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Abstract

We introduce the notion of Resettable Zero-Knowledge (rZK), a new security measure for
cryptographic protocols which strengthens the classical notion of zero-knowledge. In essence,
an rZK protocol is one that remains zero knowledge even if an adversary can interact with the
prover many times, each time resetting the prover to its initial state and forcing him to use the
same random tape.

Under general complexity assumptions, which hold for example if the Discrete Logarithm
Problem is hard, we construct

e (non-constant round) Resettable Zero-Knowledge proof-systems for NP
e constant-round Resettable Witness-Indistinguishable proof-systems for NP

e constant-round Resettable Zero-Knowledge arguments for NP in the public key model:
where verifiers have fixed, public keys associated with them.

In addition to shedding new light on what makes zero knowledge possible (by constructing
ZK protocols that use randomness in a dramatically weaker way than before), 7ZK has great
relevance to applications. Firstly, we show that rZK protocols are closed under parallel and
concurrent execution and thus are guaranteed to be secure when implemented in fully asyn-
chronous networks, even if an adversary schedules the arrival of every message sent. Secondly,
rZK protocols enlarge the range of physical ways in which provers of a ZK protocols can be
securely implemented, including devices which cannot reliably toss coins on line, nor keep state
between invocations. (For instance, because ordinary smart cards with secure hardware are
resettable, they could not be used to implement securely the provers of classical ZK protocols,
but can now be used to implement securely the provers of rZK protocols.)
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1 Introduction

The notion of a zero-knowledge interactive proof was put forward and first exemplified by Gold-
wasser, Micali and Rackoff [29]. The generality of this notion was demonstrated by Goldreich, Micali
and Wigderson [25], who showed that any NP-statement can be proven in zero-knowledge, provided
that commitment schemes exist.! Subsequently, related notions have been proposed; in particu-
lar, zero-knowledge arguments [8], witness indistinguishability [16], and zero-knowledge proofs of
knowledge [29, 38, 15]. By now, zero-knowledge is the accepted way to define and prove security
of various cryptographic tasks; in particular, as proposed by Fiat and Shamir [17], it provides the
basis for many proofs of identity.

A basic question about zero knowledge. A zero knowledge proof of a non-trivial language
is possible only if the Prover tosses coins.? But:

Is zero-knowledge possible if the prover uses the same coins in more than one execution?

For zero-knowledge proofs of knowledge (and thus for all proofs of identity & la Fiat-Shamir [17]),
by definition, the answer is NO: if the verifier can force the prover to use the same coins for a
polynomial number of executions, then even the honest verifier can easily extract the very same
secret which the prover is claiming knowledge of.

For zero-knowledge proofs (of language membership), the answer also appeared to be negative:
all known examples of zero-knowledge proofs (including the 3-Coloring protocol of [25]) are trivially
breakable if the prover is “reset” (to his initial state) and forced to use the same coins in future
interactions, even if these interactions are with the honest verifier.

Ezample. For instance, to prove that z = x2 mod n is quadratic residue mod n, in [29] the
following basic protocol is repeated: the prover randomly chooses r» € Z and sends 72 mod n to
the verifier; the verifier sends a random bit b to the prover; and the prover sends back r if b = 0,
and xr mod n if b = 1. Assume now that the prover is forced to execute twice with the same coins r
the basic protocol. Then, by sending b = 0 in the first execution and b = 1 in the second execution,
the verifier learns both r and xr and thus trivially extract z, a square root of z mod n.

A New Notion. In this paper we extend the classical notion of zero-knowledge by introducing the
notion of Resettable Zero-Knowledge (rZK for short).* In essence, a 7ZK proof is a zero-knowledge
proof in which a verifier learns nothing (except for the verity of a given statement) even if he can
interact with the prover polynomially many times, each time restarting the prover with the same
configuration and coin tosses.

In other words, a polynomial-time verifier learns nothing extra even if it can “clone” the prover,
with the same initial configuration and random tape, as many times as it pleases, and then interact
with these clones in any order and manner it wants. In particular, it can start a second interaction
in the middle of a first one, and thus choose to send a message in the second interaction as a
function of messages received in the first. We stress that, in each of these interleaved interactions,
the prover (i.e., each prover clone) is not aware of any other interaction, nor of having been cloned.

LOr, equivalently [36, 32], that one-way functions exist.

2Zero-knowledge proofs in which the prover is deterministic exist only for BPP languages (cf., [26]).

3For instance, in [17] it suffices to repeat the protocol twice with the same prover-coins to be able to extract the
prover’s secret.

4 In a preliminary version of this work [21], the same notion was referred to by the names rewind zero-knowledge
and interleaved zero-knowledge.



Resettability can be incorporated in the various variants of zero knowledge. In particular in this
work we will pay close attention to Resettable Zero-Knowledge proofs, Resettable Zero-Knowledge
arguments, and Resettable Witness-IndistinguishableProofs (rWI for short).

Informally, in all of the above cases (i.e ZK proofs, arguments, and WI proofs)the security
requirement is maintained even if the prover is forced to use the same coin tosses in repeated
executions.

The Importance of the New Notion. Resettable zero knowledge sheds new light on what is
it that make secure protocol possible. In particular, constructing such protocols, makes a much
weaker use of randomness than previously believed necessary. Moreover, resettable zero knowledge
is a powerful abstraction which yields both theoretical and practical results in a variety of settings.
In particular,

o rZK enlarges the number of physical ways in which zero-knowledge proofs may be imple-
mented, while guaranteeing that security is preserved.

As we have said, previous notions of zero knowledge were insecure whenever an enemy could
reset the device implementing the prover to its initial conditions (which include his random
tape). Unfortunately, for example, this class of implementations includes ordinary smart
cards. In fact, without a built-in power supply or without a re-writable memory that is
not only tamper-proof, but also non-volatile, these cards can be reset by disconnecting and
reconnecting the power supply.

o rZK proofs, 7WI proofs and rZK arguments are guaranteed to preserve security when executed
concurrently in an asynchronous network like the Internet.

e 7ZK proofs, 7WI proofs and rZK arguments provide much more secure ID schemes.

New Results. We show that, under standard complexity assumptions, Resettable Zero-Knowledge
exists. Let us quickly state our assumptions and main results.

ASSUMPTIONS. All our protocols are based on the existence of commitment schemes. In some
cases, any commitment scheme with perfect privacy would do. In other cases, we need a more
sophisticated primitive, which we call Verifiable Commitment (see Section 10 for a definition).
Verifiable commitment can be implemented under traditional complexity assumptions, such as the
hardness of the Discrete Log Problem (DLP), or on strong trapdoor claw-free pairs of permutations.’
For the purposes of the current write-up, we renounce to some generality, and rely directly on
two forms of the DLP assumption: Informally, denoting by DLP(k) the task of solving DLP for
instances of length k, we have

Strong DLP Assumption: DLP(k) is not solvable in time 2¥°, for some ¢ > 0.

Weak DLP Assumption: DLP is not solvable in polynomial time.

MAIN RESULTS. We prove the following theorems:

5 “Strong” refers to those in which the claw-free property should hold also with respect to subexponential-size
circuits (i.e., circuits of size 2"6, where n is the input length and € > 0 is fixed), rather than only with respect to
polynomial-size circuits, and “trapdoor” refers to the fact that these pairs that can be generated along with auxiliary
information which allows to form (random) claws.



Theorem 1: Under the weak DLP assumption, there is a (non-constant round) r ZK proof for NP.
Theorem 2: Under the weak DLP assumption, there is a constant-round r WI proof for NP.

Theorem 3: Under the strong DLP assumption, there is a constant-round r ZK argument for NP
in the Public-Key Model.

By the public-key model, we mean that a verifier has a public key that has been registered —i.e.,
fixed— prior to his interaction with the prover. We stress that we only assume that public-keys
can be registered in the literal sense of the word. Registration does not have to include interaction
with a trusted system manager which may verify properties of the registered public-key (e.g., that
it valid or even that the user registering it knows a corresponding secret key). We also stress that
the prover does not need a public key.® (As we shall point out later on, this quite standard model
of fixing a key before interaction starts can be further relaxed.)

Consequences for concurrent zero knowledge. With the rise of the internet, the importance
of concurrent execution of zero-knowledge protocols emerged. In a concurrent setting, many execu-
tions of protocols can be running at the same time, involving many verifiers which may be talking
with the same (or many) provers simultaneously. This presents the new risk of an overall adversary
who controls the verifiers, interleaving the executions and choosing verifiers queries based on other
partial executions. This risk is made even more challenging by the fact that it is unrealistic for the
honest provers to coordinate their action so that zero-knowledge is preserved in this setting. Thus,
we must assume that in each prover-verifier pair the prover acts independently.

A recent approach for solving the concurrent execution problem has been suggested by Dwork,
Naor and Sahai [12], assuming that a certain level of synchronization is guaranteed: the so-called
timing assumption. Under this assumption, (1) there are a-priori known bounds on the delays of
messages with respect to some ideal global clock, and (2) each party uses a local clock whose rate
is within a constant factor of the rate of the ideal clock. Under the timing assumption (and some
standard intractability assumption), constant-round, ZK arguments for NP were presented in [12].
In a later paper, Dwork and Sahai [11] show how the push up the use of the timing assumption
to a pre-processing protocol, to be executed before the concurrent executions of protocols. More
recent work by Ransom and Kilian [37] does not use the timing assumption, alas their protocols
are either not constant-round or only simulatable in quasi-polynomial time. We stress that none
of these concurrent ZK protocols is rZK.

Because secure concurrent executability is critical for protocols to be played over the internet,
and because the number of rounds is an important resource for internet protocols, establishing
whether constant-round concurrent ZK protocols exist is a critical problem. Theorem 3 provides
an answer to this question by means of the following

Corollary 4: Under the strong DLP assumption, there ezists a constant-round, concurrent ZK
arguments for NP in the public-key model.

The importance of this corollary stems from the fact that the public-key model is quite stan-
dard whenever cryptography is used, specifically it underlies any public-key encryption or digital

5Note that the fact that only the verifier requires a public key is especially suitable when extending rZK proofs
to 7ZK proofs of identity. In the latter case, in fact, the verifier usually guards a resource and needs to identify the
identity of the user (the prover) attempting to use the resource. In this scenario, it is reasonable to expect (the few)
verifiers to have public key accessible by all users, and it useful that the (many) provers may implemented by cheap,
resettable devices which do not have any registered public keys.



signature scheme. Note, that this model may indeed be both simpler, and more realistic than the
timing assumption of [12, 11]. Even if one thinks of the public-key model as a mild form of pre-
processing, Corollary 5 directly improves on Dwork and Sahai’s protocol based on pre-processing
with the timing assumption. In fact, we would just rely on the existence of a pre-processing step,
while they do rely on the existence of a pre-processing step in which the timing assumption holds.
Thus the theory of rZKprotocols yields a constant-round and simple solution to the important (and
extensively investigated) concurrent ZK problem.

Consequences for proofs of identity. Fiat and Shamir in [17] introduced a paradigm for ID
schemes based on the notion of Zero Knowledge Proof of Knowledge. In essence, a prover identifies
himself by convincing the verifier of knowledge of some secret (e.g. in the original [17] it was
knowing a square root of a given square mod n). All subsequent ID schemes follow this paradigm,
and are traditionally implemented by the prover being a smart card (as suggested in [17]). However,
Zero Knowledge Proof of Knowledge are impossible in a resettable setting (i.e., they exist only in
a trivial sense”), and thus all Fiat-Shamir like ID schemes fail to be secure whenever the prover is
resettable.

Instead, an alternative paradigm emerges for constructing ID schemes so that the resulting
schemes are secure when the identification is done by a device which can be reset to its initial state
such as a smart card. The new paradigm consists of viewing the ability to convince the verifier that
a fized input is in a “hard” NP-language as a proof of identity, and employing an rZK proof to do
s0.

We will elaborate further about the notion of Resettable Proofs of Identity and specific imple-
mentations of it in a separate paper.

2 Overview

Due to length of this write-up we provide here an overview of our work. Details are found in
subsequent sections.

2.1 The notion of resettable zero-knowledge

For sake of simplicity, we present here a simple definition of resettable zero-knowledge. This defini-
tion captures the most important aspects of the more general definition actually used. Furthermore,
assuming the existence of pseudorandom functions, protocols satisfying the simpler definition can
be transformed into ones satisfying the full-fledge definition.

Given a specified prover P, a common input z and an auxiliary input y to P (e.g., y may
be an NP-witness for x being in some NP-language), we consider polynomially-many sequential
interactions with the residual deterministic prover strategy P, , ., determined by uniformly selecting
and fixing P’s coins, w. That is, w is uniformly selected and fixed once and for all, and the
adversary may sequentially invoke and interact with P, , .. In each such invocation, P, , ., behaves
as P would have behaved on common input z, auxiliary-input ¢, and random-tape w. Thus, the
adversary and P, , . engage in polynomially-many interactions; but whereas P, , .’s actions in the
current interaction are independent of prior interaction (since P, , ., mimics the “single interaction

" It can be shown that if, on input x, one can provide an 7ZK proof of knowledge of y so that (z,y) is in some
polynomial-time recognizable relation, then it is possible given z to find such a y in probabilistic polynomial-time.
Thus, such a proof of knowledge is useless, since by definition (of knowledge) anybody who gets input = knows such

ay.



strategy” P), the actions of the adversary may depend on prior interactions. In particular, the
adversary may repeat the same messages sent in a prior interaction, resulting in an identical prefix
of an interaction (since the prover’s randomness is fixed). Furthermore, by deviating in the next
message, the adversary may obtain two different continuations of the same prefix of an interaction.
Viewed in other terms, the adversary may “effectively rewind” the prover to any point in a prior
interaction, and carry-on a new continuation (of this interaction prefix) from this point.

Definition 1 (resettable security — simple case — vanilla model): A prover strategy P is said
to be resettable zero-knowledge (on L) if for every probabilistic polynomial-time adversary V* as
below there exists a probabilistic polynomial-time simulator M* so that the following distribution
ensembles, indezed by a common input x € L and a prover auziliary input y, are computationally
indistinguishable (cf., [27, 39]):

Distribution 1 is defined by the following random process which depends on P and V*.

1. Randomly select and fix a random-tape, w, for P, resulting in a deterministic strategy
P' = P, 4. defined by Py, (history) = P(z,y,w; history ).

2. Machine V* is allowed to initiate polynomially-many sequential interactions with P'.
The actions of V* in the i*" interaction with P' may depend on previous interactions,
but the i*® interaction takes place only after the i — 1% interaction was completed.

More formally, V* sends whatever message its pleases, yet this message is answered as
indicated above. That is, suppose P' expects to get t messages per interaction. Then, for
every i > 0 and j = 1,...,t, the it + 5 message sent by V* is treated as the 5" message
in the i*® interaction of P!, and accordingly the response is P'(msgiH_l, vy msgiH_j), where
msg,, is the k™™ message sent by V*.

3. Once V* decides it is done interacting with P', it (i.e., V*) produces an output based on
its view of these interactions (which, as usual, includes the internal coin-tosses of V*).

Distribution 2: The output of M*(z).

We note that all known zero-knowledge protocols are NOT resettable zero-knowledge. (Furthermore,
they are even NOT resettable witness indistinguishable.) For example, ability to “rewind” the
original zero-knowledge proof for 3-Colorability [25], allows the adversary to fully recover the 3-
coloring of the input graph used by the prover: The adversary merely invokes the proof system
many times, and asks the prover to reveal a uniformly selected edge in each invocation. Since the
prover’s randomness is fixed in all these invocations, it will commit to the same coloring of the graph,
and reveal the values (w.r.t this fixed coloring) of two adjacent vertices in each invocation. Thus,
after polynomially-many invocations (i.e., actually linear in the number of edges), the adversary
will obtain the values of all vertices w.r.t one fixed coloring. (Recall that in the standard zero-
knowledge model the adversary will merely obtain in each invocation two different values w.r.t an
independently chosen random coloring.)

In Section 4, the above definition is generalized by allowing the adversary to interleave the
various executions (rather than execute them sequentially one after the other). Interestingly, this
does not change the power of the model: Every protocol that is resettable zero-knowledge in the
non-interleaved model is also resettable zero-knowledge in the interleaved model. This equivalence
is important since it allows us to analyze protocols in the simpler non-interleaved model and infer
their security in the general (interleaved) model for free. (We use this fact to simplify the exposition



of the analysis of our various protocols.) Another extension (to Def. 1) is to allow the adversary to
interact (many times) with several random independent incarnations of P (rather than with a single
one). That is, rather than interacting many times with one Py, ,, where w is randomly selected,
the adversary many interact many times with each Py, 4, o., where the w;’s are independently and
randomly selected. Intuitively, this should not add power to the model either. Indeed, as stated
above, using pseudorandom function, one may transform protocols satisfying the single-incarnation
definition (of above) to protocols satisfying the general definition in which polynomially-many
independent incarnations are allowed.

Note that the general definition (i.e., the one allowing polynomially-many independent incar-
nations of the prover) implies concurrent zero-knowledge. In fact, concurrent zero-knowledge is
(syntactically) a very restricted case of resettable zero-knowledge (in which one may interact only
once with each of these polynomially-many incarnations).

For further details see Section 4.

2.2 NP has constant-round resettable-W1I1

The notion of Witness Indistinguishability (WI) was introduced by [16] as a relaxation of the zero-
knowledge requirement which could be still suitable in many applications and may be achieved with
greater ease and efficiency. For example, all witness indistinguishable protocols are provably closed
under parallel composition and concurrent execution.

Resettable-WI (resettable witness indistinguishable) relates to resettable zero-knowledge as
standard WI relates to ZK. Informally, in a resettable witness indistinguishable protocol a polynomial-
time verifier can still not distinguish between two different witnesses for an NP statement used by
the prover, even if it can “clone” the prover (each time with the same initial configuration, random
tape included) as many times as it pleases, and then interact with these clones in any order and
manner it wants. More formally, instead of requiring that Distribution 1 (in Def. 1 above) be sim-
ulatable by a probabilistic polynomial-time machine, we require that instances of Distribution 1 —
induced by the prover using different NP-witnesses — be computationally-indistinguishable.

We stress that all existing WI protocols are not 7WI protocols. (Even the honest verifier can
easily extract the entire witness —let alone distinguish between witnesses— when the protocol is
executed polynomially many times with a prover using the same coins.) In contrast, as stated in
Theorem 2, we can achieve constant-round 7WI interactive proofs.

To build resettable witness indistinguishable proof-systems for NP, we start with a ZK proof-
system for NP. Traditionally, the latter proof-systems rely on the randomized nature of the prover
strategy (in a sense, this is essential —cf., [26]). In our context, the prover’s randomization occurs
only once and is fixed for all subsequent interactions. So the idea is to utilize the initial ran-
domization (done in the very first invocation of the prover) in order to randomize all subsequent
invocations. The natural way of achieving this goal is to use a pseudorandom function, as defined
and constructed in [20]. However, just “using a pseudorandom function” does not suffice. The
function has to be applied to “crucial steps” of the verifier; that is, exactly the steps which the
verifier may want to alter later (by rewinding) in order to extract knowledge. Thus, the zero-
knowledge proof system for 3-Colorability of [25] is not an adequate starting-point (since there
the prover’s randomization takes place before a crucial step by the verifier). Instead, we start with
the zero-knowledge proof system of Goldreich and Kahan [22]: In that proof system, the verifier
first commits to a sequence of edge-queries, then the prover commits to random colorings, and
then the verifier reveals its queries and the prover reveals the adequate colors. Starting with this
proof system, we replace the prover’s random choices (in its commitment) by the evaluation of a



pseudorandom function (selected initially by the prover) on the verifier commitment. The resulting
proof system can be shown to be resettable witness indistinguishable.

An indication of the non-triviality of the result is given by the fact that we don’t know whether
the resulting protocol is resettable zero-knowledge. The key observation regarding the specific
protocol sketched above is that, in each single execution of it, all the verifier steps following its
first message (i.e., its commitment message) are essentially determined. The only choice left to
the verifier is whether to reveal the correct value (i.e., properly decommmit) or refuse to continue
(i.e., send an invalid decommitment message). This small level of freedom allows to prove that
the protocol is resettable witness indistinguishable (however, it prevents us from proving that the
protocol is resettable zero-knowledge): intuitively, if the verifier’s subsequent steps are determined
(except for the abort possibility) then its only real freedom is in selecting its first message. Now, if it
selects the same first message as in a prior interaction, it will only get the same interaction transcript
again (which being easily simulatable by mere copying is quite useless). If, on the other hand, the
verifier selects as first message a string different from the one used as first message in all prior
interactions then the prover’s actions in the current interaction will be independent of its actions in
prior interactions (since the prover’s actions are determined by applying a pseudorandom function to
the verifier’s first message). So in this case the verifier obtains no more than in standard sequential
composition of zero-knowledge protocols (which are well-known to remain zero-knowledge).

We warn that the explanation provided above ignores several important issues. For further
details see Section 5.

2.3 NP has resettable-ZK proofs

We show how to construct resettable zero-knowledge proof systems for any language in NP. Our
starting point is a concurrent zero-knowledge proof system of Ransom and Kilian [37]. We modify
this proof system using the techniques discussed above (i.e., determining the prover’s actions by
applying a pseudorandom function to suitable transcripts of the interaction so far), and replace the
concurrent witness indistinguishable (concurrent-WTI) proof system employed by [37] with our reset-
table witness indistinguishable proof system. Whereas any WI proof (cf. [16]) is also concurrent-WI
(cf. [14]), let us stress again that all previously known WI proofs are not resettable witness indis-
tinguishable. Thus, our resettable witness indistinguishable proof system plays a major role in
showing that NP has resettable zero-knowledge proofs.

It is easy to show that the protocol resulting from the above sketched transformation remains
a proof system for the same language. The tricky part is to show that it is indeed resettable zero-
knowledge (and not merely zero-knowledge in the standard sense, which is obvious). We present
two proofs for the claim that the resulting proof systems is indeed resettable zero-knowledge. The
first proof adapts the simulation argument of [37], extending it from their concurrent model to our
stronger resettable model. The second (i.e., alternative) proof refers to a slight modification of
the above protocol. Very loosely speaking, it consists of showing that, for any protocol in which
the verifier’s actions are essentially determined by its first message (as in the case of the modified
protocol), if the protocol is concurrent zero-knowledge then it is also resettable zero-knowledge.

Again, we warn that the explanation provided above ignores several important issues. For
further details see Section 6.

2.4 NP has resettable-ZK arguments

Computationally-sound proofs (a.k.a arguments) [8] are a weaker notion that interactive proofs [29]:
it is infeasible rather than impossible to fool the verifier to accept wrong statements with non-



negligible probability. Still, we present an alternative construction achieving resettable zero-
knowledge arguments for any language in NP (indeed a weaker result than the one reviewed in
previous subsection). The reason this alternative construction is interesting is that we don’t use a
reduction to some NP-complete language (as in the proof system above). Loosely speaking, given
a suitable resettable witness indistinguishable argument for a language L (in NP), we show how
to transform it to a resettable zero-knowledge argument for L (without using a reduction of L to
some NP-complete language, as done in the above proof system).®

Our construction uses a technique which may be of independent interest. We use two secure
schemes, one with security parameter K and the other with a smaller security parameter k. Suppose
that, for some € > 0, the security of the first scheme (with security parameter K) is maintained
against adversaries running in time 2%°, and that instances of the second scheme (with security
parameter k) can be broken in time 2*. Then setting k¥ = K¢/2 guarantees both security of the
second scheme as well as “non-malleability” (cf. [10]) of the first scheme in presence of the second
one. The reason for the latter fact is that breaking the second scheme can be incorporated into
an adversary attacking the first scheme without significantly effecting its running-time: Such an
adversary is allowed running-time 25° which dominates the time 2¥ = 25°/2 required for breaking
the second scheme. This “telescopic” usage of intractability assumptions can be generalized to a
case in which we have a lower and upper bound on the complexity of some problem; specifically,
we need a lower bound L(n) on the average-case of solving n-bit long instances, and an upper-
bound U(n) > L(n) on the corresponding worst-case complexity. Suppose that we can choose
polynomially-related security parameters k¥ and K so that L(k) is infeasible and U(k) < L(K)
(i.e., L(k) is infeasible and U(k) < L(poly(k))). Then the above reasoning still holds. (Above we
used L(n) = 2" and U(n) = 2".)

For further details see Section 7.

2.5 The Public-Key model

So far in this overview (and the corresponding Part I of this work), no set-up assumptions have
been made. This is indeed the “simplest” model used for two-party and multi-party computation.
Another model, used routinely in the different context of providing privacy and/or authenticity of
messages, is the public-key model, which instead relies on a set-up stage in which public-keys are
registered. One crucial aspect of our work consists of using the public-key model for tasks totally
unrelated to privacy and authenticity.?

In the mildest form of the latter model, users are assumed to have deposited a public-key in a
public file that is accessible by all users at all times. Access to this file may be implementable by
either providing access to several identical servers, or by providing users with certificates for their
deposited public-keys. The only assumption about this file is that it is guaranteed that entries
in it were deposited before any interaction among the users takes place. No further assumption
about this file is made. In particular, an adversary may deposit in it arbitrarily many public-keys,
including public key are are “non-sensical” or “bad” (e.g., for which no corresponding secret key
exist or are known).

We use such a public-file simply for limiting the number of different identities that a potential
adversary may assume — it may indeed try to impersonate any registered user, but it cannot act

8 In the proof system above, which follows the strategy of [37], a reduction to some NP-complete language is
employed in order to obtain an instance on which the resettable witness indistinguishable proof system is executed.
Specifically, a statement of the form “z € L” is reduced to a statement of the form “either z € L or x”, where x is a
statement which depends on a preliminary part of the execution. For further details see Section 6.

9 A similar use was independently suggested by Damgard [9] (see discussion below).
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on behalf of a non-registered user. This fact plays a key role in our main result for this model:

Under the strong DLP assumption, we show how to construct constant-round resettable
zero-knowledge arguments for N'P in the public-key model.

Since concurrent zero-knowledge are a special case of resettable zero-knowledge, we obtain constant-
round concurrent zero-knowledge arguments for NP in the public-key model. We stress that
unlike [12], the above stated result does not use any timing assumption.

We mention that the above constant-round resettable zero-knowledge arguments also employ
the idea of “telescopic” usage of intractability assumptions discussed in the previous subsection.
For further details see Sections 8 through 10: Specifically, Sections 9 and 10 provide two alternative
presentations of essentially the same protocol. (The simulator provided in Section 9 can be easily
adapted to simulate the protocol as presented in Section 10.)

RELATED WORK. Using weaker assumptions but a stronger public-key model, Damgard has in-
dependently shown that NP has constant-round concurrent zero-knowledge arguments [9]. His
public-key model postulates that the public-keys depositted in the public-file are legal, and further-
more that the user (or somebody else) knows the corresponding private-key. We stress that our
public-key model is much milder (see above).

MORE ON THE MODEL. A possible critique to this result is that it assumes that registration takes
place before any interaction between users may take place. One may claim that in some settings
this is not desirable, as one may want to allow users to join-in (i.e., register) also during the active
life-time of the system. It is indeed desirable to allow parties to register at all times. Note, however,
that such a flexible model requires some restriction (as otherwise it coincides with the “vanilla”
model, that is the model in which no set-up stage or special stage or model is used). We thus
suggest two intermediate models in which we can obtain our result.

1. One possibility is to make the assumption that a prover will not interact with a verifier unless
the verifier’s public-key was registered a sufficiently long time before, where “sufficiently long”
ensures that whatever sessions were in progress before registration have terminated by now.
Namely, parties need be able to distinguish between some predetermined large delay (which
all newly registered public-keys must undergo before being used) and a small delay (which
upper bounds the communication delays in actual interaction). Making such a distinction is
quite reasonable in practice (e.g., say that a user in nowadays internet may start using its key
a couple of days after registration, whereas each internet session is assumed to be completable
within a couple of hours).

Notice that, unlike usage of timing in [12], our usage of timing here does NOT affect typical
interactions, which can be and actually are completed much faster than the conservative
upper bound (of message delay) being used. In contrast, in [12] each user delays each critical
message by an amount of time that upper bounds normal transmission delay. This means
that all communication is delayed by this upper bound. Thus, in their case, this always causes
significant delays: in fact the upper bound should be conservative enough so to guarantee
that communication by honest users are rarely rejected.

2. A different possibility is to require newly registered public-keys to be used only after autho-
rization by a trusted “switchboard”, which may interact with the new user and then issue
a certificate that will allow it to act as a verifier. We stress that users that register at set-
up time are not required to interact with a server (or a switchboard): they merely deposit
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their public-key via a one-sided communication. This alternative seems better suited to the
smart-card application discussed in the introduction.

Let us repeat here that registration is only required of verifiers. Again, this is nicely suited to
smart-card applications in which the provers are played by the smart-cards and the verifiers by
service providers. In such applications service providers are much fewer in number, and are anyhow
required to undergo more complex authorization procedures (than the smart-card users).

ALMOST CONSTANT-ROUND RZK UNDER WEAKER ASSUMPTIONS. We mention that using the weak
DLP assumption (rather than the strong one), we obtain for every unbounded function 7 : N — N,
an r(-)-round resettable zero-knowledge argument for AP in the public-key model. Again, such
protocols are concurrent zero-knowledge (as a special case). (For further details see Section 9.3.)

3 Preliminaries

3.1 Standard Conventions

Throughout this paper we consider interactive proof systems [29] in which the designated prover
strategy can be implemented in probabilistic polynomial-time given an adequate auxiliary input.
Specifically, we consider interactive proofs for languages in NP and thus the adequate auxiliary
input is an NP-witness for the membership of the common input in the language. Also, whenever
we talk of an interactive proof system, we mean one in which the error probability is a negligible
function of the length of the common input (i.e., for every polynomial p and all sufficiently long
x’s, the error probability on common input z is smaller than 1/p(|z|)). Actually, we may further
restrict the meaning of the term ‘interactive proof system’ by requiring that inputs in the language
are accepted with probability 1 (i.e., so-called perfect completeness).

Likewise, when we talk of computationally-sound proof systems (a.k.a arguments) [8] we mean
ones with perfect completeness in which it is infeasible to cheat with non-negligible probability.
Specifically, for every polynomial p and all sufficiently large inputs x not in the language, every
circuit of size p(|z|) (representing a cheating prover strategy) may convince the verifier to accept
only with probability less than 1/p(|z|).

For simplicity, we consider only interactive proof systems in which the total number of message-
exchanges (a.k.a. rounds) is a pre-determined (polynomial-time computable) function of the com-
mon input. We are specially interested in interactive proof systems in which this number is a
constant; these are called constant-round interactive proof systems.

We adopt the basic paradigm of the definition of zero-knowledge [29]: The output of every
probabilistic polynomial-time adversary which interacts with the designated prover on a common
input in the language, ought to simulatable by a probabilistic polynomial-time machine (which
interacts with nobody). The latter machine is called a simulator. We mention that the simulators
in Part I of the paper work is strict polynomial-time whereas those in Part II work in expected
polynomial-time. (Recall that it is not known whether constant-round zero-knowledge proofs for
NP exists, if one insists on strictly polynomial-time simulators (rather than expected polynomial-
time ones); See [22, 19]. Recall that Part II focuses on constant-round resettable zero-knowledge
systems.)

We also refer (or, actually, extend) the definition of witness indistinguishable proof systems
(cf., [16]). Loosely speaking, these are proof systems in which the prover is a probabilistic polynomial-
time machine with auxiliary input (typically, an NP-witness), having the property that interactions
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in which the prover uses different “legitimate” auxiliary-inputs are computationally indistinguish-
able.

3.2 The models considered

In this paper we consider two main models, depending on the initial set-up assumptions. The
vanilla case, considered in Part I, is when no set-up assumptions are made. This is indeed the
“simplest” model typically employed in theoretical works regarding secure two-party and multi-
party computation. In Part IT we consider the public-key model as described in subsection 2.5.
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Part I
The Vanilla Model

4 Definition

Given a specified prover P, a common input z and an auxiliary input y to P (e.g., ¥ may be an
NP-witness for z being in some NP-language), we consider polynomially-many interactions with
the residual deterministic prover strategy P, , . determined by uniformly selecting and fixing P’s
coins, w. That is, w is uniformly selected and fixed once and for all, and the adversary may invoke
and interact with P, , ., many times, each such interaction is called a session. In each such session,
P, , . behaves as P would have behaved on common input z, auxiliary-input y, and random-tape w.
Thus, the adversary and P, , ., engage in polynomially-many sessions; but whereas P, , .,’s actions
in the current session are independent of other sessions (since P,y . mimics the “single session
strategy” P), the actions of the adversary may depend on other sessions.

We consider two equivalent variants of the model. In the basic variant, a session must be
terminated (either completed or aborted) before a new session can be initiated by the adversary. In
the interleaving variant, this restriction is not made and so the adversary may concurrently initiate
and interact with P,, ., in many sessions. A suitable formalism must be introduce in order to
support these concurrent executions. For simplicity, say that the adversary prepend a session-ID to
each message it sends, and a distinct copy of P, , ., handles all messages prepended by any fixed ID.
Note that in both variants, the adversary may repeat in the current session the same messages sent
in a prior session, resulting in an identical prefix of an interaction (since the prover’s randomness
is fixed). Furthermore, by deviating in the next message, the adversary may obtain two different
continuations of the same prefix of an interaction. Viewed in other terms, the adversary may
“effectively rewind” the prover to any point in a prior interaction, and carry-on a new continuation
(of this interaction prefix) from this point. (The equivalence of the two variants is shown below.)

The interleaved variant of our model seems related to the model of concurrent zero-knowledge.
In both models an adversary conducts polynomially-many interleaved interactions with the prover.
In our case these interactions are all with respect to the same common input and more importantly
the same prover’s random coins (i.e., they are all with copies of the same P,,,, where w is
random). In contrast, in the concurrent zero-knowledge model, each interaction is with respect
to an independent sequence of prover’s coin tosses (while the common input may differ and may
be the same). That is, in the concurrent zero-knowledge model, one may interact only once with
each Py .. .., where the w;’s are random and independent of one another. Intuitively, interacting
with copies of the prover that share the same coin sequence w seem far more advantageous to the
adversary than interacting with copies which have each its independent coin tosses w;. (In fact, an
adversary of the resettable model may easily obtain the NP-witness used in the concurrent zero-
knowledge protocols of [37].) However, in order to show that resettable zero-knowledge implies
concurrent zero-knowledge, we augment the former model a little so to allow polynomially-many
interaction with respect to each of a set of polynomially-many independent choices of prover’s coin
sequence.'® That is, we allow to interact polynomially-many times with each of polynomially-many

10 We comment that assuming that one-way function exists, we may transform any polynomial-time prover that is
resettable zero-knowledge with respect to a single common input and a single random-pad into one that is resettable
zero-knowledge with respect to polynomially-many common inputs and random-pads (as defined below). The key
idea, used more extensively in Section 5, is to apply a pseudorandom function to the identifier of the prover’s copy
in order to derive “computationally independent” random-pads.
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Py, y,w;’s where the w;’s are random and independent of one another.

The actual definition

In the actual definition we use a different formalism than the one presented informally above. That
is, instead of prepending each message to Py, 4, .. with a session ID, we prepend each message by
the full transcript of all messages exchanged so far. That is, we adopt the following convention.

Convention: Given an interactive pair of (deterministic) machines, (A, B), we construct a mod-
ified pair, (A', B"), so that fort =1,2, ...

Ao, Biy ey ar1,80-1) = (o1, By ees i1, Be-1, A(B1, -y B-1))
provided that «; = A(B1, ..., Bi—1), fori=1,...,t — 1

Bl(ab/@la---:atflaﬂtflaat) = (041751,---;atflaﬁtfbat,B(Oél;---;at71))
provided that ; = B(ai,...,;—1), fori =1,..,t — 1

In case the corresponding condition does not hold, the modified machine outputs a special symbol
indicating detection of cheating. Probabilistic machine are handled similarly (just view the random-
pad of the machine as part of it). Same for initial (common and auxiliary) inputs. We stress that
the modified machines are memoryless (they respond to each message based solely on the message
and their initial inputs), whereas the original machines respond to each message based on their
initial inputs and the sequence of all messages they have received so far.

In the traditional context of zero-knowledge, the above transformation adds power to the ad-
versary, since each machine just checks partial properness of the history presented to it — its own
previous messages.'! That is, A’ checks that a; = A(f, ..., Bi_1), but it does not (and in general
cannot) check that 8; = B(ay,...,a;—1) as it does not know B (which by the convention regarding
probabilistic machines and inputs may depend also on “hidden variables” — the random-tape and/or
the auxiliary input to B). However, in the context of resettable zero-knowledge this transformation
does not add power: Indeed, the transformation allows an adversary to pick a different (possible)
continuation to an interaction, but this is allowed anyhow in the resettable model. In the following
definition, we assume that P is a machine resulting from the modification above.

Definition 2 (resettable security — vanilla model): A prover strategy P is said to be resettable
zero-knowledge on L if for every probabilistic polynomial-time adversary V* as below there exists
a probabilistic polynomial-time simulator M* so that the following distribution ensembles, where
each distribution is indezed by a sequence of common inputs T = T1,...,Tpoly@m) € LN {0,1}"
and a corresponding sequence of prover’s auziliary-inputs Y = Y1,..., Ypoly(n), 0T€ computational
indistinguishable:

Distribution 1 is defined by the following random process which depends on P and V*.

1. Randomly select and fizx t = poly(n) random-tape, wi,...,w;, for P, resulting in de-
terministic strategies P(7) = Py, i w; defined by Py, g, 0.(a) = P(x,yi,wj, a), for
i,7 € {1,...,t}.

2. Machine V* is allowed to initiate polynomially-many interactions with the P(:3) %,

1 Actually, this part of the history may be omitted from these messages, as it can be re-computed by the receiver
itself. Furthermore, it is actually not needed at all. We chose the current convention for greater explicitness.

15



e In the general model (i.e., the interleaving version) we allow V* to send arbitrary
messages to each of the P7) and obtain the response of P%7) to such message.

e In the sequential (or rewindable) version V* is required to complete its current inter-
action with the current copy of P(3) before starting an interaction with any pULd),
regardless if (i,7) = (i',4") or not. Thus, the activity of V* proceeds in rounds. In
each round it selects one of the PU3)’s and conducts a complete interaction with it.

3. Once V* decides it is done interacting with the PI) g gt (i.e., V*) produces an output
based on its view of these interactions. Let us denote this output by (P(y),V*)(T).

Distribution 2: The output of M*(Z).

In case there erists a universal probabilistic polynomial-time machine, M, so that M* can be im-
plemented by letting M have oracle-access to V*, we say that P is resettable zero-knowledge via a
black-box simulation.!?

A prover strategy P is said to be resettable witness indistinguishable (on L) if every two distri-
bution ensembles of Type 1, where each distribution is indexed by a sequence of common inputs
T = T1, -y Tpoly(n) € LN {0,1}", depending on two different sequence of prover’s auziliary-inputs,

aux(l)(f) - ygl), ...,y&)ly(n) and aux(z)(j) = y§2), ""y;(>20)1y(n)’ are computationally indistinguishable.

That is, we require that {(P(aux()(%)), V*)(Z)}z and {(P(aux? (), V*)(Z)}z are computationally
indistinguishable.

Several previously investigated aspects of zero-knowledge can be casted as special cases of the above
general model. For example, sequential composition of zero-knowledge protocols coincides with a
special case of the non-interleaved model, where one is allowed to run each PUJ) once (and may
not run any other P(i’j)). More importantly, concurrent zero-knowledge coincides with a special
case of the interleaving model where one is allowed to run each PUJ) once (and may not run any
other P(i’j)).13 Thus, every resettable zero-knowledge protocol is concurrent zero-knowledge.

Recall that, as stated above (and shown below), all known zero-knowledge protocols are NOT
resettable zero-knowledge. Furthermore, they are even NOT resettable witness indistinguishable.
For example, ability to “reset” the original zero-knowledge proof for 3-Colorability [25], allows the
adversary to fully recover the 3-coloring of the input graph used by the prover. Still (as shown
below), resettable zero-knowledge interactive proofs for NP exists, under standard intractability
assumptions.

Equivalence of the two variants

As stated above, the restricted non-interleaved model is actually as powerful as the general (in-
terleaved) model. That is, any prover strategy which is resettable zero-knowledge in the non-
interleaved model is also resettable zero-knowledge in general (in the interleaved model). In fact, a
stronger claim holds:

Theorem 3 Let P be any prover strategy. Then for every probabilistic polynomial-time V* for the
interleaved model, there exists a probabilistic polynomial-time W* in the non-interleaved model so
that (P(y), W*)(x) is distributed identically to (P(y), V*)(T).

12 Recall that the existence of black-box simulators implies auxiliary-input zero-knowledge (cf. [26, 23]).

13Tndeed, the possibility to run various P7)’s (i.e., same j and varying j's) was never considered before. This
refers to running the prover on the same random-tape but on different input, and is a natural extension of our notion
of resettable zero-knowledge.
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So, in particular, a simulator guaranteed for W* will do also for V*.

Proof Sketch: Using V* as a black-box and interacting with instances of P in a non-interleaved
manner, W* emulates for V* interleaved interactions with the same P. The emulation proceeds
round by round. In order to emulate the next communication round (i.e., a message sent by
the interleaving adversary followed by a respond by some copy of P, ), the (non-interleaving)
adversary W™ initiates a new session of the protocol, and conducts the prior interaction relating to
the session that the interleaving adversary wishes to extend.

For simplicity, assume that V* interacts with a single incarnation of P (i.e., a single P,
rather than polynomially-many such Py, 4, .,’s). Suppose that the sequence of messages emulated
so far is f1, ..., i and the message to be emulated is G111 = (z,ﬂ]@ ) (i.e., the j + 1st message of
session with ID 4). Then the non-interleaving adversary, W*, initiates a new session with P,

and proceeds in j + 1 steps so that in the k*® step it sends ﬂ,(:) and obtains the response of P, ..

It forward to V* (only) the last response of P, , ., (i.e., the response of P, to ﬂ,(cz)), and aborts
the current (non-interleaved) session.

The argument extends easily to the general case (in which V* interacts with polynomially-many
Py, y;w;’s). All that is required is for W* to initiate a new session with the corresponding Py, 4. ..
(i.e., the one to which the current message of V* was directed). [l

5 Resettable Witness-Indistinguishable proofs for NP

As a first indication towards the feasibility of the resettable model and as a tool towards the
construction of resettable zero-knowledge proof systems, we show that under standard intractability
assumptions, any NP-statement has a resettable witness indistinguishable proof system. We stress
that whereas any witness indistinguishable proof (cf. [16]) is also concurrent-WI (cf. [14]), all
previously known witness indistinguishable proof are not resettable witness indistinguishable. We
actually prove the following:

Theorem 4 If two-round perfectly-hiding commitment schemes exists then every language in NP
has a constant-round resettable witness indistinguishable interactive proof system.

Recall that the hypothesis holds if families of claw-free permutations exists, which in turn holds if
the Discrete Logarithm Problem (DLP) is hard modulo primes p of the form 2¢ + 1 where g is a
prime. We note that the theorem holds also under the assumption that there exist constant-round
(rather than two-round) perfectly-hiding commitment schemes that is computationally-binding also
in the resettable model (i.e., when the receiver may be reset). Note that any two-round perfectly-
hiding commitment scheme is computationally-binding in the resettable model.

Proof Sketch of Theorem 4

Traditional zero-knowledge interactive proofs rely on the randomized nature of the prover strategy.
In a sense, this is essential (cf., [26]). In our context, the prover’s randomization occurs only once
and is fixed for all subsequent interactions. So the main idea is to utilize the initial randomization
(done in the very first invocation of the prover) in order to randomize all subsequent invocations.
The natural way of achieving this goal is to use a pseudorandom function, as defined and constructed
in [20].' However, just “using a pseudorandom function” does not suffice. The function has to be

HRecall, that by combining [32] and [20] one may construct pseudorandom functions using any one-way function.
Furthermore, relying on the intractability of the DLP, a much more efficient construction is available by combining [6]
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applied to “crucial steps” of the verifier; that is, exactly the steps which the verifier may want to
alter later (by rewinding) in order to extract knowledge. Thus, the zero-knowledge proof system
for 3-Colorability of [25] is not an adequate starting-point (since there the prover’s randomization
takes place before a crucial step by the verifier). Instead, we start with the zero-knowledge proof
system of Goldreich and Kahan [22]: In that proof system, the verifier first commits to a sequence
of edge-queries, then the prover commits to random colorings, and then the verifier reveals its
queries and the prover reveals the adequate colors. Starting with this proof system, we replace
the prover’s random choices (in its commitment) by the evaluation of a pseudorandom function
(selected initially by the prover) on the verifier commitment. Thus, on an abstract level, the proof
system is as follows.

Common input: A graph G = (V, E), where V = [n] oo {1,...,n}, claimed to be 3-colorable.
Prover’s auxiliary input: A 3-coloring ¢ : [n] — {1,2,3} of G.

Prover’s initial randomization: The prover’s random-pad is used to determine a pseudorandom
function f : {0, 1}P°13’(n) — {0, 1}p01y(n).

The rest is an adaptation of the [22] proof system, where the only modification is at Step (P1).

(V1) The verifier commits to a sequence of ¢ def . | E| uniformly and independently chosen edges.
The commitment is done using a perfectly-hiding commitment scheme, so that the prover gets
no information on the committed values, while it is infeasible for the verifier to “de-commit”
in two different ways (i.e., the scheme is computationally-binding).

(P1) Asin [25, 22], the prover commits to ¢ random relabeling of colors. The commitment is done
using an ordinary commitment scheme, providing computational-secrecy and perfect-binding.
The key point is that the prover’s random choices (both for the relabeling and randomization
needed for the commitment scheme) are replaced by the value of the function f applied to
the message sent by the verifier in Step (V1).

Actually, we may apply f to the pair ((G, ¢),msg), where msg denotes the message sent by the
verifier in Step (V1). That is, let (m1,71),..., (7, 7¢) = f(G, ¢, msg), and use 7; : {1,2,3} —
{1,2,3} as the i*® randomization of ¢ (i.e., ¢i(v) = mi(#(v))), and 7; = (Ti1,.me;Tin) @S
randomness to be used when committing to the values of ¢; on [n]. That is, for s = 1,...,¢
and j = 1,...,n, the prover commits to ¢;(j) using randomness 7; ;.

(V2) The verifier reveals the sequence of ¢ edges to which it has committed to in Step (V1). It
also provides the necessary information required to determine the correctness of the revealed
values (i.e., “de-commit”).

(P2) In case the values revealed (plus the “de-commitment”) in Step (V2) match the commitments
sent in Step (V1), and in case all queries are edges, the prover reveals the corresponding colors
and provides the corresponding “de-commitment”. That is, suppose that the i*? edge revealed
in Step (V2) is (u,v), then the prover reveals ¢;(u) and ¢;(v).

(V3) In case the values revealed (plus the “de-commitment”) in Step (P2) match the commitments
sent in Step (P1), and in case they look as part of legal 3-colorings (i.e., each corresponding
pair is a pair of different elements from the set {1,2,3}), the verifier accepts. Otherwise it
rejects.

and [20].
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There is one problem, however, with the above presentation. In Step (V1) we have assumed the
existence of a 1-round (i.e., uni-directional communication) perfectly-hiding commitment scheme.
However, any perfectly-hiding commitment scheme requires at least two rounds of communication
(i.e., a message sent from the commitment-receiver to the commitment-sender followed by a message
from the sender to the receiver).!®> Thus, we need to integrate such (two-round) commitment
schemes in the above protocol. Recall that the existence of such a scheme implies the existence of
one-way functions [33], which suffices for constructing pseudorandom generators [32], pseudorandom
functions [20], and (two-round) perfectly-binding commitment schemes [36]. (Our description can
be easily modified to utilize the latter, rather than a one-round perfectly-binding scheme which
may be constructed assuming that one-way permutations exist.)

Clearly, the above protocol constitutes an interactive proof system for 3-colorability (since as
far as cheating provers are concerned there is no difference between the above protocol and the one
in [22]). Thus the task is to show that the protocol is resettable witness indistinguishable.

Comment: It appears as if the above protocol is resettable zero-knowledge; however, we were
not able to prove this. The subtle problem is that the verifier may fail to de-commit in Step (V2).
Specifically, it may fail to decommit in one session and decommit properly in a later session in which
it has sent the same message in Step (V1). Doing so will harm the straightforward simulation
attempt, which proceeds session-by-session so that in each session one first tries to obtain the
verifier’s commitment values via a dummy (P1)-message so that one can later simulate Step (P1)
(and the subsequent steps of the same session) properly. The problem is that we cannot answer
the same Step (V1) message, sent in two sessions, in two different ways (in the two sessions), since
the prover would answer identically in the real execution.!6

Showing that the protocol in resettable witness indistinguishable: Fortunately, the sub-
tle problem mentioned above has much milder effect on the proof that the above protocol is witness-
indistinguishable. As a mental experiment, we consider an ideal prover that uses a truly random
function rather than a pseudorandom one.!” The key observation is that whenever a different
Step (V1) message is sent, the corresponding Step (P1) is an independently selected random com-
mitment to an independently selected random relabeling of the specific coloring ¢. Our goal is to
show that the dependence of the interaction on the specific witness coloring ¢ is computationally
unnoticeable. That is, we show that multiple sessions (with an adversary V*) in which one pos-
sible witness coloring ¢ is used are computationally indistinguishable from such sessions in which

5 The lower bound refers to commitment schemes in which the computationally-hiding requirement should hold
w.r.t (non-uniform) polynomial-size circuits. (Such circuits may just incorporate two valid decommits for the same
1-message commitment.) Note that the standard zero-knowledge condition is itself somewhat non-uniform (as it
refers to any verifier’s input), and so the commitment scheme used by the verifier must be computationally-binding
w.r.t. non-uniform polynomial-size circuits. (Such non-uniform complexity assumptions are employed in all work on
zero-knowledge, with the exception of a fully-uniform treatment (cf. [18]).)

6Specifically, suppose that the simulator always tries first to send a dummy message in Step (P1), and consider
two consequetive sessions with a cheating verifier. In the first session, the verifiers commits to some edge sequence
in Step (V1) but refuses to decommit in Step (V2). The simulator will thus produce a truncated session (which, by
itself, is fine). Now suppose the verifier repeats the same Step (V1) message in the second session, but does decommit
properly in Step (V2). The simulator would like now to send a corresponding commitment to a pseudo-coloring, but
the problem is that this message is different from the dummy commitment sent in Step (P1) of the first session. Note
that the real prover will always send the same (P1)-message in response to the same (V1)-message, and so if the
simulator behaves differently this is easily detectable.

17 As usual, once the claim is established for such a prover, we replace back the random function by a pseudorandom
one (and so derive the stated result).
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another witness coloring ¢’ is used. For simplicity (and, w.l.o.g., in view of Theorem 3), we may
assume that the adversary verifier is a non-interleaving one (i.e., it completes or aborts a session
before initiating a new one). The proof uses a hybrid argument, where the 5*" hybrid is defined as
follows:

e For every j, if in the j'" session the message sent in Step (V1) is identical to one sent in
session j' (for some j' < j) then the prover repeats the corresponding Step (P1) message.

e Otherwise (i.e., the message sent in Step (V1) of session j did not appear in any prior session),
if 7 <4 then the prover uses ¢ when executing Step (P1) else (i.e., j > 1) it uses ¢'.

e Loosely speaking, in all cases, the execution of Step (P1) determines also the prover’s actions
in Step (P2).

This would have been accurate if the verifier’s commitment scheme had been perfectly-
binding, but it is only computationally-binding. Still we ignore here and below the possibility
that the verifier may decommit to the same Step (V1) message (appearing in two different
sessions) in two different way. We claim that such an event occurs with negligible probability,
or else a contradiction to the computationally-binding feature of the verifier’s commitment
scheme follows.

Thus, ability to distinguish the ensembles in question (which correspond to the extreme hybrids)
implies ability to distinguish neighboring hybrids (i.e., hybrids ¢ and i+ 1). Note that hybrids 7 and
i+ 1 may differ only when session i + 1 has a Step (V1) message that did not appear in any of the
first ¢ sessions. The key observation is that in such a case the commitment generated in response
is independent of the prior iterations. The actual argument utilizes several standard tricks: First
we use an averaging argument to fix the transcript of the first ¢ sessions. Since our distinguisher
is non-uniform we may omit these first ¢ sessions from our discussion and consider an distinguisher
which receives as input only transcripts starting at session i+ 1 (which are taken either from hybrid
ior i+1). We next transform this distinguisher into one that only receives the transcript of session
i+ 1 (by emulating the following sessions in a straightforward manner using ¢ and ¢’ which as
usual can also be incorporated in the distinguisher). Note that if a latter session repeats the same
Step (V1) message then we just copy the prover’s response from Step (P1) of the prior session. Thus
we obtain a polynomial-size circuit that distinguishes between a single execution of the protocol
in which ¢ is used and single execution in which ¢’ is used, which contradicts the fact that such
a single execution corresponds to the standard zero-knowledge/witness-indistinguishability model
(in which the protocol is equivalent to the one of [22] which is zero-knowledge and thus witness-
indistinguishable).

An alternative approach for constructing resettable witness indistinguishable
proofs

An alternative (but somewhat related) approach for constructing resettable witness indistinguish-
able proofs is to start with a non-interactive zero-knowledge proof system (cf., [5, 13]). The idea is
to employ “coin tossing into the well” (cf., [3]), but with a small twist: First, the verifier commits to
a sequence of random bits using a perfect (two-round) commitment scheme. Next, the prover sends
a corresponding sequence of bits which are determined by applying a pseudorandom function to
the verifier’s message. Then, the verifier de-commits and a reference-string for the non-interactive
zero-knowledge proof is defined (as usual in “coin tossing into the well”), and finally the prover
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sends such a (non-interactive) proof (relative to that reference-string). Further details are omitted
from the current version.

6 NP has Resettable ZK proof systems

In this section we show how to construct resettable zero-knowledge proof systems for any language
in NP. Our starting point is a concurrent zero-knowledge proof system of Ransom and Kilian [37].
We modify this proof system using the techniques presented in Section 5, and replace the concur-
rent witness indistinguishable (concurrent-WTI) proof system employed by [37] with our resettable
witness indistinguishable proof system. We stress that whereas any witness indistinguishable proof
(cf. [16]) is also concurrent-WT (cf. [14]), all previously known witness indistinguishable proof are
not resettable witness indistinguishable. Thus, the resettable witness indistinguishable proof system
of Section 5 plays a major role in obtaining the following result.

Theorem 5 If two-round perfectly-hiding commitment scheme exist then any language in NP has
a resettable zero-knowledge proof system. Furthermore, this is obtained via black-box simulation.

Recall that the hypothesis holds if claw-free permutations exist, which in turn holds if DLP is
intractable.

We start by reviewing the Ransom and Kilian protocol [37]. In essence, the protocol consists of
two stages. In the first stage, which is independent of the actual common input, k£ instances of coin
tossing into the well [3] are executed in a specific manner to be described, where k is the security
parameter (or a parameter that is polynomially related to the security parameter). Specifically, first
the verifier commits to ¥ random bit sequences, 71, ..., 7% € {0, 1}’“, and next k iterations proceed so
that in each iteration the prover commits to a random bit sequence, s;, and the verifier decommits
to the corresponding 7;. The result of the i*" coin-toss is defined as r; ® s; and is known only to the
prover. In the second stage, the prover provides a witness indistinguishable (WI) proof (cf. [16])
that either the common input is in the language or one of the outcomes of the k£ coin-tosses is the
all-zero string (i.e., r; = s; for some ). Intuitively, since the latter case is unlikely to happen in an
actual execution of the protocol, the protocol constitutes a proof system for the language. However,
the latter case is the key to the simulation of the protocol in the concurrent zero-knowledge model:
Whenever the simulator may cause r; = s; to happen for some ¢, it can simulate the rest of the
protocol (and specifically Stage 2) by merely running the WI proof system with r; as witness. (By
the WI property, such a run will be indistinguishable from a run in which an NP-witness for the
common input being in the language is used.)

To transform the above protocol into one that is resettable zero-knowledge, we replace the
prover’s random choices in the first phase by choices determined by the application of a pseudo-
random function to the verifier’s initial commitment. In addition, we replace the WI proof system
used by [37] by our resettable witness indistinguishable proof system.

6.1 The protocol (sketch)

The implementation of the protocol uses two complementary types of commitment schemes: The
prover’s commitments are via a perfectly-binding commitment scheme (which is only computationally-
hiding), whereas the verifier’s commitments are via a perfectly-hiding commitment scheme (which
is only computationally-binding). For simplicity of presentation, we will use a one-round scheme
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based on any one-way permutations!® for the first type, and a two-round scheme based on claw-free
pairs'? for the second type.

Common Input: z supposedly in the language L € NP, and a security parameter k.20
Prover’s Auxiliary Input: an NP-witness w for z € L.
Prover’s Randomness is used to define a pseudorandom function f : {0,1}<P(k) _, [ 1}poly(k),

Stage 1: This stage has little effect on the actual interaction between the prover and the verifier,
yet it provides a “trapdoor” for the simulation.

1. The verifier commits to k£ uniformly selected k-bit strings. This is done as follows.
First the prover uses f to determine its first message in the two-round perfectly-hiding
commitment scheme.?! (Towards this end, the prover applies f to an arbitrary fixed
string different from all strings to which f is applied in the sequel.) In response, the
verifier uniformly selects 71,...,7x € {0,1}*, and sends the prover its commitment to
each of the r;’s. Denote by 3 = 1, ..., Bx the sequence of k£ commitments sent by the
verifier. Note that § reveals no information about 71, ..., 7.

2. For ¢ = 1,..., k, the following two-round interaction goes on. First the prover commits
(in a perfectly-bidding way) to a random k-bit string, denoted s;, and next the verifier
decommits to ; by providing r; along with the randomness used in forming 3; from
r;. The prover’s choice (i.e., s;) as well as the randomization used in its commitment
are determined by applying f to the transcript so far.?2 We stress that s; is uniquely
determined by the string, denoted «;, sent by the prover.

Stage 2: The prover provides a resettable witness indistinguishable proof that either x € L or
T; = 8;, for some i. The NP-witness used by the prover is w, and the witness indistinguishable
proof is the one presented in Section 5. Specifically, we reduce the NP-statement either z € L
or there exists an © and an s so that o; is a valid commitment to s and r; = s to Graph
3-Colorability. (The graph is formed depending on x, the sequence of «;’s and the sequence
of 7;’s; whereas w is efficiently transformed into a 3-coloring of this graph.)

We stress that whenever a party fails to provide a message as instructed the other party halts
(detecting an obvious cheating attempt).

It is quite obvious that the above protocol constitutes a proof system for L. In particular,
the soundness property follows from the perfect-hiding property of the verifier’s commitment in
Stage 1, the perfect-binding property of the prover’s commitment, and the soundness of the proof
system used in Stage 2. The difficult part is to show that the above protocol is indeed resettable

'8 Specifically, given a one-way permutation f with a hard-core b (e.g., see [24]), one commits to bit ¢ by selecting
uniformly a string z, and sending the value f(z),b(z) ® 0. Decommitment is done by providing (o and) z.

19 Specifically, given a family of claw-free pairs, {(f0, fi) : @ € I C {0,1}*} (e.g., see [19]), the sender commits
to bit o as follows. The receiver first selects at random an index a € I and sends it to the sender, which uniformly
selects z in the domain of fJ, and sends the value fJ (z). Decommitment is done by providing (o and) z.

20 For simplicity we equate all “security governing” parameters such as the number of iterations in Stage 1, the
length of strings committed to in Stage 1, the security parameters used in the pseudorandom function and in the
commitment schemes, etc.

2! Here and in the sequel, whenever a party fails to provide a message as instructed the other party halts (detecting
an obvious cheating attempt).

22 Alternatively, it suffices to apply f to the pair (E, 7). The alternative adopted in the main text merely simplifies
the simulation a little.
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zero-knowledge. We present two alternative proofs for this claim. The first alternative is outline
below and executed in subsection 6.2, whereas the second is presented in subsection 6.3. The
first alternative consists of extending the simulation strategy of [37] from the concurrent setting to
the more demanding resettable setting. The basic strategy is based on constructing transcripts of
Stage 1 in which r; = s; for some 4, and running the witness indistinguishable proof system (as if
we were the prover) with witness s;. We wish to stress two points which are crucial to the fact that
our protocol is indeed resettable zero-knowledge:

1. The way in which [37] construct transcripts (of Stage 1) in which r; = s; for some i, can
be extended from the concurrent model to the (stronger) resettable model. The extension
involves changing the location to which the simulator is rewinded so to meet the constraints
of the resettable model.

2. The protocol used in Stage 2 is witness indistinguishable in the resettable model. We refer
the reader to Section 5 for discussion of this feature.

In both cases, the key to robustness in the resettable model is that the verifier’s actions are almost
determined by its first message in the current stage, and so applying a pseudorandom function
to this message provides the prover with sufficiently good randomization. By saying that the
verifier’s actions are almost determined by its first message in this stage we mean that this message
effectively commits the verifier to all other actions in the stage. Essentially, its only choice is whether
to continue in its “predetermined” actions or abort the protocol.2> Whereas this restricted choice
(of whether to proceed properly or abort) suffices to prevent us from proving that the (resettable
witness indistinguishable) protocol used in Stage 2 is itself resettable zero-knowledge, we’ll show
that the combined protocol (of both stages) is in fact resettable zero-knowledge.

6.2 The simulation game (sketch)

We first define a simulation game that captures the simulation strategy. Our aim in this game is
to capture the way the simulator “abuses” Stage 1 in order to produce transcripts of both stages
(and specifically of Stage 2). As usual, the simulator has black-box access to an adversary strategy
for a cheating verifier. Here this strategy operates in the resettable model which means that when
supplied with a history transcript h the verifier may send a message corresponding to some prefix
of h (i.e., such a message may be the next message in any of the sessions described in the prefix or
an invocation of a new session).?* Now, suppose that we replace Stage 2 by the verifier asking the
prover if it has an NP-witness to the statement made in this stage, and by the prover answering
honestly (i.e., always “yes” in the actual execution). (We stress that this replacement for Stage 2
takes place only if the verifier has properly decommitted in all k iterations of Stage 1.) Furthermore,
let us postulate that the simulator is required to answer honestly too. It follows that in order to
produce good simulations the simulator must force r; = s; for some 7 before completing (Stage 1
of) a session in which the verifier never fails to properly decommit. Alternatively, we postulate that

23 This text is slightly imprecise since computational-binding does not disallow a different decommitment to the
same value (i.e., providing (v,01) and (v,02) so that applying the commitment scheme to value v while using coins
o; yields the same committal, regardless of o;. But we may assume, w.l.o.g., that this does not occur (since it
only increases the prover’s freedom): Suppose that the verifier decommits to some (3; in two different ways both
corresponding to the same 7;. Then, this does not effect our attempt to force s; = r;; it only allows makes the
prover’s actions in next iterations more independent (as these may depend on the entire transcript).

24 Note that in the standard zero-knowledge model, the verifier must send the next message in the single session
described in h, whereas in the concurrent model the verifier must send the next message in any session described in
h or invoke a new session.
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the simulator may make query h to the verifier strategy only if for any (Stage 1) session that is
properly completed in h it is the case that r; = s; for some i. Recall, that without loss of generality,
we may assume that before outputting the full transcript h, the simulator queries the verifier on h
(and the latter responses with halt).

Recall that the simulator makes queries which are partial transcripts of a possible execution,
where each execution is a sequence of sessions. To simplify the exposition, the reader may assume
that these sessions are not interleaved but rather that a new session (possibly with a copy of the same
Py, y;w;) is initiated only after the previous session was terminated (i.e., completed or aborted).
We stress that the same exposition applies also to an adversary that interleaves sessions (only the
formalism is a bit more complex as we need to make conventions regarding the correspondence of
messages in an execution to various sessions). Furthermore, recall that restricting the adversary
to the non-interleaving case does not limit its power (since such an adversary may emulate an
interleaving one; see Theorem 3).

Definition 6 (the simulation game): We call a session (of Stage 1) in an execution prefiz properly
completed if (during this execution prefiz) the verifier has decommitted properly in all its k iterations.
A black-box simulator (for Stage 1) is called honest if for every query h made by the simulator and
for every properly completed session in h, it is the case that for some i the it® prover’s commitment
in this session is to a value equal to the i*" value revealed (and properly decommitted) by the verifier
in this sessiomn.

Recall that the queries are made to adversary strategies which may respond by a next message in
an existing session or by an initiation of a new session. We stress that new sessions may be with
a copy P,y w; which was already used in a previous session (described in the prefix). Thus, it
is instructive to prepend each such initiation with the corresponding pair (7,j). Finally, since the
adversary’s strategy to which we have black-box access captures the operation of a poly(k)-time
adversary, we know that for some polynomial p it is the case that for any query made by the
simulator either the verifier strategy aborts or the total number of sessions appearing in the query
is at most p(k).

Theorem 7 Suppose that the commitment schemes used in Stage 1 are as postulated. Specifically,
suppose that the computational security conditions hold with respect to poly(k)-size circuits. Then,
there exists an honest (black-box) simulator operating in poly(k)-time that, for every poly(k)-time
verifier V* in the ressetable model, has output that is computationally indistinguishable (again w.r.t
parameter k) from the transcript of executions of Stage 1 by V*.

The proof is constructive. It will be clear from the construction that the simulator runs in strict (not
merely expected!) poly(k)-time. As in the proof of Theorem 4, we will consider an imaginary prover
that utilizes a truly random function rather than a pseudorandom one. We will make extensive
use of the hypothesis that the verifier’s commitment is computational-binding, and ignore the rare
cases (which may occur only with negligible probability) in which during the simulation game the
verifier properly decommits to the same commitment so to support two different values. Thus,
at any point where the verifier sends a decommit message, it is either a proper decommitment

to a unique value (associated with the corresponding commitment message) or a special message

indicating refusal to decommit. Let K def poly(k) (i-e., p(k) above) be a bound on the number

of sessions initiated by the verifier strategy (say in the actual execution). We assume K is known
(but this assumption may be easily removed by using the standard doubling trick; see [37]).
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Motivation towards the simulator: Standard simulator (and the current one is no exception)
proceed by rewinding the verifier so to force situations that occur rarely in actual executions (i.e., in
our case 1; = s; for some 7). (In a sense, impossibility results as [23] indicate that such “rewinding”
in unavoidable.) A key observation, originating in [12], is that whenever many sessions are to
be simulated rewinding may result in loss of work done and cause the simulator to do the same
amount of work again. Specifically, all simulation-work done for sessions starting after the point
to which we rewind may be loss. The key observation is that only work invested for such “fresh”
sessions is lost. Loosely speaking, considering a specific session, since there are in total at most
K sessions, there must be an iteration (i.e., an ¢ € {1,...,k}) so that at most K/k sessions start
in the interval corresponding to possible rewindings of the i'! iteration (of this specific session).
So if we try to rewind on the correct i, we will invest (and so waste) only work proportional to
K/k sessions. So the idea is to abort the rewinding attempt on the *! iteration if more than K/k
session are initiated in the corresponding interval. The same reasoning applies also recursively
(i.e., to the rewinding in these K/k sessions). So at the /' level of the recursion we may need to
deal with K, = K/k*! sessions, and each may cause us work proportional to the simulation of
K;/k = K/k* sessions. Denoting by W (m) the amount of work invested for m sessions, we obtain
the recursion W (m) = O(m - W(m/k)), which solves to W(K) = K©Ug K)  Since K = poly(k)
we get W(K) = K91 25 Clearly, the above is but a rough sketch of the argument and numerous
details should be dealt with (as done below).

The main procedure: This procedure uses a subroutine, denoted NextProverMsg, that given
a partial transcript of an execution ending in a verifier message, returns the next prover message
(in the session indicated by the verifier). Initiating h to equal the sequence of common inputs T
and S < 0, the main procedure repeats the following steps until V* terminates, at which point it
outputs h.

1. Extend the transcript by one verifier message: h < (h,V*(h));

2. Extend the transcript by one prover message: (S,msg) < NextProverMsg(K,S,h) if msg =
fail then we abort without output else we let h < (h,msg).

The rest of the description is recursive: NextProverMsg calls a subroutine Solve which in turn
calls NextProverMsg itself. However the first parameter in these calls decreases and this provides
a bound on the running time. The second parameter passed to NextProverMsg is a (monotonically
growing) set of “solved” sessions (i.e., sessions for which we’ve forced r; = s; for some i) along with
adequate witnesses (i.e., the r;’s). We assume all procedures know K (as above). Recall that by
our convention (see Section 4), each message (of both prover and verifier) includes as prefix the
entire current transcript of the current session.

Procedure NextProverMsg: On input (m,S’,h’) the procedure extracts the last message in h’,
which is a verifier message denoted msg, and acts as follows.

1. Initiate session message: If msg is a verifier’s message asking to initiate a new session then
we act as follows:

%5 Tt is indeed remarkable that the running-time of the simulator is polynomial, whenever the running-time of the
adversary is polynomial, but the former polynomial is not a power of the latter one. Specifically, if the running-time of
the adversary is T4 (k) = k* then the simulator runs in (polynomial) time tg(k) = k0@ (rather than ts(k) = k°®),
or even tg(k) = k*TOW) as is typically the case). This (bad) feature is inherited from [37].
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e If this is the first session to be initiated (in A') then we emulate the prover’s answer by
selecting a random first receiver-message for the commitment scheme.

e Otherwise (i.e., other sessions already exist), we merely answer with the same prover’s
message provided in the previous initializations.

. Repeated message: If msg appears several times in A’ (this cannot occur in the concurrent
zero-knowledge model) then we act here to match the action in the previous occurrence:

e Let ¢ denote the currently handled session (to which msg belongs), I denote the previous
sessions in which msg appears, and a be the answer given to msg in these previous
sessions.

e If msg is the last verifier message in the session then return (S’ a).

e Otherwise, suppose that a is the prover’s j*! commitment in session i (i.e., msg is either
the verifier’s commitment in session ¢ or its j — 15* decommitment, where j < k). If
there exists (i, 7,7) € S’ so that ¢ € I then return (S’ U {(¢,5,7)},a) else return (S, a).

. Invalid message: If msg is an invalid message (i.e., an illegal decommit) then we return
(S', (msg,halt)) (i.e., the prover halts the current session).

. Message for a solved session: If msg relates to a session in S’ then we proceed in the straight-
forward manner. That is,

e if msg the last verifier (valid) decommitment (viewed as the question whether the simu-
lator knows an NP-witness) then we return (S’, (msg, yes)) (which is correct);

e if, for i < k, msg is the i*h verifier decommitment (and it is proper and only appears once
in A') then we return (S, (msg, @)), where « is a (random) commitment to a random
k-bit string. Same if msg is the initial commitment of the verifier (and it only appears
once in h').

. Last message for an unsolved session: If msg is a valid decommit to the last iteration in a
session not in S’ then we’ve failed and return (S’,fail). (This is because at this point we
are asked if we have an NP-witness and being honest we cannot answer “yes”.)

. Non-last message for an unsolved session: If msg is a valid decommit (which appears once in
h') to a non-last iteration in a session, denoted i, not in S’ then we try to “solve” the session
as follows. Basically, we’ll try to obtain the nezxt verifier decommitment for the current session
(that’s why we insist that the current decommitment is not the last one). Denote by j < k
the index of the nert decommitment. If we obtain the latter decommitment then we set the
prover’s next message to be a commitment to the corresponding value (and so force s; = r;
which satisfies session ).

Specifically, we repeat the following steps for O(K?) times:
e Let S’ — Solve([2m/k],S' k' i, 7).

(The values of 7 and j are implicit in A, but we provide them explicitly for clarity of
exposition.)

e If for some r the revised S’ contains (i,j,7) then return (S’,(msg, «)), where « is a
(random) commitment to the value .
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In case none of these attempts succeeded, return (S’, (msg, «)), where « is a (random) com-
mitment to a random k-bit string. (In all these case the string a returned by the procedure
is the prover’s commitment in the next iteration of session i.)

Same if msg is the initial commitment of the verifier (in a session i not appearing in S’ and
msg only appears once in h').

We stress that Item 6 guarantees that the standard “rewinding” technique can be applied here.
This is because we rewind to the first place which determines the randomization in the next prover’s
step. In the description of Solve we ignore the case of msg equal the initiation message of a session,
which is handled as in Item 1 above.

Procedure Solve: By the construction of NextProverMsg, when Solve is invoked with input
(m,S",h',i,7), session i is not solved yet (i.e., it does not appear in S’), and it is the procedure’s
aim to redeem this state of affairs (specifically by obtaining the verifier’s j** decommitment for
session 7). We stress that, unlike in [37], this decommitment is not necessarily obtained from session
i: It may be obtained from a session 7’ in which the initial verifier’s commitment message is identical
to the first message in session i. We call such a session a conjugate of session i.

A key point regarding Solve is that throughout its attempt to solve the current session, the
procedure never wastes too much time. This is guaranteed by maintaining a growing set, denoted
I, of the sessions it has initiated during the current execution of Solve, and aborting when |I|
exceeds m.

On input (m,S’,h’,i,7), the procedure denotes by E the set of sessions existing in A', and
initializes I « ). It then executes iteratively the following steps:

1. Get the verifier’s respond to the current history; i.e., msg «— V*(h’) and A’ — (h’,msg).

2. Act as follows according to msg:

(a) If msg is a valid decommit to the j*! iteration in a session that is conjugate to session
i then we return S’ U {(4,4,7)}, where r is the corresponding value revealed in the
decommitment.

(This completes a successful execution of Solve.)
(b) If msg is a valid decommit to iteration j' in a session i’ that is conjugate to sessions

i1y ..., 3t € B\ S then we return S"U{(i1,j',7), ..., (it,5',7)}, where r is the corresponding
value,26

(Although we did not solve session 4, we did make progress since E\ S’ became smaller.)?’

(¢) Ifmsgis an invalid decommit to any iteration in any session ¢’ then set b’ < (h’, (msg, halt))
(i.e., the prover halts session i’).2

(Here, as in cases 2(d)ii and 2e below, we just continue to extend the current execution.)

26 Note that i’ may but need not be one of the 3;’s. We comment that in the concurrent setting, treated in [37],
this case may occur only if ' € E'\ S’ (since there each session is only conjugated to itself).

2T In case j' < k we may indeed continue our solving attempts (rather than returning), but in case j' = k we must
return as in Step 5 of NextProverMsg. Since the analysis does not seem to benefit from this distinction, we prefer,
for sake of simplicity, we the current presentation.

28 Alternatively, we may invoke NextProverMsg(m,S’, h'), which will do exactly the same. We remark that in [37]
if msg is an invalid decommit to the j*" iteration in session i then we may abort (since we have no chance to succeed
in the current invocation of Solve). This is however NOT the case in the resettable model, and it is crucial to proceed
as in case 2c. It will become clear from the analysis that no damage is caused by continuing the current solving trial
(and this holds, of course, also for the concurrent model treated in [37].
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(d) If msg is the first message (i.e., a verifier’s commitment) in a new session, i’ ¢ E U I,
then

i. If |I| = m then we return S’.
(This failure to solve session ¢ is due to too many new session encountered in the
current execution of Solve.)
ii. Otherwise (i.e., |I| < m), weset I « IU{i'}, invoke (S’, msg) < NextProverMsg(m, S’, h’),
and set b’ — (h',msg).
(e) Ifmsgis any message referring to a session in 7US’ then set (S, msg) < NextProverMsg(m,S’, h')
and b’ « (h',msg). In the unlikely case msg = fail (i.e., failure of NextProverMsg), we
return S'.

(f) If msg = halt (i.e., verifier terminates) then we return S’.

(This failure to solve session 4 is due to not encountering a proper decommit in the ;%
iteration prior to the termination of all sessions.)

(The reader may verify that these cases cover all possibilities; e.g., valid decommits are
handled in Items 2a, 2b and 2e. Case 2e is handled as the other cases, but this is done by
the recursive call.)

The reader may easily verify the following:

Fact 6.1 Let Ty(m) (resp., Ts(m)) denote the running time of NextProverMsg (resp., Solve)
when invoked with first parameter m. Then,

1. the running time of the main procedure is poly(k) - Tn(poly(k));
2. Ty(m) < poly(k) - Ts(3m/k); and
3. Ts(m) = poly(k) - Ty (m).
Thus, Ty(m) = poly(k)logk/sm, and the running time of the main procedure is poly(k).

Ignoring the rare cases in which the verifier decommits to different values for the same commitment,
it follows that the simulator works as claimed in Theorem 7, provided that the probability that
NextProverMsg returns fail is negligible. That is,

Lemma 6.2 Conditioned on the main procedure not aborting, its output is computationally indis-
tinguishable from the output of V* in executions of Stage 1 in the resettable model.

The main procedure may abort only if NextProverMsg returns a fail symbol in one of its (poly(k)-
many) invocations. As in [37], establishing a bound on the latter failure probability is the most
difficult part in the analysis of the simulator. The key observation allowing to adapt the argument
in [37] to our context is that the “rewinding intervals” remain disjoint. That is, in any execution and
for every session i, we consider the set of all sessions, denoted C(%), having the same first (verifier’s
commitment) message as in session 4; that is, C(i) C {i} is the set of all sessions conjugate to
session ¢ in this execution. Consider any session ¢ occuring in an execution. For j = 1,..., k, the
4§ interval is between the first time a prover’s (commitment) message is sent in the 5" iteration of
a session in C(i) and the first proper decommitment in the j'® iteration of a session in C(i). The
important facts regarding these intervals are:
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1. Procedure Solve is only invoked with a message marking the beginning of such an interval,
and it (as well as it recursive calls) only explores extensions which are contained in this
interval.

2. The intervals corresponding to such a session i are disjoint. This is because, for j > 1, the
prover sends j* commitment to a session in C(i) only after the verifier has provided a proper
decommitment in the j — 1 iteration of this session.

We stress that the above facts hold trivially in the concurrent zero-knowledge context (considered
in [37]). Using the above facts, we obtain:

Lemma 6.3 The probability that NextProverMsg(m,-,-) returns fail is negligible.

Proof Sketch: We extend the argument of [37]: In their (concurrent) context, NextProverMsg(m, -, -)
returns fail only when encountering the last message of a session ¢ for which the current tran-
script contains k proper decommitments to session ¢. (Otherwise, the simulator rightfully com-
pletes session ¢ with a halting message on behalf of the prover.) In our (resettable) context,
NextProverMsg(m,-,-) returns fail only when encountering the last message of a session 7 so that
for every j € {1,...,k} the current transcript contains a proper decommitment to the j*® iteration
of a session that is conjugate to i. (Otherwise, for some j all sessions conjugate to ¢ (including ¢
itself!) have the verifier send an invalid message in one of the first j iterations, and the simulator
would have rightfully completes session ¢ with a halting message on behalf of the prover.)

Thus, suppose that NextProverMsg(m,-,-) returns fail when invoked to provide the last
message of a session 4, and let i¢; be the first session conjugate to session ¢ so that the current
transcript contains a proper decommitment to the j*® iteration of it (i.e., of session i7). Still, if
NextProverMsg(m,-,-) returns fail (when invoked to provide the last message of a session %) it
means that for every j we failed to solve 4; in iteration j using a new-session bound of 2m/k (other-
wise, for ¢ = 4; this means that Case 4 of NextProverMsg would have applied, and for 7 > i; Case 2
would have applied). So we are talking of O(K?) failures to solve each of these specific sessions for
each of the relevant k iteration (i.e., O(K?) failures to solve i; in iteration j). Loosely speaking, if
at least k/3 of these iterations have low (say lower than 0.1) probability to yield a proper commit-
ment then the above event occurs with probability smaller than 2¥ - 0.1%/3, which is negligible.??
Otherwise, we consider 2k/3 iteration which have proper decommitment with probability at least
0.1. For at least one of these iterations, the expected numbers of new sessions initiated during
the relevant interval (defined above) is at most ZIZ"T Using Markov’s Inequality it follows that
with probability at least 1/4 at most 2m/k new sessions are initiated in an attempt to solve for
this iteration. Thus, it is highly unlikely that we fail in all our O(K) attempts at this iteration:
Case 2b of Solve (i.e., solving an old session) may occur in at most m < K attempts, Case 2(d)i
occurs with probability at most 3/4 (see above), and Case 2f occurs with probability at most 0.9
(see above). W

Conclusion: Combining Theorem 7 with the resettable witness indistinguishable proof systems
of Section 5, we prove the main result of the current section. This can be seen by either employing
a general composition theorem or by extending the arguments in the simulation game to our actual
two-stage protocol, using the techniques of Section 5.

29 Following [37], the fact that we are talking about a sequence of k¥ decommitments and are content with solving
one of them allows to simplify the otherwise complex analysis of such procedure. Compare the treatment of a single
decommitment, which must be solved no matter what, in [22].
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6.3 An alternative proof

We present an alternative proof which uses the [37] analysis as a black-box (rather than modifying
it as above).

The modified protocol: We slightly modify the protocol presented in the previous subsection.
Specifically, we move the verifier’s second commitment, which takes place in the first two rounds of
the resettable witness indistinguishable protocol taking place in Stage 2 to Step 1 of Stage 1. That
is, both the verifier commitment to k& uniformly selected k-bit strings as well as its commitment to
random edges in the reduced graph are made up-front, as the very first thing in the entire protocol.
We call this combined commitment strings, the verifier’s commitment-message. We comment that
there is a minor problem here, since the graph (to which the resettable witness indistinguishable
proof (of Stage 2) is applied) is not determined yet. However, the size of this graph is known. Thus,
we let the verifier commit to random pairs of vertices, and use a standard convention by which the
prover interprets each non-edge as some fixed edge (cf. 25, p. 714]). The only other thing requiring
change is to increase the number of parallel repetitions; that is, set t = n® (rather than t = n-|E|),
where n (resp., |F|) is the number of vertices (resp., edges). This is done in order to guarantee
that the probability that a bad edge is hit in ¢ tries, where in each trial we select a random pair
of vertices, is (1 — n 2)! = exp(—n) (as before). From this point on, we referred to the modified
protocol as (P, V).

Intuitively, the above modification, only restricts the power of the verifier (as it needs to com-
mit earlier to its choices). Since the original protocol (of the previous subsection) is a specific
(complex)3® implementation of the [37] protocol, it follows that both the original protocol as well
as its modification are concurrent zero-knowledge. It is not hard to see that the modified protocol
remains an interactive proof (since the commitments moved to the front yield no information to
the prover). The key observation regarding the new protocol is that (in a single execution of the
protocol) all the verifier steps following its first message (i.e., its commitment-message) are essen-
tially determined. (See similar claims made in Section 5 and 6.1.) Thus, if the verifier repeats its
commitment-message in the current session then it is essentially bound to continue as in a previous
session until a point of its choice where it may abort. The key issue is how to deal with such
restricted verifier behavior; note this is not trivial (see discussion of a subtle problem in Section 5).
The other case is that the verifier uses a new commitment-message in the current session. But in
such a case, by virtue of the way in which the prover uses its pseudorandom function to deter-
mine its actions, the current session is essentially independent of the previous ones. Using these
observations, we show that the fact that (P, V') is concurrent zero-knowledge implies that it is also
resettable zero-knowledge. (We stress that this is a feature of the specific proof system (P, V'), and
it is not true that any concurrent zero-knowledge protocol is also resettable zero-knowledge: The
original protocol of [37] is a good counter-example.)

Motivation: Loosely speaking, our proof transforms an arbitrary adversary, V*, operating in the
resettable model into an adversary W* of the concurrent model so that the output distribution of
W* after interacting with concurrent sessions of P is computationally indistinguishable from the
output distribution of W* after interacting with resettable sessions of P. Assume, for simplicity,
that V* is restricted so that it interacts with a single “incarnation” of P (rather than polynomially
many such copies), and that whenever it sends the same commitment-message in session £, in
each next round of session £ it either sends the same (corresponding) decommitment message or

30 Recall that the complications were needed in order to achieve resettable zero-knowledge.
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abort. Also ignore the first message sent by the prover (i.e., the receiver message in the two-round
commitment scheme employed by the verifier). (Both assumptions will be removed in the actual
argument given below.) Using V* as a black-box, we construct an “equivalent” W* that interacts
with concurrent (independent) copies of P. Machine W* serves the messages of V* as follows:

e In case, V* sends a new commitment-message, denoted com, machine W* initiates a new
session, denoted &com, with P, and supplies V* with P’s response.

e In case, V* repeats a message (either a commitment-message or a decommitment), machine
W* just retrieves the corresponding response of P and forwards it to V*. (W* does not send
any message to any session of P.)

e In case, V* sends a new wvalid decommitment message, associated with the session having

commitment-message com, machine W* forwards this valid decommitment to session com of
P.

e In case, V* sends an inwvalid decommitment message, machine W* just feeds V* with the
standard message indicating that P has aborted this session. (We stress that W* does not
send any message to any session of P; in fact, W* may need to send P a valid decommitment
corresponding to the current session at a later stage.)

Note that although V* interaction with P is in the resettable model, the induced interaction of
W* with P is restricted to the concurrent model. Specifically, the sessions initiated by W* use
independent prover’s coins (determined by applying a random function to different values), and
in each session the interaction is indeed in order (i.e., the verifier’s j'" message is sent after its
j — 1'™® message, since the prover proceeds to round j only after receiving a proper decommitment
for round j — 1).

The actual proof (sketch)

Actually, some minor modifications have to be applied in order to allow the actual proof go through.

The augmented-concurrent model: We prove this claim by considering an augmented-concurrent
zero-knowledge model: In this model, the verifier first asks the prover to provide one string, and
then concurrent executions of the protocol take place where in all of these executions (sessions) the
first prover’s message is taken to be the string provided above.

Let us first consider the security of the modified protocol, (P, V'), in this augmented-concurrent
zero-knowledge model. In this specific protocol, the prover’s first message is merely the receiver’s
message in a two-round perfectly-hiding commitment scheme. Clearly, the computational-binding
feature of such a scheme holds also when several executions with the same random receiver-message
take place. Thus, the effect of augmentation on the specific protocol that we consider (i.e., on (P,V))
is immaterial. (To justify this claim, we observe that the only role of the prover’s first message in the
analysis of the protocol is to guarantee that the verifier cannot decommit to two different values.)
It follows that the modified protocol (P, V') is zero-knowledge also in the augmented-concurrent
model.

A last modification model: Actually, we need to modify the augmented-concurrent model
a bit as follows. Rather than selecting one string (at the onset of the interaction), the prover
selects polynomially-many such strings and puts them in a list. When later the verifier initiates

31



a new (concurrent) session it (i.e., the verifier) specifies which of these strings should be used as
first message in this session. Clearly, (P, V) is zero-knowledge also in this modified augmented-
concurrent model. ;From this point on, we referred to the modified augmented-concurrent model
as the augmented-concurrent model.

Finally, we claim that for every probabilistic polynomial-time adversary, V*, interacting with
P in the resettable zero-knowledge model there exists a probabilistic polynomial-time adversary,
W*, interacting with P in the augmented-concurrent zero-knowledge model so that the output
distribution of W* in actual executions (in the augmented-concurrent model) is computationally
indistinguishable from the output distribution of V* in executions (of the resettable model).3! Thus,
the simulator provided for W* (by the above claim) is also adequate for V*. Following is an outline
of our construction of W*, which uses V* as a black-box. We stress that W* may concurrently
execute several sessions with prover P, but in these sessions — with the exception of the first message
that is determined as postulated in the augmented model — the prover’s actions are independent of
its actions in other sessions. In contrast, V* (being in the resettable model) may wish to conduct
several sessions with a fixed random incarnation of the prover, denoted P(7) = Py, yiw; (see
terminology in Section 4). For simplicity, we may again assume that V* is in the non-interleaving
model (see Theorem 3).

The construction of W*: Working in the augmented-concurrent model, W* first asks the prover
to supply polynomially-many strings (to be used as the prover’s first message). These strings are
put in a list in which entries correspond to pairs of integers. Next, adversary W™* handles the
messages of V* as follows:

1. V* initiates a new session: Suppose that V* initiates a new session with one of the incar-
nations of P. Specifically, suppose it is the & time that V* initiates a session with pig),
Then, adversary W* initiates a new session with the actual prover, and feeds V* with the
prover’s response. Specifically, the adversary asks the prover to use the string (4, 7) as its first
message in this session, which is denoted (4, j, £).

(It is crucial that W* is in the augmented-concurrent model, rather than being in the standard
concurrent model: otherwise, W* could not have initiated two sessions with the actual prover
while insisting that the actual prover uses the same first message in both of them.)

2. V* sends a new commitment-message: Suppose that V* sends as its commitment-message,
in session & with P(7), a string different from all commitment-messages is has sent in prior
sessions with P(»7). Let com denote this commitment-message. Then W* sends com to session
(1,7, &) of the actual prover, and feeds V* with the prover’s response. It records £ as the active
session of P(47) for commitment com.

(In subsequent messages directed by V* to PGI) | for every commitment-message com, adver-
sary W* will communicate only with session (4, j,&com), Where Ecom is the active session of
PG9) for com.)

(Note that in case V* sends different commitment-messages (to sessions of the same P(7)),
W* uses as reply messages obtained from two different (3, j,-)-sessions. Case 1 ensures that
these sessions share the first prover’s message, but are otherwise independent (from the
prover’s point of view).)

31 As in other cases in this paper, the difference may be due to a case in which V* decommits differently to the same
message, in two sessions it conducts with the same “incarnation” of the prover (i.e., induced by the same prover’s
random-pad).

32



3.

V* sends a new wvalid decommitment: Suppose that V* makes for the first time a valid
decommitment to a specific commitment component in a session with a specific P(%7) in
which a specific commitment-message is sent. Let dec denote this decommitment, ¢ denote
the current session of P(47), com denote the commitment-message in this session, and €com be
the active session of P(»9) for commitment com. Then W* sends dec to session (4,4,€com) Of
the actual prover, and feeds V* with the prover’s response.

(We wish to clarify the conditions made in this case: Recall that the commitment-message com
has k£ + 1 components; one per each of the k iterations of Stage 1, and a single one in Stage 2.
Let £ be the index of the current decommitment; that is, dec is the /! decommitment taking
place in session ¢ of P(49), The current case that dec be a valid decommitment. Furthermore,
it requires that in any prior session of P(%) in which the commitment-message is com, the
¢ decommitment either did not take place or was invalid.)

. V* sends an invalid decommitment: Suppose that V* makes an invalid decommitment to a

specific commitment component in a session with a specific P(:). (We don’t care whether
or not this is the first time such an invalid commitment is sent for this specific commitment-
message.) In this case, all that W* does is feed V* with a message indicating that the prover
has halted this specific session.

(We stress that W* does not communicate this halting message to (session (3,7,£) of) the
actual prover, where ¢ is the active session of P(»7) for the corresponding commitment. This
point is crucial, since when responding to future messages of V*, machine W* may need
to send a valid decommitment to the same commitment in session (,7,£), so to obtain the
prover’s response (which it may not be able to generate). We are fortunate not to need any
help in generating the prover’s response to an invalid decommit. Note that W™ never sends
an invalid message to the actual prover; this should not bother the reader — our aim is to
simulate the view of V*, not the joint view of copies of the provers interacting with V*.)

. V* repeats a message: Suppose that V* repeats in session ¢ with P(7) a message that

has appeared in a prior session with P(:). (Such a message may either be the verifier’s
commitment-message or one of its decommitment messages.) Let msg be the current message,
com be the corresponding ((k + 1)-component) commitment-message of this session, and &com
be the active session of P(7) for commitment com. Then W* just copies the response to msg
obtained from the prover in session (4,7, com), and feeds it to V*.

Our description assumes that whenever V* provides a valid decommitment to the same com-
mitment, it always provides exactly the same text; that is, decommit to the same value while
providing the same proof (witness) to vouch for the validity of the value. Recall, that we may
ignore the rare cases (occurring with negligible probability) in which the verifier decommits
properly to two different values. So the issue is what to do when the verifier decommits to
the same value using two different witnesses. A possible solution is to treat the latter case
as we treat the case of identical messages (i.e., pretend that the decommit message is identi-
cally the same). This requires a minor modification of the protocol, following the alternative
suggested in Footnote 22; that is, don’t include the witness in the session history to which
the pseudorandom function is applied. (Note that, intuitively, V* has nothing to gain from
using a different witness for proper decommitment to the same value; it is the value itself
that matters. In fact, given the above modification, the prover ignore the witness once the
correctness of the decommitted value has been established.)
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(It is not important that W* does not communicate with the actual prover in case a massage
is repeated, provided it does so in a way which is not conflicting with its other actions (e.g.,
W* should not communicate on session (i, j, com), since the actual prover of this session has
already responded to the current message msg). What is important is that the message fed
to V* must be exactly the one given in prior sessions with P(:7) in which V* sent the same
msg (in the same round). For simplicity, we just specify that W* does not communicate with
the actual prover in the current case.)

6. V* terminates: When V* sends a termination message, which includes its output, adversary
W* just outputs this message and halts.

7 NP has Resettable ZK Arguments

In this section we show how to achieve rZK arguments for NP. Our protocol uses no timing as-
sumption, preprocessing, or public-files, but runs in O(n) number of rounds, where n is the security
parameter. Mutatis mutandis, the situation is analogous to the original ZK proof of quadratic resid-
uosity, which, in order to be zero-knowledge, must be executed in O(n) sequential rounds for having
an error probability of 27". (Only years later was a constant-round ZK protocol for quadratic resid-
uosity found. We do not know whether the same may happen here.)

As we have said already, our protocol can be implemented with any verifiable commitment
scheme, though for simplicity in this extended abstract we prefer to rely on a rather more concrete
complexity assumption.

7.1 The Strong DLP Assumption for Safe Primes

Let p be a prime, g a generator for Z; (the multiplicative group modulo p), and y an element in Z,.
Then the Discrete Logarithm Problem (DLP) consists of finding, on inputs p, g amd y, an element
x € [1,p — 1] such that g* =y (mod p). In this extended abstract we assume that (1) the circuit
complexity of this task is sub-exponential also in the special case where p is a safe prime (i.e., of
the form p = 2¢ + 1 where also ¢ is a prime), and that (2) safe primes are easily samplable. More
precisely

Strong DLP Assumption For Safe Primes: The following two properties hold:

1. Samplability. There exists a probabilistic polynomial-time algorithm that, for all sufficiently
large m, on input 1™ outputs a random safe prime of length n.

2. Hardness. Je > 0 such that, for every sufficiently large n, for every circuit C of size at most
2"°, for a random, safe prime p of length n, for a random generator g of Z,, and a random
T € Z; :
Pr[C(p,g,¢° mod p) = z] < 2 ™.

The above DLP assumption is quite reasonable, and enables us to implement our needed ver-
ifiable commitment in a very easy manner. Notice that we could also implement our verifiable
commitment based on a weaker assumption, but at the price of additional complexities. In particu-
lar, we could rely on the same DLP assumption as above, but stated for general primes rather than
for safe ones.>? Alternatively, we could implement verifiable commitment based on the assumption
that the circuit complexity of factoring is sub-exponential.

32 We use safe primes because it is easy to check whether g is a generator mod p if the prime factorization of p—1 is
an available input. Note that, in the case of a safe prime p, such a factorization is indeed available: one has to divide
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7.2 Initial Remarks About Our Protocol

To show that all NP languages have rZK arguments, we show one such argument for 3-colorability.

SECURITY PARAMETERS. Our protocol uses instances of the DLP relative to safe primes of two
different lengths: K and k. (In the general version, this corresponds to two commitment schemes
with different security parameters.) K and k are not chosen independently. Rather, the protocol
requires that K be polynomially bigger than k: more precisely, K = k3¢ where ¢ is the hardness
constant of our DLP assumption. Thus, solving a random instance of the strong DLP will be much
harder modulo a K-bit safe prime than modulo a k-bit safe prime. In fact, even if one were given
the ability of performing a number of computational steps equal to those necessary for solving the
DLP modulo a k-bit safe prime by exhaustive search (rather than by the best known discrete-
log algorithm), then his chance of solving the DLP modulo a K-bit safe prime would be totally
negligible.

PSEUDO-RANDOM FUNCTIONS. In our protocol the prover random tape consists of a secret input
s, which he uses as the seed of a pseudo-random function a la [GGM], fs. The length of seed s may
be chosen quite independently of K and k: it is only for simplicity that below we choose it to be
K-bit long. The prover is de-facto deterministic: at each step of the protocol, all of his “random”
choices are made by applying fs to the history of the communication so far.

ROUNDS. The number of rounds of our protocol is not constant, but is a quite independent security
parameter. For simplicity, below we let this other parameter also be equal to K, and implement
our protocol 3K+4 rounds.

TWO LOGICAL PARTS. Our protocol consists of two logical parts.

In the first part (steps 1-2) the verifier uses a K-bit instance of the DLP to establish a trapdoor
commitment scheme. The prover will use this commitment scheme later on in the protocol to
encode the 3-coloring of the input graph, G. The commitment scheme is perfectly private for the
verifier (i.e., the verifier will have absolutely no information about the colors the prover commits
to) and computationally binding for the prover (i.e., in our case, the prover cannot “change” the
committed colors unless he solves a K-bit instance of the DLP). The commitment scheme has an
additional property: trapdoorness. Namely, the verifier embeds in the instance of the DLP (used
for implementing a commitment scheme) some auxiliary information (the trapdoor) which allows
him to decommit in more than 1 way. This extra feature does not allow him to cheat: recall that
this DLP instance is used to commit by the prover, who knows no trapdoor information. In step
2, the verifier actually proves in ZK to the prover that he knows such trapdoor. This (ordinary)
ZK proof of knowledge is necessary for making the whole protocol rZK.

In the second part (steps 3-8), the prover convinces the verifier that there exists a proper 3-
coloring for the input graph. At a high level, this is done following a traditional approach consisting
of four logical stages executed independently and in parallel: (1) the verifier commits in advance to
an edge, e of G; (2) the prover commits to a (randomized) 3-coloring of G; (3) the verifier decommits
e; and (4) the prover decommits the coloring of the e’s end points. The commitment scheme used
by the verifier for e has properties that are symmetric to those of the commitment scheme used

p—1 by 2 and check that the result is also prime. We could also rely on the assumption that the DLP remains hard
even if the factorization of p — 1 is available. This assumption too is widely believed; moreover, it has proven that
it is possible to generate random n-bit integers in factored form [Bach]. One could therefore generate such random
integers and then add one until a prime is found, without relying on any type of samplability assumption.
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by the prover for the coloring. That is, it is perfectly private for the prover and computationally
binding for the verifier. This second commitment scheme is actually chosen by the prover using
a k-bit instance of the DLP. (It will not matter whether this second scheme has an embedded
trapdoor or not.)

7.3 DLP-Based Commitment Schemes

Relying on the intuitive notion of what a commitment scheme is, let us informally describe some
commitment schemes under the DLP assumption.

A FOLKLORE BIT-COMMITMENT SCHEME. Assume that p is a prime, g a generator for Z7, and y
an element of Z;. Then the following protocol COM M, 4, is a well-known way for a party P to
commit to a bit b.

Scheme COMM,, 4.

1. (Committing Instructions for P) To commit to a bit b, randomly select 7 in Z; and output
the value C = COM M, 4 ,(b) = y°¢g" mod p.

2. (Decommitting Instructions for P) Output DECOMM, 4,(C) =r.

It is immediately seen that the value C' is uniformly distributed in Z7 both when b = 0 and when
b= 1. Thus COM M, 4, enjoys perfect secrecy. Moreover COM M, , ,, also enjoys computational
soundness in the sense that, to be able to decommit C both as 0 and as 1, P must find the discrete
log of y in base g (mod p).

A FOLKLORE STRING COMMITMENT. Scheme COMM, ,, is immediately extended to a string
commitment scheme (with perfect secrecy and computational binding under the DLP) as follows:

to commit to a binary value v = wvy,...,v,, commit to each v; individually and independently.
That is,

C = COMM,, 4, (v) = COMM, 4, (v1),...,COMM, 4,(v,) = Ci,...,Ch

and
DECOMM, 4,(C)=DECOMM, 4,(C1),..., DECOMM, 4,(Cy).

A SECOND BIT- AND STRING-COMMITMENT SCHEME. Assume that p is a prime, that g is a
generator for Z;, and that y1,...,y, are n distinct elements of Z;. Then, the following protocol is
a bit commitment with perfect secrecy and computational binding under the DLP.

Scheme COMMy, gy, ...yn

1. (Committing Instructions) To commit to a bit b, randomly select bits by,...,b, at random
so that Y7 ; b; = b and output

C = COMMp,g,y1,...,yn(b) = COMM, 4, (b1), ... COMM, 4 (bp) = Ci,...,Ch.

2. (Decommitting Instructions for P) To decommit C = C, ..., Cy, output

DECOMM, gy, .. . (C) = DECOMM, 4.,,(C)), ..., DECOMM, 4. (Cy).
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It is immediately seen that COMM, 4, ... 4. is a commitment scheme with perfect secrecy and
computational binding if the DLP is hard. More precisely: P can decommit C in more than one
way, if and only if P finds the discrete log in base g of y; for some i =1,...,n.

Note: With an eye to the final paper, the above DLP-based schemes also are trapdoor, verifiable
commitment schemes if they are implemented with safe primes, and enriched with the steps of
verifying that p is a safe prime and that g is a generator mod p.

7.4 An rZK Argument for 3-Colorability
Protocol (P, V)

e Security Parameter(s): k and K (where K = ki, and € is the hardness constant of our
strong DLP assumption).

e Common input to P and V: A 3-colorable graph G with vertex set VERS and edge set
EDGES (where VERS has cardinality n and EDGES has cardinality m).

e P’s secret seed: a random string s € {0,1}¥ (specifying a GGM pseudo-random function

fs)-

e Secret input to P : a 3-coloring of G, COL : VERS — {1,2,3} (where COL(v) is the color
of vertex v).

1. (Instructions for V)

Randomly select: (a) a safe prime p of length K, (b) a random generator g for Z;, and
(c) elements z1,...,xx in Z;. Compute X; = ¢ mod p for : = 1,..., K, and send p, g,
XZ',...,XK to P.

(Instructions for P)
Check that p is a safe prime of length K, that g is a generator for Z7, and that Xi,..., Xk €
Z,. If not, halt.

2. Fori=1..K,

(a) (instructions for V)
Pick 7; in Z; at random and send R; = g™ mod p to P.
(b) (Instructions for P)
Check that R; € Z; if not, halt. Compute b; as the last bit of fs(pgXi1.. XKkR;...R;),
and send b; to V.
(¢) (Instructions for V)
If b, = 0, then send r; to P. Else, send ¢; = r; + z; mod p — 1 to P.
(d) (Instructions for P)

If b; = 0, then check that g = R; mod p. If not, halt. If b; = 1, then check that
g'i = R;X; mod p. If not, halt.
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3. (Instructions for P)

Select: (a) a safe prime ¢ of length k, (b) a random generator h for Z, and (c) an element y
in Z;. Compute Y = ¢g¥ mod ¢, and send ¢, h, and Y to P.

(This selection is done ”at random”, but using as coin tosses the outcome of f; applied to all
previous messages sent so far by the verifier.)

4. (Instructions for V)

Check that g is a safe prime of length k, that h is a generator for Z7, and that Y € Z7. 1If
not, halt.

For j = 1...,n3, randomly select edge e; = (uj,v;) in G, and send to P the commitment
values E; = COM My, y(e;).

5. (Instructions for P)

For j =1,...,n3, choose 7, a random permutation of {1,2,3}, and, for all v € VERS, send
Cju = COMMy 4 x,, _x,(mj(COL(u))) to V.

6. (Instructions for V)
For j =1,...,n? decommit e; = (uj,v;) by sending DECOM My 1, y (Ej).

7. (Instructions for P)

For j =1...,n3, if any of the decommitments are invalid, then reject. Else, for j =1...,n3

decommit the colors, m;(COL(u;) and 7;(COL(v;), of the end points of e; by sending
DECOMMp,g’Xh___,Xk(C’j,u].) and DECOMMp,g’Xh___,Xk(Cj,vj) to V.

8. (Instructions for V)

If for some j an edge with two end points of the same color is discovered, or a wrong decom-
mitment is received, then reject. Else, accept.

Theorem: (P,V) is a an resettable zero-knowledge argument for 3-colorability.

Proof Sketch

COMPLETENESS. If the prover P knows a 3-coloring of the input graph, then it is immediate to show
that, as long as he will follow the protocol, he will convince the honest verifier V' with probability
1.

SOUNDNESS.?3 We have to show that, if the input graph G is not 3-colorable, then a polynomial-
time cheating prover P’ has but a negligible chance of leading honest V' to acceptance. The essence
of this proof is best sketched in the extreme case in which we assume (for contradiction purposes)
that such polynomial-time P’ has probability 1 of convincing V. From this hypothesis we shall
derive that there exists a 2*-size circuit C that solves K-size instances of the DLP for safe primes
with probability roughly 1/2K. This contradicts our DLP assumption given the relative sizes of
security parameters k and K.

We construct C by combing the polynomial-time P’ with the following O(2*)-time machine M.
On input p, ¢ and X, a random K-bit instance of the DLP for safe primes, M randomly selects

3% The argument is analogous to the one presented in Section 9.1.
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i € {1,...,K}, and sets X; = X. Then, for j € {1,..., K} — {1}, it randomly selects z; € Z,
and sets X; = ¢% mod p. Finally, it sends p, g, and X1,..., Xk to P’. Note therefore that, by
construction, M has sent P’ a message that is distributed exactly as the step-1 message from V to
the prover in protocol (P, V).

Notice now that M has a probability 1/2 of being able to answer the “questions” of P’ in all
iterations of Step 2, and with exactly the same distribution as in a random execution of (P', V).
This is so because M has probability 1/2 of “passing” the question about X;, and probability
1 of passing the questions about all other X; (for which it knows the discrete log in base g by
construction). Note also that step 2 is a perfect zero-knowledge proof of knowledge (though with
probability of cheating %) of the discrete logarithms of X7,..., Xx where P’ serves as the step-2-
verifier and V (M inside this argument) serves as the step-2-prover. Thus, P’ cannot use it in any
manner to gain knowledge of the secrets z; nor of the discrete log of X;. 34

Notice also that in proving that step 2 is a perfect zero knowledge proof of knowledge (where
P’ is the step-2-verifier and V the step-2-prover) we do not have to worry about resettability of the
step-2-verifier, as in an rZK protocol the prover P’ is not resettable, rather V is.

Let us now describe how M executes step 4. Upon receiving from P’ a k-size instance of the
DLP for safe primes, ¢, h and Y, in step 3, M conducts an exhaustive search and finds the discrete
log, y, of Y in base h (mod ¢). This will take 2*¥ computational steps. At this point, it commits to
every edge e; by committing to the right number of 0s. That is, by sending COM M, y(0---0)
to P’. Notice that each such message is equally distributed to the corresponding one of honest
V because the commitment scheme has perfect privacy. Therefore, by hypothesis, P’ still has
probability 1 of convincingly executing the remaining steps when he sends M his commitments
Cju in step 5. Call S the internal state of P’ at this point. Now M behaves as follows:

First, it executes step 6 by decommitting e; to be always (i.e., for i = 1,... ,n3) the first edge
of G. (Notice that it can do this because COM M,y is a trap-door commitment scheme, and
M has, by exhaustive search found the trapdoor.) Because such behavior were possible (though
unlikely) for the honest V', and because P’ has a probability 1 of satisfying V', P’ will respond by
decommitting the colors of the end point of the first edge for each of the n® committed, colored
copies of G. Then, M resets P’ in state S.

Second, M executes step 6 again, this time by decommitting e; to be always the second edge
of G. P’ decommits accordingly, and then M resets P’ in state S.

And so on, for m times, that is, once for each edge of G.

Focus now on the first committed colored copy of G, and see what happens on an edge-by-edge
basis. Because P’ has probability 1 of fooling V', then the decommitted colors of the end points
of edge 1 will be locally correct (i.e., different from each other); the same holds for the colors of
edge 2, edge 3, ..., edge m. However, because we are also assuming that G is NOT 3-colorable,
it must be that these decommitted colors are NOT globally consistent. Hence, there must exist
some some j between 1 and m, such that, letting (uj,v;) be the jth edge of G, either (a) the
color of u; has been decommitted by P’ in two different ways, or (b) the color of v; has been

34Formally, to argue that step 2 is a perfect zero-knowledge proof of knowledge, let us simulate P’ view during the
step 2 (note that here we need not worry about resettability as we arguing that the verifier is giving no knowledge
to the prover rather than the other way around). The simulator SIM has access to the prover P’ (which is a
polynomial time algorithm) and has as inputs: all the inputs of the protocol, and what was sent in step 1 of the
protocol to the prover by the verifier, i.e p,g,X; = ¢*. Initialize SIM — OUTPUT = ¢. In round 7, (1) SIM
picks ¢; € {0,1} at random. If ¢; = 0, then SIM chooses at random R; and sends g™ mod p to P; otherwise SIM
chooses at random R; and sends gRi_”” mod p to P. (2) if P answer with b; = c;, then P send V R;, and SIM sets
SIM — OQUTPUT = SIM — QUTPUT||(g™ modp, b;, R;) (where || denotes concatenation), otherwise, SIM goes back

to step 1 of round i, and rewinds the P’ to the previous round.
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decommitted by P’ in two different ways. Either way, because these commitments are made using
our COMM, 4 x,... x, scheme, and because of the property of our scheme, this entails that from
such two different decommitments for the same value the discrete log of either Xi, or Xy, or,...,
Xk has been found. Because ¢ was randomly chosen in {1,..., K} (and the proper probability
distribution totally respected), with probability 1/K, it will be the discrete log of X; to have been
found, that is, the discrete log base g of our initial random element X mod p. Thus, keeping track
also of the probability 1/2 of passing step 2, this leaves us that an algorithm consisting of running
P' and M together, and thus taking at most (roughly) 2* steps, has chance 1/2K of solving a
random K-size instance of the DLP for safe primes. The contradiction establishes soundness for
the case in which P’ can cheat with probability 1. It is not hard to see how M should be modified
so as to take in consideration small probability of cheating.

(Comment: M'’s resetting of P’ in the above argument should not be confused with the prover-
resettability of rZK protocols. In fact, the latter resettability applies to provers whose coin tosses
are not known to an adversary verifier, and thus the prover is a kind of unknown (at least for his
coin tosses) device that can nonetheless be reset. In the present context, instead, resettability is
quite straightforward. Namely, if algorithm P’ exists, then M can run with random coins that M
chooses and controls. Therefore M knows the entire internal configuration of P’ at each moment
in time, and thus it can easily reset P’ any time it likes.)

RESETTABLE ZERO-KNOWLEDGE FEATURE. What remains to be shown, having established that
the protocol is complete and sound is that it is Resettable Zero-Knowledge. The simulator can be
constructed by a combination of the ideas presented in Sections 9.1 and 6.2. Details are omitted.
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Part 11
The Public-Key Model

8 Discussion and Definition

The vanilla model, considered in Sections 4-6, is when no set-up assumptions are made. This is
indeed the “cleanest” model typically employed in theoretical works regarding secure two-party
and multi-party computation.

By the public-key model we mean a model in which all users are assumed to have deposited a
public-key in a file that is accessible by all users at all times. The only assumption about this file
is that it guarantees that entries in it were deposited before any interaction among the users takes
place. No further assumption is made about this file, and so in particular an adversary may deposit
many (possibly invalid) public-keys in it (and, in particular, without even knowing corresponding
secret keys or whether such exist). Access to the file may be implementable by either several
identical servers or by providing users with certificates for their deposited public-keys.

A more realistic public-key model allows parties to register at all times. Note however that such
a flexible model requires some restriction (as otherwise it coincides with the vanilla model). One
possibility is to make some mild timing assumption such as that all parties can distinguish between
some predetermined large delay (which all newly registered public-keys must undergo before being
used) and a small delay (which upper bounds the communication delays in actual interaction).?®> A
different possibility is to require newly registered public-keys to be used only after authorization by
a trusted “switchboard”, and occasionally updating (i.e., replacing) the entire system. The second
alternative seems better suited to the smart-card application discussed in the introduction. For
sake of simplicity, we assume throughout the rest of this section that registration occurs before any
interaction between the users takes place. The treatment of more flexible models is deferred to
a future version of this work. We comment that variants of the public-key model are a standard
model in many applied works.

A more imposing model (i.e., assuming stronger set-up assumptions) which is still quite rea-
sonable in practice, augments the public-key model by allowing (“validating”) interaction between
users and system manager at deposit time. In general, the preprocessing model postulates that
before any interaction among users takes place, the users have to interact with a system manager
which issues them certificates in case it did not detect cheating at this stage. In particular, one may
use the preprocessing stage in order to verify that the user knows a secret-key for the public-key it
wishes to have certified.

We stress that we actually use weaker assumptions. Specifically, in both the latter models, we
only need that potential verifier will deposit public-keys and/or participate in a precomputation.
This is not required of users who are only going to play the role of provers.

Definition (sketch): Analogously to Definition 2, we may define resettable zero-knowledge in the
public-key model: The only modification is that the prover and verifier (as well as the simulator)
have access to a public-file which was generated by the adversary V* before all interactions began.
Thus, the public-file may be viewed as part of the common input as far as the zero-knowledge (i.e.,
RZK) condition holds. (In the soundness (in fact computational-soundness) condition one needs to

35 As explained in Section 2 such an assumption does not effect typical interactions; whereas the timing assumption
in [12] amounts to slowing down all interactions to meet some a-priori upper bound (which must be quite conservative
to prevent abort of honest interactions).
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consider what happens when the public-file is randomly generated (by a honest verifier), and the
actual input is fixed possibly afterwards.)

9 Constant-round RZK for NP in the public-key model

The main result of this section is a construction of constant-round computationally-sound resettable
zero-knowledge proof systems. Here we use two-round perfect commitment schemes with some
additional features (to be specified below). Such schemes exist assuming that DLP is hard for
sub-exponential circuits. Thus, as a special case, we obtain:

Theorem 8 Suppose that for some € > 0 and sufficiently large n’s, any circuit of size 2" solves
DLP correctly only on a negligible fraction of the inputs of length n. Then every language in NP
has a constant-round resettable zero-knowledge computationally-sound proof system in the public-key
model. Furthermore, the prescribed prover is resettable zero-knowledge via a black-box simulation.

9.1 RZK for NP in the preprocessing model

We first present a resettable zero-knowledge protocol for a model allowing preprocessing (i.e., a
model which has stronger set-up assumptions). The preprocessing will be used in order to guarantee
that verifiers know “trapdoors” corresponding to “records” deposited by them in the public file.

The protocol uses two types of perfect commitment schemes; that is, secrecy of commitment
holds in an information theoretic sense, whereas the binding property holds only in a computational
sense. The two commitment schemes used has some extra features informally stated below. For a
precise definition see Appendix A.

1. A two-round perfect commitment scheme, denoted PC1, with two extra features:

e The trapdoor feature: It is possible to efficiently generate a receiver message (called the

indez) together with a trapdoor, so that knowledge of the trapdoor allows to decommit
in any way.
Note that the first message in a two-round commitment scheme is from the commitment-
receiver to the commitment-sender. The trapdoor feature says that the receiver will be
able to decommit to the sender’s message in any way it wants (but as usual the sender,
not knowing the trapdoor, will not be able to do so).

In our solution we will “decouple the execution” of the two-round commitment scheme
so that the first message (i.e., the index) will be sent in a preliminary stage (i.e., will
be deposited in a public-file), and only the second message will be send in the actual
protocol. We stress that the same index can and will be used for polynomially many
commitments, and that the number of such commitments need not be a-priori known.
(Note that both perfect secrecy and computational-binding continue to hold also under
such “recycling” of the index.)

o The strong computational-binding feature: The computational-binding property holds
also with respect to subexponential circuits. That is, there exists a constant ¢ > 0 so
that for sufficiently large security parameter K no sender strategy which is implementable

by a circuit of size 2X° can decommit in two different ways with probability greater than
27 K",
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2. A constant-round perfect commitment scheme, denoted PC2. (This scheme corresponds to
the one used in the actual implementation of Step (V1) above.) Without loss of generality,
we may assume that the binding property can be violated in exponential time. That is, when
the commitment protocol is run on security parameter k, the sender may in time 2% decommit
any way it wants.

Indeed, any PC1 scheme yields a PC2 scheme. However, for sake of modularity we prefer the current
presentation. We also note that for our application it is possible to further relax the requirement
from PC2 so that secrecy may be demonstrated to hold at a latter stage (i.e., “a posteriori”); see [19,
Sec. 4.8.2]. We comment that a PC1 scheme can be constructed under the assumption the DLP
is hard for subexponential circuits; see details in Appendix A. More generally, one may use any
pair of trapdoor claw-free permutations, provided the claw-free property holds w.r.t subexponential
circuits.36

The protocol in the preprocessing model: The inputs to the protocol are as follows.

Security parameter: K. All objects (resp., actions taken) in the protocol have size poly(K)
(resp., are implementable in poly(K)-time).

Common input: A graph G = (V, E), where V = [n] def {1,...,n}, claimed to be 3-colorable.

In addition, a public file containing a list of indices (i.e., receiver’s message for PC1), generated
by verifiers on security parameter K. Each verifier need only deposit a single index in the
public file, which may be stored under its name. We consider also cheating verifiers who may
deposit polynomially many such indices. We stress however that the number of entries in the
public-file should be bounded by some fixed polynomial.

At this point we assume that the verifier knows a trapdoor to any index it has deposited.
This can be enforced by a preprocessing stage, say, via a zero-knowledge proof of knowledge.

Verifier’s auxiliary input: A trapdoor, denoted trap(i), for some index ¢ in the public file.
Prover’s auxiliary input: A 3-coloring ¢ : [n] — {1,2,3} of G.

Prover’s initial randomization: The prover’s random-pad is used to determine a pseudorandom
function f : {0,1}P (") 5 {0, 1}Poly(n),

The protocol itself is an adaptation of the resettable witness indistinguishable proof system of
Section 5 with Step (V1) being replaced (or rather implemented) by current Steps (1) and (3).
Another important change is the replacement of former Step (P1) by current Step (2); the difference
being that commitment via a standard commitment scheme (with perfect binding) is replaced by
a commitment relative to a (perfect secrecy) scheme which is only computationally-binding.

(1) The verifier sends an index 7 to prover, who checks that it appears in the public-file. (Otherwise
the prover aborts.)

Note that this step may be viewed as transcendental to the protocol, since it amount to the
verifier telling the prover its identity. [Indeed, a cheating verifier may lie about its identity;
we merely rely on the fact that somebody knows the trapdoor to the index 7 if indeed it is
in the public file. Since we view the adversary as controlling the entire “world outside the
prover” it really does not matter who knows the trapdoor.]

36In fact, it suffices to have collision-intractable family of hashing function, provided it carries trapdoors and is
strong wrt subexponential circuits.
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(2) This step is analogous to Step (V1) in the protocol of the previous subsection: The verifier

commits to a sequence of ¢ et |E| uniformly and independently chosen edges. The commit-
ment is done using the constant-round perfect commitment scheme PC2, in which the verifier
plays the role of the sender and the prover plays the role of the receiver. The scheme PC2
is invoked while setting the security parameter to & = K¢/2, where ¢ > 0 is as specified in
the strong binding feature of PC1. The randomization required for the actions of the receiver
in PC2 are determined by applying the pseudorandom function f to (G, ¢, history), where
history is the transcript of all messages received by the prover so far.

Thus, the prover gets no information on the committed edges, while it is infeasible for the
verifier to “de-commit” in two different ways.

[The analysis makes heavy use of the setting of the security parameter ¥ = K¢/2. On one
hand, this setting guarantees that a quantity that is polynomial in K is also polynomial in
k. On the other hand, time 2* which suffices to violate the computational-binding property
of PC2 when run on security parameter k, is insufficient to violate the strong computational-
binding property of PC1 when run on security parameter K (since 2¢ = 2K°/2 « 2K) ]

(3) This step is analogous to Step (P1) in the protocol of the previous subsection: The prover uses
PC1 with index 7 in order to commit to a sequence of £ random colorings. That is, the prover
invokes t instances of protocol PC1 playing the sender in all, and acts as if it has received ¢
(the index) in all these instances.

Recall that the prover wishes to commit to ¢ - n values, the (jn + v)*™ value being the color
assigned to vertex v by the ' random coloring (i.e., the j* random relabeling of ¢, selected
among the six permutations of the colors {1,2,3}). All randomizations (i.e., the choice of the
random coloring as well as randomization required by PC1) are determined by applying the
pseudorandom function f to (G, ¢, history), where history is the transcript of all messages
received by the prover so far.

(4) The verifier decommits to the edge-sequence it has committed to in Step (2). That is, it
reveals the sequence of ¢ edges, as well as the necessary information required to determine
the correctness of the revealed values. [This step is analogous to Step (V2).]

(5) In case the values revealed (plus the “de-commitment” information) in Step (4) match the
commitments sent in Step (2), and in case all queries are edges, the prover reveals the corre-
sponding colors and provides the corresponding de-commitment. [This step is analogous to
Step (P2).]

(6) In case the values revealed (plus the “de-commitment”) in Step (5) match the commitments
sent in Step (3), and in case they look as part of legal 3-colorings (i.e., each corresponding
pair is a pair of different elements from the set {1,2,3}), the verifier accepts. Otherwise it
rejects. [This step is analogous to Step (V3).]

We note that, in the above description of the protocol, the verifier does not use the trapdoor (i.e.,
trap(z)). The fact that the verifier (or rather an adversary controlling all possible verifiers) knows
the trapdoor will be used by the simulator which is rather straightforward: In contrast to standard
constructions of simulators (cf., [29, 25]), the current simulator does not “rewind” the verifier.
Instead, it simulates an execution of the protocol by emulating the actions of the prover in Steps (1)-
(4) using some dummy sequence, rather than a sequence of colorings, in Step (3). However, when
getting to Step (5), and in case the verifier has decommitted properly, the simulator uses trap(7)
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in order to decommit to the corresponding edge queries in a random legal-looking way (i.e., it
decommits to a uniformly and independently chosen pair of distinct colors, for each such edge).
This uses the trapdoor feature of PC1 and the hypothesis that the verifier (and so the simulator)
knows this trapdoor. The above description corresponds to simulation of the first interaction with
the prover. Subsequent interactions are simulated in the same way assuming that the execution
of Steps (1)—(2) of the current interaction is different than in all previous interactions. Otherwise,
we simulate Steps (3) and (5) by copying the values used in the previous interaction. A last issue
to be addressed is the possibility that in two executions of the protocol the verifier may send the
same messages in Step (2) but latter decommit in two different ways in Step (5), in which case
the output of the simulator may be noticeably different from the output in real executions. Using
the computational-binding property of the scheme PC2, we argue that this event may only occur
with negligible probability. This establishes the resettable zero-knowledge property of the above
protocol (in the preprocessing model).

Observe that the computational-binding property of PC1 allows computationally-unbounded
provers to successfully fool the verifier, and hence the above protocol does not constitute an inter-
active proof. However, one can show that computationally-bounded provers can fool the verifier
only with negligible probability, and so that the protocol is computationally-sound.

Intuitively, one would like to argue that the computational-binding property of PC1 does not
allow to decommit to two different values in Step (5). The problem is that the prover commits to
colors in Step (3) after obtaining the verifier’s commitment to queries, and that the prover decom-
mits only after the verifier decommits. How can we rule out the (intuitively unlikely) possibility that
the verifier’s decommitment allows the prover to decommit accordingly (in a way it could not have
done before getting the verifier’s decommitment)? Here we use the strong computational-binding
property of PC1 (relative to security parameter K); that is, the fact that it holds also with respect
to circuits of size 2K° = 22k, We also use the fact that commitments with PC2 were done while
setting the security parameter to k, and so we can decommit any way we want while using time 2.
Thus, the binding property of PC1 has to be maintained in Step (5); i.e., it should be infeasible to
decommit “at will” in Step (5) also after obtaining the decommitment of the verifier at Step (4). In
the actual proof we consider what happens in Step (5) when the prover interacts with an imaginary
verifier which at Step (4) uniformly selects new queries and decommits according to these values.
Observe that such an imaginary verifier can be implemented within time poly(n) - 2¥. Thus, if we
consider the mental experiment in which Steps (4)-(5) are repeated T = 2¥/3 times, after a single
execution of Steps (1)-(3), then all proper decommits by the prover must be for the same value
(or else the binding property of PC1 is violated in time T - poly(n) - 2¥ < 2%¥). Furthermore, the
above should hold for at least 1 — T~ fraction of random executions of Steps (1)-(3). Thus, if
we consider a computationally-bounded prover which fools the verifier, only a term of O(27%/3)
in its success probability may be attributed to “ambiguous decommitment”. The computational-
soundness of the protocol follows by noting that (1 — |E|7!)!) &~ e~ is an upper bound on the
probability of fooling the verifier in case commitments are non-ambiguous. This establishes the
computationally-soundness of the above protocol.

9.2 Back to the bare public-key model

Given the above, all that is needed in order to adapt the protocol to the public-key model is to re-
place the assumption that the verifier knows the trapdoor by a (zero-knowledge) proof-of-knowledge
of this claim. We stress that the verifier in the above protocol will play the role of knowledge-prover,
whereas the main prover will play the role of a knowledge-verifier. This protocol has to maintain
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its soundness also when the knowledge-verifier undergoes “rewinding”. Furthermore, it should be
constant-round. (We comment that we are not aware of a known protocol satisfying these strong
requirements.) On the other hand, we don’t need “full-fledged” zero-knowledge property; simu-
latability in subexponential time will suffice (as it is merely used for the computational-soundness
property which is established based on the strong computational-binding property of PC1, which
in turn accounts for such running times too). Thus, Step (1) in the above protocol is augmented
by a constant-round proof-of-knowledge (POK) which proceeds as follows:

The parties: A knowledge-verifier, denoted KV, played by the main prover, and a knowledge-
prover, denoted KP, played by the main verifier.

Inputs: Common input i € {0,1}%.

Furthermore, KP gets auxiliary input the randomness used to generate i (equiv., to generate

(4, trap(d)))-
Goal: KP wants to prove that it knows trap(s).

High level: We present a proof of knowledge (POK) of the relevant NP-witness; that is, POK of
the randomness used to generate i. (Such knowledge yields knowledge of trap(i).) The POK
is via the standard reduction of this NP-relation to the NP-relation corresponding to Hamil-
tonicity (which is NP-Complete). We stress that the standard reduction comes with efficient
transformation of NP-witnesses from the original relation to the target Hamiltonicity relation
and vice versa. Thus, the auxiliary-input of KP allows to efficiently compute a Hamiltonian
cycle in the target graph, and from any such Hamiltonian cycle one may efficiently retrieve
trap(i).

The proof of knowledge (POK) of Hamiltonicity is based on Blum’s proof system for this
language, which is reproduced in Appendix B. An important property of Blum’s basic proto-
col is that it is a “challenge-response” game in which the challenge consists of a single bit.
Furthermore, responding correctly to both possible challenges allows to extract a Hamilto-
nian cycle (i.e., the knowledge claimed).3” This property simplifies the knowledge extraction
argument in case many copies are played in parallel: Ability to respond to any two different
sequences of challenges yields a Hamiltonian cycle. Below we run the protocol k times in
parallel, where k£ = K¢/3. The resulting protocol will have negligible knowledge-error® (i.e.,
error of 27%), and will be simulatable in time poly(K) - 2. Furthermore, the simulation will
be indistinguishable from the real interaction by any 2X°-size circuits. As stated above, we
are not concerned of the fact that the protocol may not be zero-knowledge (i.e., simulatable
in poly(K)-time).

The protocol uses a perfectly-binding commitment scheme with strong computational-secrecy;
that is, circuits of size 2K° cannot distinguish commitments to two different known values
(with distinguishing gap better than 27%°). Such a scheme can be constructed based on the
DLP assumption utilized above.

(pok1l) Using the perfectly-binding commitment scheme, KP commits to each of the entries of
k = K¢/3 matrices, each generated as in Blum’s basic protocol. (That is, each matrix is the

3TThis property holds also for other protocols for NP, but not for the 3-Colorability protocol of [25]. Any protocol
having the property will do.

38Loosely speaking, the knowledge-error is the probability that the verifier may get convinced by a cheating prover
who does not know a Hamiltonian cycle. For a precise definition, see Appendix B.
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adjacency matrix of a random isomorphic copy of the graph obtained from the reduction.
In case the output of the reduction is a graph with N vertices, the commitment scheme is
applied k - N? times.) The commitment scheme is run with security parameter K.

(pok2) KV “randomly” selects a sequence ¢ = ci---c € {0,1}* of k challenges. Actually, the
sequence c is determined by applying the pseudorandom function f to the input (i.e., the
index 7) and the history so far (of the POK protocol).

(pok3) KP answers each of the k£ bit queries as in Blum’s basic protocol. (That is, if ¢; = 0 then
KP decommits to all entries of the j®" matrix and also reveals the isomorphism; otherwise, KP
decommits only to the entries corresponding to the Hamiltonian cycle. Note that the location
of the latter entries is determined by applying the isomorphism to the original cycle.)

(pok4) KV accepts if and only if all answers are valid. Specifically, in case ¢; = 0, KV checks
that the revealed matrix is indeed isomorphic (via the provided isomorphism) to the matrix
representing the reduced graph. In case c; = 1, KV checks that all revealed entries are indeed
1’s. (In both cases, for each revealed value, KV checks that the decommitment is valid.)

The weak zero-knowledge property is easy to establish. That is, we need and do show that the
interaction with any (possibly dishonest but computationally-bounded) knowledge-verifier can be
simulated in time poly(k) - 2%. This follows by merely using the standard simulator procedure
(cf., [29, 25]), which merely selects a random string ¢ € {0,1}* and “simulates” Step (pokl) so
that it can answer the challenge ¢ (but not any other challenge). The strong computational-secrecy
of the commitment scheme (used with security parameter K') guarantees that the knowledge-verifier
cannot guess ¢ better than with probability approximately 27%, and so we will succeed with over-
whelming probability after at most k-2 tries. Standard arguments will also show that the output of
the simulator cannot be distinguish from the real interaction by circuits of size 2K°~1 > 22*_ Thus,
this simulator can be plugged into the argument given above for computational-soundness in the
case of preprocessing, and yield that the augmented protocol maintains computational-soundness:
The potentially cheating prover in the main protocol induces a cheating knowledge-verifier, and
what the simulation says is that in case the verifier (playing the knowledge-prover) follows the
protocol then whatever the knowledge-verifier can compute after interacting with it, can also be
computed with overhead of at most poly(k) - 2¥ on input the index i.

We now turn to establish the resettable zero-knowledge property of the entire protocol. As
a first step towards this goal, we establish that the above sub-protocol is indeed a POK with
knowledge-error 27% (see Def. 13 in Appendix B). In other words, we analyze a single execution of
the sub-protocol, and thus we may assume that Step (pok2) is replaced by sending a truly random
string ¢. This assumption is not valid when the sub-protocol is run many times, and this is why
the simplified analysis provided here does not suffice. However, it does provide a good warm-up.

Without loss of generality, consider a deterministic cheating knowledge-prover, and let C' be
the message sent by it in Step (pok1). Consider the probability space of all 2¥ possible challenges
¢ € {0,1}* that KV may send in Step (pok2). Say that a challenge ¢ € {0,1}* is successful for
this knowledge-prover if its answer in Step (pok3) is accepted by KV in Step (pok4). The key
observation is that given the knowledge-prover’s answer to any two different successful challenges
we can easily reconstruct the Hamiltonian cycle (and from it the trapdoor).?® To extract the
Hamiltonian cycle we just invoke the knowledge-prover many times, each time it answers with the

39This is the case since each such pair of challenges differs in some location and from the two answers to this
location we may reconstruct the Hamiltonian cycle.
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same Step (pokl) message but then we challenge it with a new randomly chosen ¢ (i.e., chosen
independently of all prior attempts). If we ever obtain its answer to two successful challenges
then we are done. Denoting by p the probability that a uniformly chosen challenge is successful, we
conclude that if p > 27% then given oracle access to the knowledge-prover (played by the adversary)
we can (with overwhelmingly high probability) find the trapdoor in time poly(k)/(p — 27%). By
a trivial modification, we obtain a knowledge extractor which for any p > 0 with overwhelming
probability runs for time poly(k)/p, and in case p > 27* also retrieves the trapdoor.*?

The above argument would have suffices if we were guaranteed that the adversary, when playing
the role of KP, never repeats the same Step (pokl) message (in two different invocations of the
entire protocol). Assuming that this is indeed the case avoids the subtle problem discussed in the
previous subsection. Still let use assume so and see how, under this unjustified assumption (which
will be removed later), the resettable zero-knowledge property follows.

Consider a sequence of invocations of the main protocol. The simulator will proceed by sim-
ulating one interaction after the other, where a single interaction is simulated as follows. The
simulator starts by playing the role of KV in Step (1). In case KV rejects then the simulator
complete the simulation of the current interaction by announcing that the prover aborts it. Note
that this is exactly what would have happened in the real interaction. In case KV accepts, the
simulator will use the knowledge-extractor described above in order to extract the trapdoor of the
index ¢ sent in Step (1). Here is where we use the assumption that the adversary does not repeat
the same Step (pokl) message. The point is that the knowledge-extractor described above will
try many different challenges for Step (pok2). Since the challenge is determined as a “random”
function evaluated at a new point (here is where we use the “no repeat” clause), we may view this
challenge as random. Thus, the above analysis applies. The conclusion is as follows. Suppose that
the cheating verifier convinces KV with probability p, We distinguish three cases. In case p = 0,
the simulator will always construct an aborting execution (just as in the real interaction). In case
p > 2% with probability 1 — p the simulator will construct an aborting execution (just as in the
real interaction), and otherwise using time poly(k)/p it finds the trapdoor of the index i sent in
Step (1), which allows it to complete the simulation of Steps (2)—(6) just as done above (in the case
of preprocessing). Note that the ezpected number of steps required for the simulation in this case
is (1 —p) - poly(k) +p- (poly(k)/p) = poly(k). The only case left is the one where p = 27*. In this
case, the simulator fails with probability p, which is negligible, and so its output is computationally
indistinguishable from a real interaction. We stress that in all cases the simulator runs in expected
time poly(k).

Having concluded all these warm-ups, we are now ready to deal with reality. The difficulty occurs
when the adversary uses the same index and same Step (pok1) message in two different interactions
with the prover. Furthermore, suppose that in the first interaction it fails to convince KV played by
the prover, but in the second it succeeds. The problem (avoided by the assumptions above) is that
we cannot use a different challenge (i.e., message for Step (pok2)) in the second interaction, since
the challenge is determined already by the first interaction. Thus, the simulator cannot complete
the simulation of the second interaction, unless it “rewinds” upto the first interaction in which
the same Step (pok1l) message is used.! This need to “rewind” interactions which were already
completed may lead to exponential blow-ups as discussed by Dwork, Naor and Sahai [12]. What
saves us here is that the number of times we possibly need to “rewind” is a-priori bounded by

“0This can be done by using a time-out mechanism invoked when poly(k) - 2% steps are completed, and observing
that if p > 27% then in fact p > 2-27" and so (p —27%)7 < 2/p.

“'We comment that in general, a simulator for resettable zero-knowledge may not proceed by generating the
interactions one after the other without “rewinding” between different interactions.
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the total number of indices in the public file. (This is the key and only place where we use the
assumption underlying the public-key model.)

Resolving the problem — a sketch: Let us reproduce and further abstract the problem we
need to analyze. For sake of simplicity, we will consider only non-interleaving adversaries (yet this
assumption can be removed as in Section 6) We are dealing a game consisting of multiple (history
dependent) iterations of the following steps, which depends on a random function f fixed once and
for all.

(a) The verifier sends a pair (i, C'), where 7 belongs to some fixed set I and C is arbitrary. This pair
is determined by applying the verifier’s strategy, V*, to the history of all previous iterations
(of these steps).

[Indeed, i corresponds to the index sent in Step (1), I to the public file, and C to the
Step (pok1) message.]

(b) The prover determines a k-bit string, ¢ = f(i,C), by applying f to the pair (i,C).
[This corresponds to Step (pok2) of KV played by the prover.]

(¢) The verifier either succeeds in which case some additional steps (of both prover and verifier)
take place or it fails in which case the current execution is completed.

[This corresponds to whether the verifier, playing KP, has provided a valid decommitment in
Step (pok3), and to the continuation of the main protocol which takes place only in case the
verifier has done so.]

We want to simulate an execution of this game, while having oracle access to the verifier’s strategy
(but without having access to the prover’s strategy, which enables the further steps referred to in
Step (c) above). Towards this goal we are allowed to consider corresponding executions with other
random functions, f’, f”,..., and the rule is that whenever we have two different successes (i.e.,
with two different challenges c) for the same pair (7, C’) we can complete the extra steps referred to
in Step (c). [This corresponds to extracting the trapdoor of 4, which allows the simulation of the
rest of the steps in the current interaction of the main protocol.]

Thus, problems in simulating the above game occur only when we reach a successful Step (c).
In such a case, in order to continue, we need a different success with respect to the same pair (i, C).
In order to obtain such a different success, we will try to run related simulations of the game. Once
we find two successes for the same pair (i, C'), we say that ¢ is covered, and we may proceed in the
simulation temporarily suspended above. That is, a natural attempt at a simulation procedure is
as follows. We simulate the iterations of the game one after the other, using a random function
f selected by us. Actually, the random function f is defined iteratively — each time we need to
evaluate f at a point in which it is undefined (i.e., on a new pair (i,C)) we randomly define f
at this point. As long as the current iteration we simulate fails, we complete it with no problem.
Similarly, if the current iteration is successful relative to the current pair (i,C) and i is already
covered, then we can complete the execution. We only get into trouble if the current iteration
is successful relative to (i,C) but 7 is not covered yet. One natural thing to do is to try to get ¢
covered and then proceed. (Actually, as we shall see, covering any new element of I, not necessarily
i, will do.)

Starting with all I uncovered, let us denote by p the probability that when we try to simulate
the game a success occurs. Conditioned on such a success occuring, our goal is to cover some
element of I within expected time poly(k)/p. Suppose we can do this. So in expected time

49



(1 —p) - poly(k) + p - (poly(k)/p) = poly(k) we either completed a simulation of the entire game
or got some ¢ € I covered. In the first case, we are done. In the second case, we start again in an
attempt to simulate the game, but this time we have already ¢ covered. Thus, we get into trouble

only if we reach a success relative to (i’,C) with ¢’ € I' def I\ {i}. Again, we may denote by p’ the
probability that when we try to simulate the game a success occurs with respect to some ¢/ € I'. In
such a case, we try to cover some element of I’, and again the same analysis holds. We may proceed
this way, in upto |I| + 1 phases, where in each phase we either complete a random simulation of
the game or we get a new element of I covered in each iteration. Eventually, we do complete a
random simulation of the game (since there are more phases than new elements to cover). So,
pending on our ability to cover new elements within time inversely proportional to the probability
that we encounter a success relative to a yet uncovered element, each phase requires poly(k) steps
on the average. Thus, pending on the above, we can simulate the game within expected time
poly(k) - |I| = poly(k) (by the hypothesis regarding I).

We now consider the task of covering a new element. Let us denote the set of currently uncovered
elements by U. Let H denote the prefix of completed executions of the simulated game and let
(1,C) = V*(H) be the current pair which is related to the current success, where ¢ € U. To get ¢
covered we do the following:

1. Let H' be the maximal sequence of executions which does not contain (i,C) as a Step (a)
message. Note that H' = H in case the current pair (7,C) does not appear as a Step (a)
message in some (prior) execution in H.

2. Redefine f'(i,C) uniformly at random, and try to extend H' (wrt to the function f') just as
we do in the main simulation (where we currently try to extend H wrt to the function f).
If during an attempt to extend H' we encounter a new (i.e., different than above) success
with respect to the same pair (i, C) then i itself gets covered, and we have fulfilled our goal.
Otherwise, we repeat the attempt to extend H' (with a new random choice for f/(i,C)) as
long as we did not try more than k - 2¥ times. In case all attempts fail, we abort the entire
simulation.

We will show that, for p > 27%, we will get a new element covered while making (p —27%)~!
tries, on the average.

3. If during the current attempt to extend H’' we encounter a success relative to some other pair
(#',C") # (i,C), where i’ (possibly equals i) is also currently uncovered, then we abort the
current extension of H' (and try a new one — again as long as k - 2¥ tries are made).

9.3 Almost constant-round RZK under weaker assumptions

Using a perfect commitment scheme which enjoys the trapdoor feature but mot necessarily the
strong computational-binding feature, one may obtain resettable zero-knowledge computationally-
sound proof system for AP in the public-key model. These protocols, however, have an unbounded
number of rounds. The idea is to use sequential repetitions of the basic protocols (both for Steps (2)-
(6) of the main protocol as well as for the POK sub-protocol) rather that parallel repetitions. That
is, both Steps (2)—(6) of the main protocol and the POK sub-protocol consists of parallel executions
of a basic protocol, and what we suggest here is to use sequential repetitions instead. The number
of (sequential) repetitions can be decreased by using Blum’s protocol (rather than the one of [25])
also as a basis for the main proof system (i.e., in Steps (2)—(6)). To minimize round complexity, one
may use a parallel-sequential hybrid in which one performs s(n) sequential repetitions of a protocol
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composed of parallel execution of p(n) = O(logn) copies of the basic protocol (of Blum). This
yields a O(s(n))-round resettable zero-knowledge computationally-sound proof system for NP in
the public-key model, for any unbounded function s : N+ N. In particular, we obtain

Theorem 9 Letr : N—N be any unbounded function which is computable in polynomial-time, and
suppose that for every polynomial p and all sufficiently large n’s, any circuit of size p(n) solves DLP
correctly only on a negligible fraction of the inputs of length n. Then every language in NP has a
r(-)-round resettable zero-knowledge computationally-sound proof system in the public-key model.

Alternatively, we note that by using the perfect commitment scheme PC1 also in role of the
(“weaker”) scheme PC2, we obtain resettable zero-knowledge property also against subexponential

€ 52 . .
adversaries. Specifically, even adversaries of running-time bounded by 2*° = 2K° gain nothing
from the interaction, where K (the primary security parameter), k = K¢ (the secondary security

parameter) and e (the exponent in the strong computational-binding feature) are as above.

10 Alternative Constant Round RZK Protocol for NP in the
Public Key Model

In this section we give an alternative version of the Resettable Zero Knowledge (RZK) Proof for
NP. This presentation does not use Blum’s (or any other version) of the general proof that NP
statement has Zero-Knowledge proofs. Rather, we define two types of commitment schemes Type-
1 and Type-2 and show how to use them directly to give RZK protocol for NP statements in the
public key model where the verifier has a public key assigned to it. These commitment schemes
exist under the strong DLP assumption. We note that this version of the protocol is very similar
to the perfect 7ZK arguments for NP protocol, except that the latter does not run in constant
number of rounds. Having introduced the public-key model enables achieving rZK arguments for
NP in constant number of rounds. Whereas in Section 7 we describe the protocol in terms of the
discrete problem, here we will define the commitments schemes abstractly.

Preliminaries

PROBABILITY SPACES.*? If A(-) is an algorithm, then for any input x, the notation “A(x)” refers
to the probability space that assigns to the string o the probability that A, on input z, outputs o.
The set of strings having a positive probability in A(z) will be denoted by “{A(x)}”.

If S is a probability space, then “z & S” denotes the algorithm which assigns to z an element
randomly selected according to S, and “x1,...,x, & 87 denotes the algorithm that respectively
assigns to, x1,...,Zn, n elements randomly and independently selected according to S. If F is a
finite set, then the notation “z <~ F” denotes the algorithm that chooses z uniformly from F.

If p is a predicate, the notation PROB|[z E Sy & T p(a,y, - -)] denotes the probability
that p(x,y,---) will be true after the ordered execution of the algorithms x & s; Y &T;....

The notation [z E Sy &E T (x,y,-- -)] denotes the probability space over {(z,y,---)} gener-
ated by the ordered execution of the algorithms z Ly Y L U

10.1 Two Types of Commitments

In this section we introduce two types of commitment schemes which will be useful for our result.

42Verbatim from [4] and [30].
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Type-1 Commitments (Verifiable Commitments)

Informal Description. A type-1 commitment (or alternatively called a ”verifiable commit-
ment”) consists of a quintuple of algorithms. Algorithm GEN1 generates a pair of matching public
and secret keys. Algorithm COM1 takes two inputs, a value v to be committed to and a public key,
and outputs a pair, (c,d), of commitment and decommitment values. Without knowledge of the
secret key, it is computationally hard —given ¢, v and d— to decommit to any value other than
v (computational soundness). On the other hand, having seen c¢ yields no information about the
value v (perfect secrecy).

The knowledge of the secret key enables decommitting the same value ¢ in arbitrary ways (trap-
doorness). This arbitrary decommitment ability is achieved by by running the FAKE1 algorithm.

Finally, succeeding in decommitting any single value into more than one way is essentially
equivalent to knowing the secret key (one-or-all). This property is achieved by algorithm FAKE'.

Put together, the properties of type-1 commitment yield (using standard terminology) a perfect-
secrecy computationally- binding commitment scheme for which there exists auxiliary information
(the secret key) whose knowledge enables decommitment in more than one way. Moreover, it is
possible to give a secure ”proof-of-knowledge” of the secret key. This commitment scheme will be
used in the 7ZK protocol for graph 3-colorability in the following way: the verifier will publish the
public key of the commitment scheme ahead of the protocol and keep to himself the secret key. At
the onset of the rZ K protocol itself, the verifier will essentially proves to the prover that he knows
the matching secret key. This proof will be secure to the extent that the prover cannot learn any
knowledge which will allow him to cheat. Next, the prover will use commitment scheme specified
by the verifiers public key to encode the coloring of the input graph.

The Formal Notion.

Definition 1: A Type-1 Commitment Scheme is a tuple of probabilistic polynomial-time algorithms
GEN1(:), COM1(-,-), VER1(-,-), KEYVER1, FAKFI1(-,-), and FAKE1' such that

1. Completeness. Vk, Vv,

PROB|(PK,SK) & GEN1(1%);(c,d) & COM1(PK,v) : KEYVER1(PK,1%) = VER1(1*, PK, ¢, v,

2. Computational Soundness. o > 0 such that V sufficiently large k and V 2*”-gate adversary
ADV

PROB[(PK,SK) & GEN1(1%); (c,v1,vy,d1,ds) & ADV (1%, PK) :
v1 # vy and VERI(1*, PK,c,v1,d1) = YES = VERI1(1*, PK, c,vq,ds)] < 27
(We call o the soundness constant.)
3. Trapdoorness. ¥ (PK,SK) € {GEN1(1*)}, Yv;,vy such that v; # vy the following two
probability distributions are identical:
[(c,d1) & COM1(PK,v1); dy <~ FAKE1(PK,SK,c,v1,d1,v2) : (c,dj)]
and
[(c,ds) & COM1(PK,v3) : (c,ds)]
(Comment: dy & FAKE1(PK,SK,c,v1,d1,vy) implies VER1(1*, PK, c,vs,d}) = YES)
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4. Perfect Secrecy. ¥V PK such that KEYVER1(PK,1%) = 1 and Vv, vs:
[(Cl,dl) <£ COMl(PK, 1}1) : Cl] = [(CQ,dQ) & COMl(PK, 'U2) : Cg]

5. One-Or-All. ¥V (PK,SK) € {GEN1(1%)}, and Ve, v1, v, d1,ds, C, Vi, D1,V such that vy # vs,
VERI1(1*, PK,c,v1,d1) = YES = VERI(1*, PK, c,vs,d3), (C,D;) € {COM1(V}, PK), and
Vi # Vo,
PROB|Dy & FAKE1(PK,c,v1,vs,d1,ds, C, Vi, D1,V3) : VERI(1%, PK,C, Vs, Dy) = YES] =
1

Type-2 Commitment

Informal Description. In type-1 commitment schemes, one commits to a value by means of a
public key, and can de-commit at will if he knows the matching secret key.

In a type-2 commitment scheme, there is a single key used to commit to values, but this key
can be easily inspected (by algorithm KEYVER2) to determine that a corresponding trap-door
information exists (and thus can be used by algorithm FAKE2 to decommit at will). Because such
trapdoor information exists, it can be found by an exhaustive search. It is not required, however,
that there is a easy way to generate type-1 commitment keys and their trapdoor information
together.

Type-1 and type-2 requirement appear to be incomparable.

The use we make of type-2 commitment in the rZK protocol for graph 3-colorability is for the
verifier to commit to his questions about colors of end points of edges in the graph before he sees
an encoding of the graph.

The Formal Notion.
Definition 2: A type-2 commitment scheme is a quintuple of probabilistic polynomial-time algo-
rithms GEN2(-), COM2(-,-), VER2(-,+,-,-), FAKE2(-,-) and KEYVER2(-),

1. Completeness. Yk, Vv,

PROB[key & GEN2(1%); (¢,d) & COM2(key,v) : VER2(key,c,v,d) = YES] =1

2. Computational Soundness. 3o, > 0 such that V sufficiently large k and V 2*"-gate adversary
ADV

PROBlkey & GEN2(1%) ; (¢c,v1,v,d1,ds) & ADV (key) :
vy # vy and VER2(key, c,v1,d1) = YES = VER2(key, c,v,ds)] < 2*°
(o is referred to as the soundness constant.)
3. Verifiable Trapdoorness. ¥V key such that K EYV ER2(key,1%*) = YES 3 trap € {0,1}* such
that, Yv1,v9 such that vy # vo:
PROB[c & COM2(key,v) ; d & FAKE2(key,trap,c,vi,dy,vs) : VER2(key, c,ve,d) =
YES]| =1
4. Verifiable Perfect Secrecy. Vkey such that KEYV ER2(key)=YES and Vv, vy
[(c1,d1) & COM2(key,v1) : 1] = [(c2,da) & COM (key,vs) : ¢

53



Remarks on Type-1 and Type-2 Commitments

The above commitment schemes can be implemented under a variety of assumptions. For example,
the assumption that family of claw-free trapdoor permutation pairs defined by [GoMiRi] suffices for
Type-1 commitment. Moreover, this same assumption suffices for implementing type-2 commitment
if KEYVER2 is relaxed to be an interactive procedure (or if it has access to a random string as
required for non-interactive zero-knowledge proofs).

Alternatively, based on the assumption that the discrete logarithm problem is hard, both Type-
1 and Type-2 commitment can be achieved as we show below. Even though the two commit-
ment schemes implementations follow from the same complexity assumption, our rewindable zero-
knowledge protocol uses commitments in two fundamentally different ways. Thus, having two
different types of commitments enhances the understanding of the protocol, and may possibly lead
to minimizing the complexity assumptions necessary in future implementations.

Finally, as shown within our RZK protocol (i.e., in its first 4 steps ), the producer of a public-
secret key pair for a type-1 commitment scheme, can prove in constant round that he knows the
secret key corresponding to the public key without enabling the verifier of this proof of knowledge
to “decommit at will”.

10.2 Discrete-Log Implementations of Type-1 and Type-2 Commitment

Definition: We define the language DLP’ to consist of the quadruples (p,g,z,p — 1), where p
is a prime, g a generator of Z;, x an element of Zp, and p—1 is an encoding of the prime
factorization of p — 1. We denote by DLP), the set of quadruples in DLP’ whose prime has length
k: DLP, = {(p,g,2,p — 1) € DLP' : |p| = k}.

Lemma 1: Under the strong DLP assumption, there exist a type-1 commitment scheme.

Proof: Define algorithms GEN1, COM1, VER1, FAKE1, and FAKE1 as follows:

GEN1 is a probabilistic, polynomial-time algorithm that, on input 1¥, randomly selects a k-bit
prime p, a generator g for Z;, and z € [1,p—1] and outputs PK = (p,g,y,p — 1) and SK = z.

(Note: GEN1 makes use of the fact that one can generate k-bit composite numbers in factored
form as shown by Bach.)

COM1 is a probabilistic polynomial-time algorithm that, on inputs (p,g,y,p — 1) € DLP; and a
bit b, randomly selects d € {1,...,p — 1}, computes ¢ = g%® mod p, and outputs (c, d).
(Note: Longer binary strings are committed in a “bit-by-bit fashion”)

VER]1 takes as input (p,g,y,p — 1) and ¢,v,d. If (p,g9,y,p — 1) € DLP} and ¢ = g%y® mod p it

outputs YES, else it outputs NO.

KEYVER] is a probabilistic polynomial time algorithm that takes as input (p,g,y,p — 1) and
outputs YES if p is prime, g is generator for Z;, and y € Z;, and NO otherwise.

FAKE]1 takes as input (p,g,y,p — 1) € DLP] and (z,c,v1,d1,v9) where ¢* = y mod p, v1 # vg
mod p — 1, and ¢ = g% mod p, and outputs dy = d; + (v, — v3) mod p — 1.

FAKE1" takes as input PK € DLP; and c,v1,v2,d1,d2,C, Vi, D1,V such that v1 # vy mod p—1,
Vi #V mod p—1, and VER1(PK,c,v1,d1) = YES = VER1(PK,c,vy,ds). It computes
2= (dy — dy)(v1 — va) "' mod p — 1 and outputs D = Dy + (Vs — V) mod p — 1. m
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Lemma 2: Under the strong DLP assumption, there is a type-2 commitment scheme.
Proof: Define algorithms GEN2, COM2, VER2, FAKFE2, and KEYVER2 as follows:

GEN?2 is a probabilistic, polynomial-time algorithm that, on input 1*, randomly selects a k-
bit prime ¢ together with ¢ — 1, a generator h for Z;, and z € Z; and outputs PK =

(Qa ha Z,q — 1)

COM?2 is a probabilistic polynomial-time algorithm that, on input (g, h,2,¢ — 1) € DLP] and a
bit b, randomly selects d € {1,...,q — 1}, computes ¢ = h%2® mod ¢, and outputs (c,d).

(Note: Longer binary strings are committed in a “bit-by-bit fashion”)

VER2 takes as input (g, h, 2,9 — 1) € DLP] and c,v,d. If c = h%h” mod ¢ it outputs YES, else it
outputs NO.

KEYVER? takes as input (g, h,z,q — 1) € DLP] and 1*. If ¢ is prime, h is a generator for Zy
and z € Z; it outputs YES, else it outputs NO.

FAKE? takes as input key = (g, h, 2,q — 1) such that K EYV ER(key,1%¥) = YES, trap € {0,1}*
and c, vg,v1,d; such that vy # ve mod p—1 and VER2((q, h, 2),c,v1,d1) = YES. If A" = 2
mod ¢, then output do = dy + trap(vy — ve) mod g — 1.

Note that for every key = (g, h,z) where KEYV ER(key,1%¥) = YES, there exists trap such
that A'"% = z mod ¢ (as required above). [

10.3 An RZK Protocol For 3-Coloring Using Public Keys

Initial Remarks

The protocol utilizes a type-1 commitment scheme, (GEN1,COM1,VER1, KEYVER1,FAKE1, FAKFE1
with soundness constant ay. Before the protocol starts, the verifier runs GEN1 with security pa-
rameter K to obtain a public key, PK, and its matching secret key, SK. This public key will be a
common input of prover and verifier. The second common input will be G, a graph that the prover
claims to be 3-colorable. The private input of the verifier consist of SK, while the private input to
the prover consist of a seed s for a pseudo-random function a la [GGM], fs.

The protocol also uses a type-2 commitment scheme, (GEN2, COM2,VER2, FAKE2 KEYV ER2),
with soundness constant a. The prover generates a (single) key for this commitment scheme by
using GEN2, with security parameter k, during run time.

Note that the security parameters K and k are not chosen equal, nor independently. Rather,

the protocol requires that K be suitably bigger than k: more precisely, K = ki 43 The length
of the seed s, may however, be chosen quite independently of K and k: it is only for simplicity that
we chose it to be K-bit long.

At a very high level, the protocol consists of two phases. First, the verifier convinces the prover
that he “knows” SK(steps 1-4). Second, the prover convinces the verifier that the input graph G
is 3-colorable (steps 5-10). The prover is de-facto deterministic: at each step of the protocol, all
his “random” choices are made by applying fs to the history of the communication so far.

The Protocol

43 As a result, “cheating” will be hard in both schemes, but it will be much harder for the type-1 scheme than for
the type-2 scheme. In particular, as it will become clear later on, finding two different decommitments for the same
type-2 commitment cannot significantly help in finding SK, the type-1 secret key.
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Protocol RZK
Security Parameter(s): k and K where K = 2=y
Verifier’s public and secret key: (PK,SK) & GEN1(1X).
Prover’s secret seed: s € {0,1}%

Common input to protocol: A 3-colorable graph G with vertex set VERTICES and edge
set EDGES, where VERTICES has cardinality n and EDGES has cardinality m.

Secret input to prover : a 3-coloring of G, COL : VERS — {1,2,3}, where COL(v) is
the color of vertex v.

Comment: The following 10 steps are executable in 7 rounds of communication.

1.

10.

(Instructions for V)
Fori=1,...,k, let (X;, R;) & COM1(PK,0), send X; to P.

. (Instructions for P) If KEYVER1(Pk,1*) = NO, then halt. Else,

Compute ay,...,ar = fs(X1]...|Xk) where fs is a GGM random function with seed s and
send them to V.

(Instructions for V)
Fori=1,...,k, compute R; & FAKFE1(PK,SK, X;,0,R;,1).
If a; = 0, then set D;= R;, else set D; = R'I. Send D; to P.

. (Instructions for P)

Fori=1...,k, if VERL(PK, X;,a;, D;) = NO, then reject.

. (Instructions for P)

Select key & GEN?2(1%) and send it to V.

(Instructions for V) If KEYVER2(key,1¥) = NO, then reject. Else,
For j = 1...,n3 randomly select edge e; = (uj,v;) in G, compute (ce;, de;) & COM2(key, e;),
and send P the commitment values ce;.

(Instructions for P) For j = 1,...,n3, choose ;, a random permutation of {1,2, 3}, and:
for all w € VERTICES do: (cu;,du;) & COM1(PK,7;(COL(u))) and send cu; to V.

(Instructions for V) For j =1,...,7n3, decommit e; = (uj,v;) by sending e; and de; to P.

(Instructions for P) For j = 1...,n3, if VER2(key, cej, e;,dej) = NO, then reject. Else,

decommit the colors of the endpoints of e; by sending 7;(COL(u;)), duj, 7;(COL(v;)) and
dv; to P.

(Instructions for V)

a) Forj=1,...,n3, if VERI(PK,cv;,7;(COL(v;)),dv;) = NO or VERI(PK, cu;, 7;(COL(u;)), du;
PR J J 3 i J J

NO, then reject.
(b) For j =1,...,n3, if m;(COL(u;)) = mj(COL(v;)) (where e; = (uj,v;)), then reject.
(c) Else, accept.
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Part II1
Appendices

These appendices are reproduced from an old versions; some inconsistencies with and repetitions
of the main text may occur.

Appendix A: Commitment Schemes

We formally define the various types of commitment schemes used in the main text. We start
with the more standard notion of a commitment scheme in which secrecy is preserved only w.r.t
computationally bounded adversaries, and later pass to the dual notion of a perfect commitment
scheme (in which secrecy is preserved in an information theoretic sense). Recall that the binding
property in standard schemes is absolute (i.e., information theoretical), whereas in perfect commit-
ment schemes it holds only w.r.t computationally bounded adversaries. But before defining any
of these, let use define a sufficient condition for the existence of all these schemes — a strong DLP
assumption.

A.1 The Strong DLP Intractability Assumption

The Discrete Logarithm Problem (DLP) is defined as follows. On input p, g,y, where p is a prime, g
is a primitive element in the multiplicative group modulo p, and y € Z7, one has to find z suct that
9° =y (mod p). We assume that this task is intractable also in the special case where p = 2¢ +1
and ¢ is a prime too. Such p’s are often called safe primes, and the above assumption is quite
standard. It follows that the same would hold when g is of order ¢ and so is . Finally, we assume
that intractability refers to sub-exponential size circuits rather merely to super-polynomial ones.
Thus we assume the following:

The Strong DLP Assumption: For some € > 0, for every sufficiently large n, and
every circuit C of size at most 2

Pr[C(p,g,9° modp) =] < 27

where the probability is taken uniformly over all n-bit long safe primes p, elements g of
order q A (p—1)/2, and z € Zj.

We comment that, although stronger than the standard assumption, the above Strong DLP As-
sumption seems very reasonable.

A.2 Standard Commitment Schemes

By a standard commitment scheme we refer to one providing computational-secrecy and absolute
(or perfect) binding. For simplicity, we consider here only one-round commitment schemes.

Definition 10 (standard commitment scheme): A standard commitment scheme is a probabilistic
polynomial-time algorithm, denoted C satisfying:
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(Computational) Secrecy: For every v,u of equal poly(n)-length, the random variables C(1™,v)
and C(1™,u) are computationally indistinguishable by circuits. That is, for every two polyno-
mials p,q, all sufficiently large n’s and all v,u € {0, l}p(") and every distinguishing circuit D
of size q(n),

[Pr[D(C(1",v)) =1] — Pr[D(C(1",u)) =1]] < —

(Perfect) Binding: For every v,u of equal poly(n)-length, the random wvariables C(1",v) and
C(1™,u) have disjoint support. That is, for every v,u and «, if Pr[C(1",v) = «] and
Pr[C(1",u) = o are both positive then u = v.

The way such a commitment scheme is used should be clear: To commit to a string v, under security
parameter n, the sender invokes C'(1",v) and sends the result as its commitment. The randomness
used by C during this computation, is to be recorded and can latter be used as a decommitment.

A commitment scheme as above can be constructed based on any one-way permutation: Loosely
speaking, given a permutation f : D +— D with a hard-core predicate b (cf., [24]), one commits to
a bit o by uniformly selecting x € D, and sending (f(z),b(z) @ o) as a commitment.

A strong version of the standard commitment scheme requires computational-secrecy to hold
also with respect to subexponential-size circuits (i.e., replace the polynomial ¢ above by a function
f of the form f(n) = 2", for some fixed € > 0). This is analogous to the strong computational-
binding feature discussed below. The Strong DLP Assumption implies the existence of such strong
computational-secrecy commitment schemes.

A.3 Perfect Commitment Schemes

We start by defining two-round perfect commitment schemes. In such schemes the party’s strategies
may be represented by two algorithms, denoted (S, R), for sender and receiver. The sender has a
secret input v € {0,1}* and both parties share a security parameter n. Thus, the first message
sent (by an honest receiver) is R(1™), and the response by a sender wishing to commit to a value v
(of length bounded by a polynomial in n) is S(1", v, msg), where msg is the message received in the
first round. To “de-commit” to a value v, the sender may provide the coin tosses used by S when
committing to this value, and the receiver may easily verify the correctness of the de-committed
value.

Definition 11 (perfect two-round commitment scheme): A perfect two-round commitment scheme
is a pair of probabilistic polynomial-time algorithms, denoted (S, R) satisfying:

(Perfect) Secrecy: For every mapping R* (representing a computationally-unbounded cheating
receiver), and for every v, u of equal poly(n)-length, the random variables S(1",v, R*(1™)) and
S(1™,u, R*(1™)) are statistically close. That is, for every two polynomials p,q, all sufficiently
large n’s and all v,u € {0, 1}7’(”)

1

Z | Pr[S(1", v, R*(1")) = o] — Pr[S(1",u, R*(1")) = o] | < o)

(Computational) Binding: Loosely speaking, it should be infeasible for the sender, given the
message sent by the honest receiver, to answer in a way allowing it to later de-commit in two
different ways.
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In order to formulate the above, we rewrite the honest sender move, S(1",v,msg), as con-
sisting of uniformly selecting s € {0, l}POIY(""”D, and computing a polynomial-time function
S'(1",v, s,msg), where msg is the receiver’s message. A cheating sender tries, given a receiver
message msg, to find two pairs (v,s) and (v',s") so that v # v' and yet S'(1",v, s,msg) =
S'(1™,v', ' ;msg). This should be infeasible; that is, we require that for every polynomial-size
circuit S* (representing a cheating sender invoked as part of a larger protocol), for every
polynomial p, all sufficiently large n’s

Pr[Vn 7é V'ri & Sl(lnaVHaSmR(ln)) = Sl(lnavriaS;UR(ln))] < m

where (V,,, Sn, V.1, S5) = S*(1™, R(1™)).

A perfect two-round commitment scheme can be constructed using any claw-free collection (cf., [22]).
In particular, it can be constructed based on the standard assumption regarding the intractability
of DLP (as the latter yields a claw-free collection). Combing the two constructions, we get the
following perfect two-round commitment scheme: On input a security parameter n, the receiver
selects uniformly an n-bit prime p so that ¢ def (p—1)/2 is prime, a element g of order ¢ in Zj, and
z in the multiplicative subgroup of Z; formed by g, and sends the triple (p,g,2) over. To commit
to a bit o, the sender first checks that (p, g, z) is of the right form (otherwise it halts announcing
that the receiver is cheating®*), uniformly selects s € Z,, and sends ¢g°z° mod p as its commitment.

Additional features: The additional requirements assumed of the perfect commitment schemes
in Section 9 can be easily formulated. The strong computational binding feature is formulated by
extending the Computational Binding Property (of Def. 11) to hold for subexponential circuits S*.
Again, the Strong DLP Assumption yields such a stronger binding feature. The trapdoor feature
requires the existence of a probabilistic polynomial-time algorithm R that outputs pairs of strings
so that the first string is distributed as in R (above), whereas the second string allows arbitrary
decommiting. That is, there exists a polynomial-time algorithm A so that for every (msg,aux) in
the range of R(1"), every v,u € {0, 1}POIY("), and every s € {0, 1}PV(m[D satisfies

S'(1",v,5,msg) = S'(1",u, A(aux, (v, 5),u), msg)

That is, a = A(aux, (v, s),u) is a valid decommit of the value u to the sender’s commitment to
the value v (i.e., the message S'(1",v, s,msg)). Thus, one may generate random commitments ¢
(by uniformly selecting s and computing S’(1%,0°°¥(") s msg)) so that later, with knowledge of
aux, one can decommit to any value u of its choice (by computing a = A(aux, (0P°Y(™) s), u)).
The DLP construction (of above) can be easily modified to satisfy the trapdoor feature: Actually,
the known implementation for the random selection of z (in the subgroup generated by g) is to
select 7 uniformly in Zj and set 2 = ¢" mod p. But in this case r is the trapdoor we need, since

g°2" = g*t(v=r 2% (mod p), and so we may decommit to u by presenting s + (v — u)r mod g.

Appendix B: Blum’s Proof of Knowledge

For sake of self-containment, we first recall the definition of a proof of knowledge. The following
text is reproduced from [19].

44 Actually, to fit the definition, the sender should commit via a special symbol which allows arbitrary decommit.
Surely, such a commitment-decommit pair will be rejected by the honest receiver, which never cheats.
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B.1 Proofs of Knowledge
B.1.1 Preliminaries

Let R C {0,1}* x {0,1}* be a binary relation. Then R(x) e {s : (z,s) € R} and Lp e {z :
Jds s.t. (z,s) € R}. If (z,s) € R then we call s a solution for . We say that R is polynomially
bounded if there exists a polynomial p such that |s| < p(|z|) for all (z,s) € R. We say that R
is an NP relation if R is polynomially bounded and, in addition, there exists a polynomial-time
algorithm for deciding membership in R (i.e., Lr € N'P). In the sequel, we confine ourselves to
polynomially bounded relations.

We wish to be able to consider in a uniform manner all potential (knowledge) provers, without
making distinction based on their running-time, internal structure, etc. Yet, we observe that these
interactive machine can be given an auxiliary-input which enables them to “know” and to prove
more. Likewise, they may be lucky to select a random-input which enables more than another.
Hence, statements concerning the knowledge of the prover refer not only to the prover’s program
but also to the specific auxiliary and random inputs it has. Hence, we fix an interactive machine
and all inputs (i.e., the common-input, the auxiliary-input, and the random-input) to this machine,
and consider both the corresponding accepting probability (of the verifier) and the usage of this
(prover+inputs) template as an oracle to a “knowledge extractor”. This motivates the following
definition.

Definition 12 (message specification function): Denote by P, () the message sent by machine
P on common-input x, auziliary-input y, and random input r, after receiving messages m. The
function Py, . is called the message specification function of machine P with common-input x,
auziliary-input y, and random input r.

An oracle machine with access to the function P, , , will represent the knowledge of machine P on
common-input z, auxiliary-input y, and random input r. This oracle machine, called the knowledge
extractor, will try to find a solution to z (i.e., an s € R(x)). (As postulated below, the running time
of the extractor is inversely related to the corresponding accepting probability (of the verifier).)

B.1.2 Knowledge verifiers

Now that all the machinery is ready, we present the definition of a system for proofs of knowledge.
At first reading, the reader may set the function s to be identically zero.

Definition 13 (System of proofs of knowledge): Let R be a binary relation, and k : N — [0,1].
We say that an interactive machine V is a knowledge verifier for the relation R with knowledge error
k if the following two conditions hold.

e Non-triviality: There exists an interactive machine P so that for every (x,y) € R all possible
interactions of V. with P on common-input x and auziliary-input y are accepting.

e Validity (with error k): There exists a probabilistic oracle machine K such that for every
interactive machine P, every x € Lr and every y,r € {0,1}*, on input x and access to Py yr
machine K finds a solution s € R(x) within expected time inversely proportional to p— k(|z|),
where p s the probability that V accepts x when interacting with Py, .. More precisely:

Denote by p(x,y,r) the probability that the interactive machine V' accepts, on input x, when
interacting with the prover specified by Py y .. Then if p(z,y,r) > £(|z|) then, on input z and
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access to oracle Py, machine K outputs a solution s € R(x) within an expected number of
steps bounded above by
poly(|z|)
p(z,y,7) — K(|z)
The oracle machine K 1s called a universal knowledge extractor.

When «(-) is identically zero, we just say that V is a knowledge verifier for the relation R. An
interactive pair (P,V) so that V is a knowledge verifier for a relation R and P is a machine
satisfying the non-triviality condition (with respect to V and R) is called a system for proofs of
knowledge for the relation R.

B.2 Blum’s Protocol

In the main text, we consider k parallel repetitions of the following basic proof system for the Hamil-
tonian Cycle (HC) problem which is NP-complete (and thus get proof systems for any language in
NP). We consider directed graphs (and the existence of directed Hamiltonian cycles).

Construction 14 (Basic proof system for HC):

e Common Input: a directed graph G = (V, E) with n def [V].

e Auxiliary Input to Prover: a directed Hamiltonian Cycle, C C E, in G.

e Prover’s first step (P1): The prover selects a random permutation, w, of the vertices V, and
commits to the entries of the adjacency matriz of the resulting permuted graph. That is, it
sends an n-by-n matriz of commitments so that the (w(i),7(5))" entry is a commitment to
11if (i,j) € E, and is a commitment to 0 otherwise.

e Verifier’s first step (V1): The verifier uniformly selects o € {0,1} and sends it to the prover.

e Prover’s second step (P2): If o = 0 then the prover sends m to the verifier along with the
revealing (i.e., preimages) of all commitments. Otherwise, the prover reveals to the verifier
only the commitments to entries (w(i),w(j)) with (i,j) € C. In both cases the prover also
supplies the corresponding decommitments.

e Verifier’s second step (V2): If o = 0 then the verifier checks that the revealed graph is indeed
isomorphic, via 7, to G. Otherwise, the verifier just checks that all revealed values are 1 and
that the corresponding entries form a simple n-cycle. In both cases the verifier checks that the
decommitments are proper (i.e., that they fits the corresponding commitments). The verifier
accepts if and only if the corresponding condition holds.

We stress that the above protocol uses a standard commitment scheme.

Proposition 15 The protocol which results by k parallel repetitions of Construction 14 is a proof of
knowledge of Hamiltonicity with knowledge error 2= %. Furthermore if, for every positive polynomial
p, the commitment scheme used in Step (P1) maintain secrecy with respect to circuits of size p(n)-23
and distinguishing gap of 273% /p(n) then, for every positive polynomial q, the interaction can be
simulated in time poly(n)-2* so that no circuit of size q(n)-22* can distinguish the simulation from
the real interaction with gap of 272% /q(n) or more.
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