponds to a “backward edge” from j to 1.

Obviously for all possible indices , j, k we have
€(Aij k), €(Bij) (1)
s(C;) =m—1. (2)

Consider resolvable clauses Dj, Dy with resolvent R where Dy N Dy = {z}.
Trivially we have

s(R) > max(s(C1), s(C2)) — 1. (3)

The first observation is that resolution with clauses having property € does
not decrease s:

¢(Ds) = s(R) > s(D), (4)

since, using var(z) = vj, j,, in case of s(R) < s(D1) there would be no undirected
path from ig to jo by edges from R, contradicting €(D2) and D2 \ {Z} C R.

The second observation is that property € is hereditary:
C(D1) AE(D3) = €(R) (5)

which follows from the “strong elimination property of signed circuits” (see for
example [6], Theorem 3.2.5 on pages 107, 108 together with pages 1 - 4) and
the fact, that x is the only clashing literal of Dy, D5.

Now consider a sequence Dy, ..., D; of clauses such that
T; : GT,, U{Dl,... ,Di_l}l_ D;

for 1 < i <t, where D; = L and the T; are input resolution trees (h(7;) < 1).

72

Let ¢ be the minimal index such that 7; uses at least one axiom C; € GTy,.
By (1) and (5) for all 1 <7 < ¢ we have €(D;). Hence from (2), (3) and (4) we
got Dyl > 5(Dg) > (m = 1)~ 1= m—2,

For the hardness upper bound note that trivially A(GT;) = 0 and A(GT3) =1
holds, while in [83] in fact it is proven that there is an input resolution proof
of the clauses C; € GT,, from GT,,41 (that is, for a literal z € C; € GTrmy
the clause-set @c,\(z} ¥ GTrmy1 is refutable by 1-clause resolution), and thus
h(GTmy1) < A(GTy,) + 1 follows for m > 2.

We obtain h(GT,,) < m—1, and now by Lemma 8.7, part 5b the equations
width(GT,,) = m —2 and h(GT,,) = m — 1 follow. 1

We conclude that Theorem 8.11 can not be improved by replacing the term
width(F)? by width(F)**¢ for any € > 0.

8.4.1 Linear resolution versus tree-like and full resolution

We conclude this section by pointing out some facts on linear resolution (which
seem not to be widely known). Already from [50] it is clear that linear resolution
can linearly simulate tree-like resolution. Explicitly proven is this fact in [90]
(see also [62]). On the other side in [65] it has been “proven” that tree-like reso-
lution can polynomially simulate linear resolution — that this proof holds only
for a restricted kind of linear resolution has already been noticed by the author
([66]), and that in fact MGT,, have polynomial size linear resolution refutations
but only (sub-)exponential tree-like refutations is shown in [9]. We here can use
the simpler version, that GT,, have polynomial size linear resolution refutations

([9]) and that
Compir(GTyp,) > gm—1 > 99(\/n(GTn))

which follows from Lemma 8.13 and Corollary 8.8, to conclude that linear res-
olution 1s strictly stronger than tree-like resolution.

In [28] a (deterministic) linear time transformation F' — F* is introduced,
adding one new variable and using a tautological clause, such that trivially
Compyr(F) < Comp(yr(F*) < O(Compyg(F)) holds and such that the
complexity of linear resolution for F* is polynomially bounded by Compg(F*).
Whether the use of tautological clauses is necessary here is not known to me (as
well as whether in general tautological clauses can be polynomially eliminated
from linear resolution refutations).

Thus, when allowing tautological clauses, actually any sequence of clause-
sets yielding a separation between full resolution and tree-like resolution gives
rise to a separation between tree-like resolution and linear resolution. The
relation between full resolution and linear resolution for the original clause-sets
seems to be open.

73

9 Some final remarks on calculating the com-
plexity of resolution

9.1 On the tightness of the general bounds for resolution

Suppose a family (Fin)men of unsatisfiable clause-sets is given, and the aim is
either to prove a polynomial upper bound

Comp(Fm) < £(F) O
or to prove a super-polynomial lower bound
Comp(Fy,) > m“™)

where Comp(F,,) is either tree- or dag-like resolution (with or without ora-
cles). According to Theorems 7.8 and 8.11 (representing the state of the art
w.r.t. general methods at this time) the following is known.

The tree-like case

If the hardness is bounded by a constant then the family (F,,) has polynomial
tree-like resolution refutations

h(Fm) < O(1) = Compir(Fm) < n(Fn)°W.

If on the other side h(F,,) is faster growing than logm, then the family (F,)
has only super-polynomial tree-like resolution refutations

h(Fp) > w(logm) = Compir(Fm) > m*®).

For the grey area in between where the hardness is not bounded but grows not
faster than the logarithm we can not say anything but

w(1) < h(Fm) < O(logm) = w(1) < Compr(F) < n(Fp)°1E™),
In order to estimate h(F,,) the following means have been provided:

e several characterizations of the hardness have been given (see Subsection
7.2.2 for a compilation);

e in Subsection 3.4.2 a general method has been established allowing quite
simple lower bounds as exemplified in Subsection 3.4.3 and Section 6,

e while a general method for upper bounds one finds in Subsection 3.4.1
with examples in Subsection 3.4.3 and Section 5.

74

A predecessor of the general bounds from Theorem 7.8 is the lower bound
919 (F)=p(F) < Compy(F)
from [5], which for L ¢ F' can be improved to (see Corollary 8.8)
QUidth(F)+1 < Compyp(F).

However in general this gives only poor bounds: See Lemma 8.9 for a family

(F) of clause-sets with width(F,,) < 6, but hA(Fy,) > Q(lo’gm) and thus

Compr(F) > 29U ogm) |

The dag-like case

If the width is bounded by a constant then the family (Fy,) has polynomial
resolution refutations

width(F,) < O(1) = Compr(Fin) < n(Fm)°0.

If the width is faster growing than the square root of the number of variables
times logm, then the family (F,,) has only super-polynomial tree-like resolution
refutations

width(F,) > w(y/n(Fp) -logm) = Compg(Fp) > m“().

For the grey area in between we can not say anything but

w(l) < h(Fn) <O(Vn(Fp) -logm) =

w(1) < Compyr(F) < n(Fp)CV/P8mV/n(Fn)

Compared to its predecessor from [5]

(width'(F) = p(F))*
n(F)

Q

) < logy, Compg(F)
the lower bound from Theorem 8.11 has the following advantages:

- the somewhat disturbing dependence on p(F') has been eliminated (replac-

ing “width’(F) — p(F)” by “width(F)”);

- any oracle U (stable under formation of super-clause-sets) can be used.

75

Historical remark: Krishnamurthy/Moll in [53] emphasized the importance
of large clauses for the analysis of resolution proofs:

For their sequence of “Ramsey formulas” (Ry,) they proved
width'(Rpm) > Q(v/n(Rm))
(where p(Ry) < (2+logs n(Rm))?), and they formulated the general conjecture
“ Compg(F) > width'(F7) »

Unfortunately the width bound for the Ramsey formulas falls into the above grey
area, so their resolution complexity is still open. The direction of the conjecture
on large clauses has finally by shown correct (while the precise formulation was
somewhat too optimistic).

However, already 1975 Galil gave in [36] a sequence of 3-CNF formulas a,,
(using Tseitin’s formulas) with n(a,) < n and ¢(a,) < O(n), and he proved

n

. /
width' (e,) > 6llogn)?’

Thus finally his remark “We still hope that by using these lemmas [mainly
the correspondence and the regularity lemma] one will be able to prove an

exponential lower bound for the unrestricted resolution procedure.” has been
justified.'®)

9.2 The weak pigeonhole formulas

The pigeonhole formulas PHPf,:+1 have been used in [43] to show the first
(sub)exponential lower bound on full resolution. Simplifications of his proof
have been achieved in [22] and, using the proof search idea from [21], in [4]. The
known results on the complexity of resolution are

1. Compgr(PHPT) > 29K) ([43]), more precisely, from [4] one can obtain
Compg(PHP) > 25/20 for k > 1676

2. Compg (PHPP) > 222k*/m) ([1g])

3. Compr(PHPY') > 2% ([17]).

15)

It might causing suspicion that he was only able to handle regular resolution, but in fact he
could obtain the width lower bound for unrestricted resolution by applying the regularisation
process only locally, using that the conclusion of a regularized proof must be a sub-clause of
the original conclusion (while the number of different clauses and the mawimal size of clauses
in the proof might increase).

76

The main remaining problem is to prove (or disprove) a super-polynomial lower
bound on Compr(PHP}) for k?/logk < m < k9(1). Approaches one finds in
[17] and [76].

For the lower bound on tree-like resolution we have given an alternative
(easy) proof in Lemma 6.2 (the lower bound) together with Corollary 7.9, just
exploiting the simple recursive structure of the pigeonhole formulas. Another
(simple) possibility is to use Corollary 8.8 and the following lemma.

Lemma 9.1 For all m > k > 1 we have width(PHP') = k — 1.

Proof: Any clause C' derived by (non-trivial) input resolution from PHP}' has
length |C| > k — 1 since a resolvent with a “long clause” from PHP}' has at
least & — 1 occupied columns, while resolution with a “short clause” does not
alter the number of occupied columns.

Thus we have width(PHPZ') > k — 1. Equality now we get from the upper
bound A(PHP') < k (Lemma 6.2) and Lemma 8.7, part 5a. I

We conclude our considerations by strengthening Comp.r(PHP}') > 2% to
the case where also the “dual” clauses are present in the formulation of the
pigeonhole principle.

Adding the “dual” clauses

The standard formulation of the pigeonhole principle (see Subsection 2.3) can
be enhanced to include also the “dual” clauses

apr
AN

{{vijhciom bigian

W T cicm, 1<, <gach

(“d” for “dual”) expressing that “every hole contains at least one pigeon” and
“a pigeon can not be in more than one hole simultaneously.”

In [55] the lower bound
Compg(PHPET! U dPFHT U dNFH!) > 28/20

for k > 1676 is proven (the proof of [4] carries over), still leaving open the pos-
sibility of exponential speed-ups (that is, lowering the exponent) when adding
the dual clauses. Adding only the positive dual clause in fact this is impossible,
since in [17] it is shown that

Compg (PHPY' U dP{*) > Compr(PHP})/(2k* + 2k + 1)

holds for arbitrary m > k.

77

The argumentation from [17] is not transferable to the tree-like case. We
will show now that in fact for tree-like resolution addition of the dual clauses
does not change the complexity at all. One may start with the observation
that no regular resolution tree inferring the empty clause from PHP}' UdP" or
PHP}® U dN]" can use the dual clauses, since no dual clause is resolvable with
any original clause.

Lemma 9.2 For every reqular resolution tree T : PHP]" UdP” F L as well as
for every reqular T : PHP' UdN® & L in fact we have T : PHP;" F L. 1

To be able to add both types of dual clauses at the same time, we need some
tools for resolution trees. Fundamental is the following distributivity property.

Lemma 9.3 Consider a resolution tree T : F = Dy and a clause Dy such that
Dqg, Dy are resolvable with resolvent D and resolution variable v. Let F' be F
together with all resolvents on resolution variable v of C, Dy for clauses C' € F.

Then there is a resolution tree T' : F'+ D' C D withT' <T.

Proof: Induction on the composition of 7. 1

Recall that two clauses Cy, C; are not resolvable iff either they do not clash
(that is, CoNCy = B), or they clash on at least two literals (that is, |ConCy| > 2).

We call two clause-sets Fy, F1 not resolvable if for all Cy € Fy and Cy € Fy
the clauses Cyp, C'; are not resolvable.

Lemma 9.4 Assume Fy, Fy are clause-sets which are not resolvable.

1. Consider a resolution tree T : Fy b Dy and a clause D1 € F such that
Dg, D1 are resolvable with resolvent D.

Then there is a resolution tree T' : Fo = D' C D with T' <T.

2. Consider resolutions trees T; . F; &= D; for i = 1,2 such that Dy, D1 are
resolvable with resolvent D.

Then there is a resolution tree Tyt : Fo = D' C D with Tj < Ty or there
is a resolution tree Ty : F1 = D' C D (possibly larger than Ty).

Proof: Part 1 follows immediately from Lemma 9.3. For part 2 apply Lemma
9.3 with T = Ty, and obtain 7" : Fj & D' C D with T < Ty, where Fj is
Fy together with all resolvents of C', Dy for C' € Fy, such that the resolution
variable 1s the same as for Dg, D;.

If T": Fo b D' C D then we are done: TT = T'. Otherwise apply part 1
first to all the axioms of 7", and then iteratively “bottom up” until a resolution
tree T* : F1 + D" C D' C D is obtained. 1

78

Lemma 9.5 Consider two clause-sets Fy, F, with Fy € SAT, such that Fy and
F are not resolvable. Then we have

Compr(Fo U F1) = Compir(Fo).

Proof: Consider a resolution tree T : Fy U F1 F L. Apply Lemma 9.4, part 2
iteratively “bottom up” to subtrees of T" and replace them by the corresponding
Tyt resp. Tt until a resolution tree 7" is obtained with either 7' : Fy - L or
T' . FyF L. Since F; € SAT, we have in fact T : Fg F L, and now Lemma 9.4,
part 2 guarantees #lvs(T") < #lvs(T). 1

Corollary 9.6 For any m > k > 0 adding the dual clauses to PHP]' does not
alter the complexity with respect to tree-like resolution refutations:

Compir(PHPZ U dP" U dN{*) = Compir(PHPY').
Proof: Apply Lemma 9.5 with Fy = PHP}" and F; = dP” UdN”. 1
Corollary 9.7 Compyr(PHP}' U dP® U dN™) > 2k,

Proof: By Corollary 9.6, Lemma 6.2 and Corollary 7.9. 1

References

[1] Michael Alekhnovich, Sam Buss, Shlomo Moran, and Toniann Pitassi. Min-
imum propositional proof length is NP-hard to linearly approximate. Jour-
nal of Symbolic Logic, to appear, 1999.

[2] B. Aspvall. Recognizing disguised NR(1) instances of the satisfiability prob-
lem. Journal of Algorithms, 1:97-103, 1980.

[3] Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. On the
complexity of unsatisfiability proofs for random k-CNF formulas. In Pro-
ceedings of the 30th Annual ACM Symposium on Theory of Computing,
1998.

[4] Paul Beame and Toniann Pitassi. Simplified and improved resolution lower
bounds. In 87th Symposium on Foundations of Computer Science (FOCS’
96), pages 274-282, 1996.

[5] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow — resolution
made simple. Technical Report TR99-022, ECCC Electronic Colloquium
on Computational Complexity, July 1999.

79

[6]

[13]

[14]

[15]

Anders Bjorner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and
Gunter M. Ziegler. Oriented Matroids, volume 46 of Encyclopedia of Math-
ematics. Cambridge University Press, 1993.

Archie Blake. Canonical expressions in Boolean algebra. PhD thesis,

Chicago, 1937. See [68].

Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Jo-
hannsen. Exponential separation between restricted resolution and cutting
planes proof systems. Electronic Colloquium on Computational Complezity

(ECCC), 035, 1998.

Maria Luisa Bonet and Nicola Galesi. A study of proof search algorithms
for resolution and polynomial calculus. To appear in FOCS’99.

Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. No feasible interpolation
for T'C°-Frege proofs. In 38th Symposium on Foundations of Computer
Science (FOCS’ 97), pages 254-263, 1997.

Endre Boros, Y. Crama, and Peter .. Hammer. Polynomial-time infer-
ence of all valid implications for Horn and related formulae. Annals of
Mathematics and Artificial Intelligence, 1:21-32, 1990.

Endre Boros, Y. Crama, Peter L. Hammer, and M. Saks. A complexity
index for satisfiability problems. STAM Journal on Computing, 23(1):45—
49, February 1994.

Endre Boros, Peter L. Hammer, and Xiaorong Sun. Recognition of g-Horn
formulae in linear time. Discrete Applied Mathematics, 55:1-13, 1994.

Hans Kleine Biining. On generalized Horn formulas and k-resolution. The-
oretical Computer Science, 116:405-413, 1993.

Hans Kleine Buning and Theodor Lettmann. Aussagenlogik: Deduktion
und Algorithmen. B.G. Teubner, 1994.

Michael Buro and Hans Kleine Biining. On resolution with short clauses.
Annals of Mathematics and Artificial Intelligence, 18(2-4):243-260, 1996.

Sam Buss and Toniann Pitassi. Resolution and the weak pigeonhole princi-
ple. In Mogens Nielsen and Wolfgang Thomas, editors, Computer Science
Logic (CSL) 97, volume 1414 of Lecture Notes in Computer Science, pages
149-156, 1998.

Sam Buss and G. Turan. Resolution proof of generalized pigeonhole prin-
ciples. Theoretical Computer Science, 62:311-317, 1988.

J.R. Celoni, Wolfgang J. Paul, and Robert Endre Tarjan. Space bounds
for a game on graphs. Mathematical Systems Theory, 10:239-251, 1977.

80

[20]

[21]

C. L. Chang. The unit proof and the input proof in theorem proving. Jour-
nal of the Association for Computing Machinery, 17(4):698-707, October
1970.

Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the
Groebner basis algorithm to find proofs of unsatisfiability. In Proceedings
of the 28th ACM Symposium on Theory of Computation, pages 174-183,
1996.

Stephen A. Cook and Toniann Pitassi. A feasibly constructive lower bound
for resolution proofs. Information Processing Letters, 34:81-85, March
1990.

James M. Crawford and Larry D. Auton. Experimental results on the
crossover point in random 3-SAT. Artificial Intelligence, 81:31-57, 1996.

Mukesh Dalal and David W. Etherington. A hierarchy of tractable satisfi-
ability problems. Information Processing Letters, 44:173-180, 1992.

W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the sat-
isfiability of propositional Horn formulae. Journal of Logic Programming,

1:267-284, 1984.

Dingzhu Du, Jun Gu, and Panos M. Pardalos, editors. Satisfiability Prob-
lem: Theory and Applications (DIMACS Workshop March 11-13, 1996),
volume 35 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. American Mathematical Society, 1997.

Olivier Dubois, P. Andre, Y. Boufkhad, and C. Carlier. SAT versus UN-
SAT. In Johnson and Trick [48], pages 415-436. The Second DIMACS
Challenge.

Ulf Dunker. Zur Effizienz der Beweissuche in der Logikverarbeitung. PhD
thesis, Universitat Paderborn, July 1997.

Thomas Eiter, Pekka Kilpelainen, and Heikki Mannila. Recognizing re-
namable generalized propositional Horn formulas is NP-complete. Discrete

Applied Mathematics, 59:23-31, 1995.

Juan Luis Esteban and Jacobo Toran. Space bounds for resolution. In
C. Meinel and S. Tison, editors, 16th Annual Symposium on Theoretical
Aspects of Computer Science, volume 1563 of LNCS. Springer, 1999.

S. Even, A. Itai, and A. Shamir. On the complexity of timetable and
multicommodity flow problems. SIAM Journal Computing, 5(4):691-703,
1976.

81

[32]

[33]

[34]

P. Flajolet, J.C. Raoult, and J. Vuillemin. On the average number of
registers required for evaluating arithmetic expressions. In 18th Annual
Symposium on Foundations of Computer Science, pages 196-205, 1977.

John Franco. Relative size of certain polynomial time solvable subclasses
of satisfiability. In Du et al. [26], pages 211-223.

John Franco, Giorgio Gallo, Hans Kleine Biining, Ewald Speckenmeyer, and
Cosimo Spera, editors. Workshop on the Satisfiability Problem. Universitat
zu Kéln, Report No. 96-230, 1996. Siena, April 29 - May 3 (1996).

John Franco and Allen Van Gelder. A perspective on certain polynomial
time solvable classes of satisfiability. Submitted to Discrete Applied Math-
ematics, 1998.

Zvi Galil. On the validity and complexity of bounded resolution. In Proceed-
ings of seventh annual ACM Symposium on Theory of Computing, pages
72-82, May 1975.

Giorgio Gallo and Maria Grazia Scutella. Polynomially solvable satisfi-
ability problems. Information Processing Letters, 29:221-227, November
1988.

Allen Van Gelder. Autarky pruning in propositional model elimination
reduces failure redundancy. Journal of Automated Reasoning, 25(2), 2000.
To appear.

Allen Van Gelder and Yumi K. Tsuji. Satisfiability testing with more rea-
soning and less guessing. In Johnson and Trick [48], pages 559-586. The
Second DIMACS Challenge.

Andreas Goerdt. Regular resolution versus unrestricted resolution. STAM

Journal on Computing, 22(4):661-683, August 1993.

Jan Friso Groote and Joost P. Warners. The propositional formula checker
HeerHugo. Submitted to Journal of Automated Theorem Proving (SAT
2000). Report SEN-R9905, Centre for Mathematics and Computer Scienc
(CWI), Amsterdam, 1999.

Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah. Algo-
rithms for the satisfiability (SAT) problem: A survey. In Du et al. [26],
pages 19-151.

Armin Haken. The intractability of resolution. Theoretical Computer Sci-

ence, 39:297-308, 1985.

John Harrison. Stalmarck’s algorithm as a HOL derived rule. In Theorem
proving in higher order logics: 9th International Conference, TPHOLs 96,
Lecture Notes in Computer Science 1125, pages 221-234, 1996.

82

[45]

[46]

[47]

[48]

[56]

[57]

[58]

Lawrence J. Henschen and Lawrence Wos. Unit refutations and horn sets.
Journal of the Association for Computing Machinery, 21(4):590-605, Oc-
tober 1974.

Edward Hirsch. A fast deterministic algorithm for formulas that have many
satisfying assignments. Logic Journal of the IGPL, 6(1):59-71, 1998.

Gérard Huet. Confluent reductions: Abstract properties and applications
to term rewriting systems. In 18th Annual Symposium on Foundations of
Computer Science, pages 30-45. IEEE, 1977.

David S. Johnson and Michael A. Trick, editors. Cliques, Coloring, and
Satisfiability, volume 26 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 1996. The
Second DIMACS Challenge.

Rainer Kemp. The average number of registers needed to evaluate a bi-
nary tree optimally. Technical Report A 77/04, University of Saarbriicken,
Germany, 1977.

R. Kowalski and D. Kuehner. Linear resolution with selection function.

Artificial Intelligence, 2:227-260, 1971.

Dexter Kozen. Lower bounds for natural proof systems. In 18th Annual
Symposium on Foundations of Computer Science, pages 254-266, 1977.

Balakrishnan Krishnamurthy. Short proofs for tricky formulas. Acta Infor-
matica, 22:253-275, 1985.

Balakrishnan Krishnamurthy and Robert N. Moll. Examples of hard tau-
tologies in the propositional calculus. In 13th ACM Symposium on Theory
of Computing (STOC’81), pages 28-37, 1981.

Oliver Kullmann. A note on a generalization of extended resolution. In

Franco et al. [34], pages 73-95. Siena, April 29 - May 3 (1996).

Oliver Kullmann. On a generalization of extended resolution. To appear
in Discrete Applied Mathematics (special edition on the satisfiability prob-
lem), 25 pages; enhanced version of [54], 1996.

Oliver Kullmann. Worst-case analysis, 3-SAT decision and lower bounds:
Approaches for improved SAT algorithms. In Du et al. [26], pages 261-313.

Oliver Kullmann. Heuristics for SAT algorithms: Searching for some foun-
dations. Submitted to Discrete Applied Mathematics, 23 pages, September
1998.

Oliver Kullmann. Investigations on autark assignments. Submitted to
Discrete Applied Mathematics, 19 pages, October 1998.

83

[59]

[60]

[72]

Oliver Kullmann. New methods for 3-SAT decision and worst-case analysis.
Theoretical Computer Science, 223(1-2):1-72, July 1999.

Oliver Kullmann and Horst Luckhardt. Algorithms for SAT/TAUT deci-
sion based on various measures. Submitted to Information and Computa-
tion; 71 pages, December 1998.

Marc-André Lemburg. Methoden zur Losung von Formeln der Aussagen-
logik in reiner Implikations- und konjunktiver Normalform. Master’s thesis,
Heinrich Heine-Universitat Dusseldorf, 1997.

Reinhold Letz. First-Order Calculi and Proof Procedures for Automated
Deduction. PhD thesis, Technische Universitat Minchen, July 1993. See
http://sunjessen24.informatik.tu-muenchen.de/personen/letz.html.

Laszlé Lovasz, Moni Naor, Ilan Newman, and Avi Wigderson. Search
problems in the decision tree model. In 32nd Symposium on Foundations

of Computer Science (FOCS’ 91), pages 576-585, 1991.

Horst Luckhardt. Obere Komplexitatsschranken fur TAUT-Entscheidun-
gen. In Frege Conference 1984, Schwerin, pages 331-337. Akademie-Verlag
Berlin, 1984.

Klaus Mayr. Refinements and extensions of model elimination. In
Andrei Voronkov, editor, Logic Programming and Automated Reasoning
(LPAR’93), volume 698 of Lecture Notes in Artificial Intelligence, pages
217-228. Springer, 1993.

Klaus Mayr, May 1999. Personal communication.

David J. McClurkin. A lower bound for tree resolution. Discrete Applied
Mathematics, 54:37-53, 1994.

J. C. C. McKinsey. Archie Blake: Canonical expressions in Boolean algebra.

Review, The Journal of Symbolic Logic (3), 1938.

B. Monien and Ewald Speckenmeyer. Solving satisfiability in less than 27
steps. Discrete Applied Mathematics, 10:287-295, 1985.

I. Nakata. On compiling algorithms for arithmetic expressions. Communi-

cations of the ACM, 10:492-494, 1967.

M.H.A. Newman. On theories with a combinatorial definition of “equiva-
lence”. Annals of Mathematics, 43:223-243, 1942.

Christos H. Papadimitriou. Computational complexity. Addison-Wesley
Publishing Company, 1994.

84

[73]

[74]

[85]

Ramamohan Paturi, Pavel Pudlak, and Francis Zane. Satisfiability coding
lemma. In Proc. 38th Annual Symp. Foundations of Computer Science

(FOCS 97), pages 566-574, 1997.

Nicholas Pippenger. Pebbling. Technical report, Mathematical Sciences
Department, IBM Thomas J. Watson Research Center, Yorktown Heights,
New York 10598, 1980.

Daniele Pretolani. Hierarchies of polynomially solvable satisfiability prob-
lems. Annals of Mathematics and Artificial Intelligence, 17(3-4):339-357,
1996.

Alexander Razborov, Avi Wigderson, and Andrew Yao. Read-once branch-
ing programs, rectangular proofs of the pigeonhole principle and the
transversal calculus. In 29th A.C.M. Symposium on the Theory of Com-
puting, pages 739-748, 1997.

R.R. Redziejowski. On arithmetic expressions and trees. Communications

of the ACM, 12:81-84, 1969.

Ingo Schiermeyer. Solving 3-satisfiability in less than 1.579” steps. In
Selected papers from Computer Science Logic '92, volume 702 of Lecture
Notes Computer Science, pages 379-394, 1992.

Ingo Schiermeyer. Pure literal look ahead: An O(1,497") 3-satisfiability
algorithm. In Franco et al. [34], pages 127-136. Extended abstract.

Bart Selman, Hector Levesque, and David Mitchell. A new method for
solving hard satisfiability problems. In Proceedings of AAAI’92, pages 440—
446, July 1992.

Mary Sheeran and Gunnar Stalmarck. A tutorial on Stalmarck’s proof
procedure for propositional logic. In FMCAD’98, volume 1522 of Lecture
Notes in Computer Science, pages 82-99, 1998.

Joao P. Marques Silva and Karem A. Sakallah. GRASP—a new search
algorithm for satisfiability. Technical Report CSE-TR-292-96, University
of Michigan, Department of Electrical Engineering and Computer Science,

1996.

Gunnar Stalmarck. Short resolution proofs for a sequence of tricky formu-

las. Acta Informatica, 33:277-280, 1996.

Gunnar Stalmarck and M. Saflund. Modeling and verifying systems and
software in propositional logic. In B.K. Daniels, editor, Safety of Computer
Control Systems (SAFECOMP’90), pages 31-36, 1990.

Jacobo Toran, 1999. Private communication.

85

[86]

[92]

[93]

Jacobo Toran. Lower bounds for space in resolution. In Proceedings of
CSL’99. European Association for Computer Science Logic, Springer, 1999.
To appear.

G.S. Tseitin. On the complexity of derivation in propositional calculus.
In Seminars in Mathematics, volume 8. V.A. Steklov Mathematical Insti-
tute, Leningrad, 1968. English translation: Studies in mathematics and
mathematical logic, Part TT (A.O. Slisenko, editor), 1970, pages 115-125.

Alasdair Urquhart. The complexity of propositional proofs. The Bulletin
of Symbolic Logic, 1(4):425-467, 1995.

Hans van Maaren. A short note on linear autarkies, g-Horn formulas and
the complexity index. Technical Report 99-26, DIMACS, May 1999. Can
be obtained from http://dimacs.rutgers.edu/TechnicalReports/.

André Vellino. The complezity of automated reasoning. PhD thesis, De-
partment of Philosophy, University of Toronto, 1989.

Susumu Yamasaki and Shuji Doshita. The satisfiability problem for a class
consisting of Horn sentences and some non-Horn sentences in propositional
logic. Information and Control, 59:1-12, 1983.

Hantao Zhang. SATO: an efficient propositional prover. In Proc. of Inter-
national Conference on Automated Deduction (CADFE-97), 1997.

Hantao Zhang and Mark E. Stickel. An efficient algorithm for unit prop-
agation. In Proc. of the Fourth International Symposium on Artificial In-
telligence and Mathematics. Ft. Lauderdale, Florida, 1996.

Wenhui Zhang. Number of models and satisfiability of sets of clauses.
Theoretical Computer Science, 155:277-288, 1996.

86

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

