Electronic Colloquium on Computational Complexity, Report No. 43 (1999) e TaTs

The Approximability of Set Splitting Problems and Satisfiability
Problems with no Mixed Clauses

Venkatesan Guruswami*

MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 01239.

Email: venkat@theory.lcs.mit.edu

October, 1999

Abstract

We prove hardness results for approximating set splitting problems and also instances of
satisfiability problems which have no “mixed” clauses, i.e all clauses have either all their literals
unnegated or all of them negated. Results of Hastad [8] imply tight hardness results for set
splitting when all sets have size exactly k& > 4 elements and also for non-mixed satisfiability
problems with exactly k literals in each clause for k£ > 4. We consider the problem Max E3-
SET SPLITTING in which sets have size exactly 3, and prove, by constructing simple gadgets
from 3-parity constraints, that MAX E3-SET SPLITTING is hard to approximate within any
factor strictly better than 21/22. We also prove that even satisfiable instances of MAX E3-SET
SPLITTING are NP-hard to approximate better than 27/28; this latter result uses a recent PCP
construction of [7]. We give a PCP construction which is a variant of the one in [7] and use it
to prove a hardness result of 11/12 + ¢ for approximating non-mixed MAX 3SAT, and also a
hardness of 15/16 + € for the version where each clause has ezactly 3 literals (as opposed to up
to 3 literals).

1 Introduction

We study the approximability of set splitting problems and satisfiability problems whose clauses
are restricted to have either all literals unnegated or all of them negated. The latter seems to be a
natural variant of the fundamental satisfiability problem.

1.1 Set Splitting Problems

We first discuss the set splitting problems we consider and the prior work on them. In the general
MAX SET SPLITTING problem, we are given a universe U and a family F of subsets of U, and
the goal is to find a partition of U into two (not necessarily equal sized) sets as U = Uy U Uj that
maximizes the number of subsets in F that are split (where a set S C U is said to be split by the
partition U = U; UU, if SNU; # 0 and SN Us # (). The version when all subsets in the family F
are of size exactly k is referred to as MAX Ek-SET SPLITTING. For any fixed k > 2, MAX Ek-SET

*Research supported by an IBM Graduate Fellowship.

ISSN 1433-8092

SPLITTING was shown to be NP-hard by Lovdsz [12]. Obviously, MAX E2-SET SPLITTING is exactly
the extensively studied MAX CuUT problem. MAX CuUT is known to be NP-hard to approximate
within 16/17 + ¢, for any ¢ > 0 [8, 15], and Goemans and Williamson, in a major breakthrough,
used semidefinite programming to give a factor 0.878-approximation algorithm for MAax Cur [5].
Here we investigate the approximability of MAX Ek-SET SPLITTING for k > 3.

The MAX SET SPLITTING problem is related to the constraint satisfaction problem MAX NAE
SAT, which is a variant of MAX SAT, but where the goal is to maximize the total weight of the
clauses that contain both true and false literals. MAX SET SPLITTING is simply a special case of
MAx NAE SAT where all literals appear unnegated (i.e MAX SET SPLITTING is the same problem
as monotone MAX NAE SAT). Similarly MAX Ek-SET SPLITTING is just the monotone version of
MaAx NAE-Ek-SAT.

Prior Work. We discuss below the status of the MAX Ek-SET SPLITTING and MAX NAE-Ek-
SAT problems for £k > 3. These problems are all NP-hard and MAX SNP-hard. Moreover, it was
shown that for each k& > 3, there is a constant €, > 0, such that is is NP-hard to distinguish
between MAX Ek-SET SPLITTING instances where all sets can be split by some partition (which
we call satisfiable instances in the sequel), and those where no partition splits more than a (1 —¢g)
fraction of the sets [13].

Following the striking inapproximability results of Hastad [8], it has become possible to prove
reasonable explicit bounds on the inapproximability ratios of MAX Ek-SET SPLITTING and MAX
NAE-EE-SAT by construction of appropriate gadgets (see [15] for formal definitions of gadgets; we
freely use this terminology throughout the paper). In particular, the result for £ = 2 (i.e MAX CuT)
mentioned above follows this approach, and so does the 11/12 4 ¢ hardness result for MAX NAE-
E2-SAT [8]. In the same paper [8], Histad proved a tight inapproximability bound of 1—27% +¢, for
an arbitrary constant € > 0, for satisfiable instances of MAX k-SAT, for k£ > 3. It follows that even
satisfiable instances of MAX NAE-Ek-SAT, for k£ > 4, are hard to approximate within 1—27%+1 ¢
for an arbitrary constant ¢ > 0. Note that this result is tight, since a random truth assignment will
“satisfy” a fraction 1 — 27**! of the clauses of a MAX NAE-Ek-SAT instance. For MAX NAE-
E3-SAT, a hardness of approximation within 15/16 + ¢, even for satisfiable instances, follows from
Héastad’s inapproximability result for MAX 3-SAT and an easy 2-gadget from MAX 3-SAT to MAX
NAE-E3-SAT [13, 16]. On the algorithmic side, the best known approximation algorithm, due to
Zwick [17], achieves a ratio of 0.908. (This bound is as yet only based on numerical evidence, the
best proven bound is 0.87868 [10, 16], which is slightly better than the Goemans and Williamson
approximation guarantee for MAX CuT [5].) For satisfiable instances of MAX NAE-E3-SAT, an
approximation ratio of 0.91226 can be achieved in polynomial time [16].

Turning again to set splitting problems, recently, Hastad, in the final version of [8], proves the
tight result that it is NP-hard to approximate (even satisfiable instances) MAX E4-SET SPLITTING
within 7/8 + ¢, for any € > 0. (The result is tight, because a random partition will split a %th
fraction of the sets.)

For MAX E3-SET SPLITTING, by the results of Zwick [16, 17] mentioned above, there exist
approximation algorithms achieving a ratio of 0.908 (resp. 0.912) for general (resp. satisfiable)
instances. As regards hardness results for MAX E3-SET SPLITTING, no explicit bound in the
literature appears to be correct. Inapproximability within a factor of (approximately) 0.987 is
claimed in [9]; and it is mentioned in [1] that the 9-gadget reducing a PCy constraint to 3-Set
Splitting constraints that appears in [9] (a PCy constraint is of the form z @ y @ z = 0 where
x,y, z are unnegated variables), together with Hastad’s inapproximability result for MAX 3-PARITY,
implies a hardness of 17/18 + ¢ for MAX E3-SET SPLITTING. These claims suffer from the “well-

known” flaw in early gadget results that use PCy gadgets without giving explicit PC; gadgets (a
PC; constraint checks if z @y @ z = 1) to conclude hardness results for approximating monotone
constraint satisfaction problems (like MAx CuT, MAX E3-SET SPLITTING, etc). The problem
is that when the target problem is monotone, one cannot “convert” a PC;y constraint to a PCy
constraint by simply negating a variable, and one has to pay an explicit cost in the gadget for
negating a variable. This error occurs in early versions of [2] and in [9, 1]. For the case of MAX
Cur, the error can be (and was) fixed in [2] who construct a PC; gadget from a PCy gadget by
negating a variable at a unit extra cost. The question we therefore address is whether it is possible
to do the same for MAX E3-SET SPLITTING, and we are in fact able to achieve this by paying an
extra cost of 4 for the PC; gadget.

In light of the work of Trevisan et al. [15] on methods for finding optimal gadgets, it is interesting
to ask why we cannot use their techniques to search for and find the optimal gadgets for set splitting,
say for example, an optimal gadget reducing PCy to MAX E3-SET SPLITTING. It turns out that
it is not possible to guarantee an optimal gadget by the means in [15], because 3-Set splitting
constraints are not hereditary (a constraint family is hereditary if identifying two variables of a
function results in a new function that is either in the family or is the all 0 or all 1 function; see
[15] for details). The linear programs involved in getting the best gadget in even some reasonable
subclass of gadgets are too big to be solved', and it is probably not worthwhile to pursue this
approach as one is not guaranteed a proof of optimality of the gadget anyway.

Remark. It is easy to see that MAX 2-SAT reduces to MAX NAE-E3-SAT, and that MAx E3-SET
SPLITTING reduces to MAX CUT in an approximation preserving way. However, the best algorithm
known for MAX 2-SAT [4] achieves a ratio of 0.931, while only a weaker ratio of 0.908 [17] is known
for MAX NAE-E3-SAT. Similarly, while the best approximation ratio to date for MAx CuT is
0.878 [5], a better factor of 0.908 is known for MAX E3-SET SPLITTING (using the same algorithm
as the one for MAX NAE-E3-SAT [17]). It is not clear therefore any of the above two reductions go
the opposite way as well, i.e. whether MAX 2-SAT is as hard to approximate as MAX NAE-E3-SAT
or whether MAX E3-SET SPLITTING is as hard to approximate as MAX CUT.

1.2 Satisfiability with no Mixed Clauses

The set splitting problem is a special case of NAE-SAT in which in all clauses all literals appear
unnegated (or, equivalently, all appear negated). This leads us to consider the corresponding
question for the even more fundamental problem of satisfiability where none of the clauses in the
instance are mixed. We refer to the version of MAX SAT where all clauses have at most k literals
and none of the clauses have both negated and unnegated literals as MAX k-NM-SAT (here NM-
SAT stands for non-mixed satisfiability). The version where all the clauses have exactly k literals
will be referred to as MAX Ek-NM-SAT. This problem appears to be a fairly natural variant of
SAT, and does not appear to have been explicitly considered in the literature.

Known results on approximating MAX k-NM-SAT: Clearly, any algorithm that approximates MAX
k-SAT within factor oy also approximates MAX k-NM-SAT within the same factor; in particular
approximation factors of ag = 0.931 and a3 = 7/8 can be achieved in this way [4, 10]. For MAX
EE-NM-SAT, an approximation factor of 1 — 27% can be achieved trivially for all k£ > 3, by simply
picking a random truth assignment. There are no algorithms known which perform any better on
non-mixed clauses than on general satisfiability instances. For k > 4, a recent result of Hastad [8]
shows that MAX Ek-SET SPLITTING is hard to approximate within a factor of 1 —27%*1 ¢ for any

!This was pointed out to us by Greg Sorkin.

€ > 0. Since there is a trivial 2-gadget reducing MAX Ek-SET SPLITTING to MAX EkE-NM-SAT
(namely, replace the constraint split(z1,z2,...,z;) by the two clauses (z1 V z2 V --- V z) and
(Z1 VZ2V--+V Zg)), this implies that MAX Ek-NM-SAT (and hence also MAX k-NM-SAT) is NP-
hard to approximate within a factor better than (1 — 27%). Hence, for k > 4, the naive algorithms
that work for the more general MAX Ek-SAT are really the best possible for MAX Ek-NM-SAT as
well. As in the case of set splitting problems, our focus, therefore, is on the case k = 3.

1.3 Owur Main Results

For the set splitting problems, we design a 13-gadget reducing PC; to 3-Set Splitting constraints
which can be used in conjunction with the 9-gadget from PCy, to yield, on combining with the
hardness result for MAX 3-PARITY [8], an inapproximability bound of 21/22 + ¢ for MAX E3-SET
SPLITTING. Note that this exactly equals the best known inapproximability bound for MAX 2-SAT;
it is not clear whether this is simply a coincidence. This result, however, does not hold for satisfiable
instances of MAX E3-SET SPLITTING. For such instances we prove a weaker inapproximability
bound of 27/28 + ¢, for any £ > 0; this result uses a recent PCP construction of [7] together with
gadgets reducing the predicates tested in their PCP to 3-Set Splitting constraints.

For MAxX Ek-SET SPLITTING with higher values of k, note that the case k = 4 is completely
resolved by Hastad’s results mentioned above. Unlike most other problems like MAX k-PARITY or
MAX k-SAT, this result alone does not seem to automatically, via a simple gadget, imply a tight
inapproximability result for MAX Ek-SET SPLITTING, k > 5, as well. It turns out, however, that
one can slightly modify the PCP construction of Hastad to also prove a tight hardness result for
MaxX EE-SET SPLITTING for k£ > 5 (we record this fact without proof in Section 3).

For MAX 3-NM-SAT, one can prove an inapproximability ratio of 13/14 4 ¢ by starting with a
hard to approximate instance of MAX 3-SAT, and use a 2-gadget to replace each mized clause with
clauses that only have either all negated or all unnegated literals (for example, replace a clause
(aVbVe) with (avbVt)and (fV) and a clause (a VbV €) with (aVt) and (£V bV ¢E)). For MAX
E3-NM-SAT, this method gives hardness within a factor of 19/20 + €. Both these hardness results
apply for satisfiable instances of non-mixed SAT as well.

We improve these results by giving a PCP construction following the one in [7]; our PCP makes
3 queries, has perfect completeness and has soundness 1/2 + €. This new PCP construction is
essentially the same as the one in [7] — we show that, with one simple modification, one of the
two proof tables the verifier reads in their construction need not be folded (folding is technical
requirement in PCP constructions which will be elaborated later in the paper). This modified PCP
construction enables us to prove a hardness of 11/12 + ¢ for MAXx 3-NM-SAT and a hardness of
15/16 + € for MAX E3-NM-SAT. While it is not clear how to exploit the structure of non-mixed
SAT to design approximation algorithms with guarantee better than 7/8 for MAX 3-NM-SAT (or
even MAX E3-NM-SAT), proving a (what would be tight) hardness result for approximating better
than 7/8 seems quite difficult as well. Progress in closing this gap should be an exciting direction
for future work.

Remark. Our hardness result for MAX E3-SET SPLITTING is proved for the weighted version of
the problem where each of the sets has a (small constant) weight and the goal is to find a partition
that maximizes the total weight of all the split sets. By using results from [3], the same hardness
bound holds for the unweighted version of the problem as well. All the algorithmic guarantees
mentioned above hold for the weighted versions of the problems as well.

2 Hardness of Approximating MAX E3-SET SPLITTING

Gadgets: A brief discussion: The hardness results of this section are proven by giving appro-
priate gadgets reducing constraint satisfaction problems already known to be hard to approximate,
to MAX E3-SET SPLITTING. We use the definitions of gadgets following [2, 11, 15] : an a-gadget
reducing a boolean function f on variables z1,x2, ..., to a constraint family F is a finite collec-
tion of (rational) weights w; and constraints C; from F over z1,2s,. ..,z and auxiliary variables
Y1,Y2,---,Yp such that for each assignment @ = ai,as,...,a; to the z;’s that satisfies f, there is
an assignment b to the y;’s such that a total weight a of the constraints C; are satisfied by (d, g),
and if @ does not satisfy f, then for every assignment b to the y;'s, the weight of the constraints C;
satisfied by (&,b) is at most o — 1 (see [11, 15] for further details). The quantity « is a measure
of the quality of the reduction, a smaller value of « implies a better approximation preserving

reduction.

Theorem 1 For any e > 0, it is NP-hard to approzrimate MAX E3-SET SPLITTING within a factor
of 21/22 + €.

Proof: The result will be proven by construction of appropriate gadgets that reduce PCy and
PC; to 3-Set Splitting constraints. As is explicitly stated in [15], it follows from the result of
Hastad [8], that for any family F of constraints, if there exists an «g gadget reducing PCy to F and
an a1 gadget reducing PC; to F, then, for any € > 0, MAX F is NP-hard to approximate within
1- aﬁl_ a; 1€ For MAX E3-SET SPLITTING, we will give a 9-gadget from PCq and a 13-gadget from
PCy; using the above result, this will imply an hardness of 21/22 + ¢ for MAX E3-SET SPLITTING.

It remains to construct the gadgets for MAX E3-SET SPLITTING. The gadget, in addition to the
usual primary and auziliary variables, will use a special auxiliary element 7" which will be shared
by all the gadgets for the various parity constraints. The special element T is for the purpose of
interpreting variables as either true or false depending on whether they fall in the same side or the
opposite side of T' in the partition of the universe.

We first describe the gadget from PCy (this is the same gadget presented in [9]). For a constraint
a®b®c =0, the gadget will consist of the 3-sets {T'ab},{Tbc},{Tca},{abc}, each with weight 1/3,
and the 3-sets {abz}, {bczx}, {caz}, {aTx}, {bTz} and {cTz} each with a weight of 4/3. We claim
that this is a 9-gadget. Indeed, if a, b, ¢ satisfy a ® b@® ¢ = 0, then, interpreting T" as “true”, exactly
three of the elements {7T',a,b,c} are in one side of the partition which places all variables set to
true along with 7" on one side, and the remaining variables (that are set to false) on the other side.
Thus this partition splits exactly three of the sets {Tab}, {Tbc}, {T'ca},{abc}, and we can place z
in the side of the partition that has only one element of {T',a,b, c} to split all the sets that contain
z. This partition therefore splits sets with total weight 6 x % + 3 % % = 9. In any partition that
does not split the elements {7, a,b, c} as one element in one side and three in the other, the total
weight of the split sets cannot be more than 8, as either one of the sets containing z will not be
split, or none of the sets {T'ab}, {Tbc},{Tca},{abc} will be split.

We now describe the gadget from PC;. For a constraint a @ b @ ¢ = 1, the gadget will use
the same “global” auxiliary element T' as the PCy gadget, and other auxiliary elements x, a, p, q,r
specific to just this gadget. (Note a is simply another element of the 3-Set Splitting instance we
create, its label refers to the fact that we want it to be on the other side of the element @ in the

2A bit of history on the formalization of gadgets: Bellare et al [2] gave specific examples of gadgets and made
explicit the notion of a gadget; the definition of a gadget was formalized in [11] (they called it implementation); and
Trevisan et al [15] focused on construction of optimal gadgets for various constraint families by casting the search for
gadgets as appropriate linear programs.

optimal partition.) The gadget will comprise the same 3-sets and weights as the PC; gadget except
that the element a will be used in place of a. In addition, the gadget will use four 3-sets, each with
weight 1, to force a,a to be on opposite sides in any “good” partition. These 3-sets are {p,q,7},
{p,a,a}, {q,a,a} and {r,a,a}. Using arguments similar to those used for PCy, it is easy to check
that this gives a 13-gadget. O

Remark: Using a “global” auxiliary element F' that stands for “false” (analogous to the element
T used in the above proof) we can give a 9-gadget from PC; to 3-set splitting by simply using F in
place of T in the PCy gadget. One can then force T and F' to be on opposite sides of the partition
by using four 3-sets (P,Q, R), (T, F,P), (T, F,Q) and (T, F, R) of large enough weight, and this
gives the same inapproximability bound as the above proof.> While this method is cleaner and has
the advantage of uniformity between the PCy and PC; gadgets, we adopted the treatment in the
proof of Theorem 1 for two reasons: (a) It involves using only small constant weights as opposed
to the large weights required above; and (b) it is better to highlight the PC; gadget problem if one
wants to improve the result.

Theorem 2 For any € > 0, it is NP-hard to distinguish between instances of MAX E3-SET SPLIT-
TING where all the sets can be split by some partition and those where any partition splits at most
a 27/28 + € fraction of the sets.

Proof: The proof proceeds by constructing suitable gadgets reducing various forms of monomial
basis check constraints RMBC;; to 3-Set Splitting constraints that preserve satisfiability (see [2] or
[15] for definitions of RMBC;; for 4, j € {0, 1}, we also define it below for completeness). Specifically
we will construct 12-gadgets reducing RMBCyg and RMBCj to 3-Set Splitting constraints, and 16-
gadgets reducing RMBCy; and RMBCj; to 3-Set Splitting constraints. These gadgets put together
give a “gadget” that behaves on the average like a 14-gadget from RMBC to 3-Set Splitting.
This gadget, upon using standard arguments together with the recent (adaptive 3-query) PCP
construction of [7] that performs a single RMBC test and has perfect completeness and soundness
1/2+¢, yields a hardness of approximation within 27/28+¢ for satisfiable instances of MAX E3-SET
SPLITTING.

We now define the constraint families RMBC;; and specify our gadgets. For variables a,b,¥,c,

1 fa=0andc=0b0D1
RMBCG;j(a,b,b',c) =4 1 ifa=1landc=b @
0 otherwise.

Let us first take an RMBCgg(a, b, b, ¢) constraint. Written in 3CNF form, this constraint is the
same as))
(avbve)avbVe)(avb ve)(aVvyVe).

It is now easy to give a 8-gadget from RMBCq(a,b,t',c) to MAX NAE-E3-SAT — the gadget
consists of the constraints NAE(a, b, w), NAE(w,c, F), NAE(a,c,z), NAE(z,b, F), NAE(a,c,v),
NAE(y,b', F), NAE(a, V', 2) and NAE(z, ¢, F). Here w, z,y, z are auxiliary variables specific to this
gadget while F' is shared auxiliary variable across all gadgets and represents the assignment FALSE.
We obtained this gadget by using that fact that NAE(a,b,r), NAE(7, ¢, F) is a 2-gadget from the
3SAT constraint (a V bV ¢), and that NAE(p, q,7) is equivalent to the constraint NAE(p,q,r).
Note that all of the above eight NAE constraints except two of them which use F' are monotone

3We thank Johan Hastad who also pointed this out.

and can therefore directly be used as 3-Set Splitting constraints. The way to handle the F is the
same as the one used in the proof of Theorem 1 to ensure two elements a,a are in opposite sides
of the partition. We create a copy of the element F just for this gadget (and not shared across
gadgets, unlike F), and also further auxiliary elements p, ¢, r together with the four 3-sets {F, F', p},
{F,F,q}, {F,F,r} and {p,q,r}. Our final gadget will then contain these four 3-sets and the eight
NAE constraints written as 3-Set Splitting constraints (with the element F taking the place of
negation of the variable F' in the NAE constraints). It is straightforward to check that this will be
a 12-gadget from RMBCyy to MAX E3-SET SPLITTING.

We next describe the 16-gadget from RMBCy;. Note that RMBCgq(a, b, b, ¢) = RMBCy;(a, b, b, ¢),
and hence we can get a 16-gadget from RMBCi; by using the 12-gadget described above from
RMBCy together with an extra four 3-sets to force the “element” ¢ of the set splitting constraints
(that will simulate the literal ¢ in the RMBC constraint) to be on opposite side of c.

Similarly, by noting that RMBCy; (a, b, ¥, ¢) = RMBCqq(a, b, ¥/, c) and that RMBC1g(a, b, b, c) =
RMBCq(a, b, ¥, c), we can get 16-gadgets from RMBC;y and RMBC,; as well. It turns that we
can in fact do better for RMBC;g, as we describe below.

Written in 3CNF form, RMBCjg(a, b, b, ¢) is equivalent to

(avbve) avbve)avb ve(avy Ve).

Thus we have the 8-gadget to MAX NAE-E3-SAT comprising of the constraints: NAE(b, ¢, w),
NAE(a,w, F), NAE(a, b, z), NAE(c, Z, F), NAE(a, ¢,y), NAE(V,y, F), NAE(a, V', z) and NAE(c, z, F).
As usual, we can “simulate” the literal T with an element Z and four new 3-Set Splitting constraints.
This gives us a 12-gadget just as in the RMBCyg case, and we are done. O

3 Hardness of MAX Ek-SET SPLITTING for k > 4

Hastad [8] proves the tight result that even satisfiable instances of MAX E4-SET SPLITTING are
hard to approximate within any factor better than 7/8. This result does not imply a tight hardness
result for MAX Ek-SET SPLITTING for £ > 5 by just using a gadget, one can, however, easily
modify Hastad’s PCP construction to work also for MAX Ek-SET SPLITTING for k > 5, and this
gives the following result:

Theorem 3 ([8]) For k > 4, for any e > 0, it is NP-hard to distinguish between instances of MAX
Ek-SET SPLITTING where all the sets can be split by some partition and those where any partition
splits at most a 1 — 275+ 4+ ¢ fraction of the sets.

4 Hardness of approximating MAX 3-NM-SAT

We will prove the following theorems in this section.

Theorem 4 For any € > 0, it is NP-hard to distinguish between satisfiable instances of MAX
3-NM-SAT and those where at most a fraction 11/12 + ¢ of the clauses can be satisfied.

Theorem 5 For any € > 0, it is NP-hard to distinguish between satisfiable instances of MAX
E3-NM-SAT and those where at most a fraction 15/16 + € of the clauses can be satisfied.

Sketch of Idea: The instances of 3SAT which are proved hard to approximate within a factor of
7/8 + € have the property that (at least) 3/4 of the clauses are “mixed” (i.e have both positive

and negative literals). In proving a hardness result for, say, MAX 3-NM-SAT, one converts these
clauses into non-mixed clauses using a gadget of some cost (and this method gives a factor 13/14+¢
hardness for MAX 3-NM-SAT). In order to obtain an improved hardness bound, our approach will
be to get a similar hardness result for 3SAT when the fraction of mixed clauses is smaller, and then
use the same gadget approach to get hardness for MAX 3-NM-SAT. To this end, we will first prove:

Theorem 6 For any € > 0, given a MAX E3-SAT instance in which at most half the clauses are
mized, it is NP-hard to distinguish between instances which are satisfiable and those where every
assignment satisfies at most a fraction 7/8 + ¢ of the clauses.

Proof: The proof follows from the construction of a PCP system for NP that makes 3 (adaptive)
queries, has perfect completeness, and a soundness of 1/2 + ¢ for any € > 0. The hardness for MAX
E3-SAT as claimed then follows by suitable gadgets reducing the constraints checked by the PCP
verifier to 3SAT constraints. The PCP will be a simple modification of the one in [7, 6]; we will be
heavily relying on the treatment and terminology of [6]. We provide below a high-level description
of the PCP construction; while by no means complete, this should give some sense of the ideas used
in the construction.

Interlude: PCP constructions follow the paradigm of proof composition. In its most modern
form, one starts with an outer proof system which is a 2-Prover 1-Round proof system (2P1R)
construction for NP due to Raz [14]. Raz’s construction works as follows. Given a 3SAT instance,
the verifier picks u variables at random, and for each variable picks a clause in which it occurs at
random. The verifier then asks the prover P; for the truth assignment to the u variables and the
prover P; for the truth assignment to the 3u variables in all the clauses it picked. (We ignore issues
like two picked clauses sharing a variable as these have o(1) probability of occurring.) The verifier
then accepts if the assignment given by P, satisfies all the clauses it picked and also is consistent
with the assignment returned by P;. This requirement can be captured as the answers a and b
of P; and P, satisfying a “projection” requirement 7(b) = a. Raz’s parallel-repetition theorem
proves that the soundness of this 2P1R goes down as c¢* for some absolute constant. Thus for any
soundness parameter s < 1, one can design a 2P1R with completeness 1 and soundness at most s
and answers of sizes u and 3u bits respectively from the two provers P, and P, for a constant u
(that depends on s, actually u = O(log 1/s) suffices).

In the final PCP system, the proof is expected to be the encodings of all possible answers of the
two provers of the outer 2P1R, proof system using some suitable error-correcting code. For efficient
constructions the code used is the long code of [2]. The long code of a string of k bits is simply
the value of all the 22" k-ary boolean functions on that string (for example the long code of a k-bit
string a is a string A which has one coordinate for each k-ary boolean function f and the entry of
A in coordinate f, denoted A(f) satisfies A(f) = f(a)) . The construction of a PCP now reduces
to the construction of a good inner verifier that given a pair of strings A, B which are purportedly
long codes, and a projection function m, checks if these strings are the long codes of two consistent
strings (as per the projection). Referring the reader to [6] for details, we delve into the specification
of our inner verifier. [End Interlude]

The inner verifier is given input an integer u and a projection function 7 : [7]* — [2]* and has
oracle access to tables A : Figu — {1, —1}* which is folded (i.e, A(—f) = —A(f) for all functions in
Fio+) and B : Fizw — {1, —1} (which is not required to be folded), and aims to check that A (resp.

“The notation Fp stands for the space of all functions f : D — {1, —1} and [n] stands for the set {1,,2,...,n}.
We also use {1, —1} for representing boolean values, with 1 standing for FALSE and —1 for TRUE.

Inner Verifier V;LB (u,)
Choose uniformly at random f € Figu, g € Frju
Choose at random h € Fj7j« such that Vb € [7]*, Pr[h(b) = 1] =p
if A(f) =1 then accept iff B(g) # B(—g(f om A h))
if A(f) = —1 then accept iff B(g) # B(—g(—f om Ah))

Inner Verifier TV3;48 (u,n)
Set t =[1/6], &1 = 62 and g; = e?f/fi_l
Choose p € {¢1,..., &} uniformly at random
Run B-MBC,*? (u,).

Figure 1: The inner verifier V,, and our final inner verifier IV3;.

B) is the long code of a (resp. b) which satisfy w(b) = a. The formal specification of our inner
verifier IV3548 (u,7) is given in Figure 1 (the constant ¢ used in its specification is an absolute
(small) constant which can be figured out from our proofs).

The only difference of this inner verifier from the one in [7] is that the table B is not assumed
to be folded (this will be critical to our application), and the conditions checked are “inequalities”
as opposed to “equalities” (i.e, of the form z # y instead of z = y). Note that this change is clearly
necessary, as otherwise one could simply set B(g) = 1 Vg, and this will satisfy all checks (this will
be a valid table as B is not required to be folded).

It is clear that this inner verifier has perfect completeness, since when A is the long code of a,
B the long code of b and 7(b) = a, the inner verifier accepts with probability 1. Assume now that
we can prove that for some small € > 0 (which can be made as small as we seek), the combined
PCP verifier constructed by composing the standard outer verifier due to Raz with the above inner
verifier has soundness 1/2 + €.5 We now claim that this will imply the result claimed about MAX
E3-SAT with at most half the number of clauses being mixed. It is easy to see that, for each random
choice of the inner verifier, the boolean function checked by the inner verifier is of the form

(@avbVe)A(aVbVe A@vbvd)a@vbve)

by appropriate identifications of B(g) with b, A(f) with a or a depending upon whether the folded
table contains an entry for the function f or for its complement — f, and suitable identifications
B(—g(f o Ah)) and B(—g(—f om A h)) with ¢,¢’. This actually gives a 4-gadget reducing the
PCP’s acceptance predicate to 3SAT constraints.

Hence the acceptance condition of the PCP can be viewed as a 3SAT instance in which at most
half the clauses are mixed (note that only two of the four clauses in the gadget above are mixed).
Since the soundness of the PCP is 1/2 + ¢, together with the 4-gadget, this gives a hardness of
approximating MAX E3-SAT with at most half the number of clauses being mixed, as desired. It
therefore remains to bound the soundness of the inner verifier by 1/2 + ¢.

The analysis of the soundness of the inner verifier follows the same sequence of lemmas as the
proof for the original inner verifier IV3; in [8, 6]. The only change is that we must now rework the
proofs without assuming that B is folded.

5The exact definition of soundness of an inner verifier turns out to be a tricky issue, we once again refer the reader
to [7, 6] for the definitions.

We now estimate the acceptance probability of our inner verifier. Let A, B, 7w and p be fixed,
and let X = X4 g, be the random variable whose value is 1 when V},A’B (u,7) accepts and 0
otherwise. The acceptance probability of V;,A’B(u, m) is E[X], which equals

E [((1 +A(f))> ((1 —B(Q)B(—g(fw/\h)))>

9, 2 2

fjh((l —A(f))> ((1 — B(g)B(—g(-=f OﬂAh))))]
2 2

Since A is folded, we always have —A(f) = A(—f). Using the linearity of expectation and the fact
that f and —f are identically distributed in the uniform distribution, we get E[X] equals

2 E [((Hz;l(f))) ((1—3(9)3(59(f07r/\h))))]

frg;h
= i+3 B-B@)B(g(ferAb)]
+3 B [ZA(f)Bg)B(=g(f o A)] (1)

(there would also be a term %];J‘[A(f)] which equals zero owing to the foldedness of A).

To complete the soundness analysis, we prove that the second term in Equation (1) can be
made very small (at most 3§) when we take expectations over p,m as well. We also prove that
whenever the expectation of the third term over p, 7 is “large”, the decoding strategy described
earlier produces “consistent” strings (strings that cause the outer verifier to accept) with non-
negligible probability. Appealing to the soundness of the outer verifier, exactly as in [7, 6], this
implies that the soundness of the inner verifier is close to 1/2.

Hence the soundness analysis can now be completed provided the two technical lemmas (Lemmas
6.1 and 6.2) are proved (the reader can find the exact and full details of why these lemmas suffice
to complete the proof in the description of [6]). We first define some terms which are necessary for
stating our lemmas.

Definition 1 [Smooth Distribution]: Let £, R be arbitrary finite sets, and D = {Dp}p>1 be an
ensemble of distributions over functions w : X™ — R™. Then D is said to be smooth if there exists
an absolute constant ¢ such that for all large enough n, the following holds: for every k and every
set S C X",

181> 2" = Pr [|n($)| < ok/2 <e

We now (briefly) review some discrete Fourier analysis which will be useful in our analysis. It
is useful to view a function A : Fp — {—1,1} as a real-valued function A : Fp — R. The set of
functions A : Fp — R is a vector space over the reals of dimension 2/P/. We can define a scalar
product between functions as

4B ﬁ S A(f)B(f) = BIAH)B()] -

feFp

For each o C D, the linear function [, is defined by: 1,(f) = [I;cq f(2) for f € Fp The set of
linear functions is easily seen to form an orthonormal basis for the set of functions A : Fp - R

5The sample space of X 4,5, is given by the possible choices of f, g, and h.

10

(with respect to the above dot product). This implies that for any such function A we have the
Fourier expansion

A(f) = Z Aala(f)a (2)

where for « C D, Ay = A-l, is the Fourier coefficient of A w.r.t a. Because the range of A is {1, -1},
we have), fli = 1 (this is the famous Parseval’s identity). We are now in a position to describe
the “decoding procedure” we will use to “decode” purported long codes into the corresponding
codeword.

Definition 2 [Decoding Procedure|: The decoding procedure Decode takes a string A : Fp —
{1, -1}, and returns an element of the domain D by randomly picking a subset o of D with prob-
ability equal to fii (this is a valid probability distribution because of Parseval’s equality), and then
returning a random element of a.. If @ = (), Decode simply returns some fized element of D.”
Lemma 6.1 Ift = [07'], e1 = 6% and ¢; = S?f/fi_l for1 <i<t, and p € {e1,---,&4} is chosen
uniformly at random, then for large enough positive integers u, for all B : Fypu — {-1,1},

1
E [—B(9)B(—g-(forAh)] <2/ +-<35
7, f19,h i

assuming m is picked according to a smooth distribution. (The parameter p is implicitly used in
bias of the random choice of the function h.)

Lemma 6.2 For every 6,p > 0, there erists a constant v = 5, > 0, such that for all large enough
u, for all strings B : F;je — {1,—1} and folded strings {A™ : Flgpu — {1, —1}}repp(B), if

E [-A"(f)B(9)B(=g-(femAh))] =3,
7, fg,h

then Pr [Decode(A™) = m(Decode(B))] > 7y where the probability is taken over the choice of w from
the smooth distribution D(B) and the coin tosses of Decode. (Note that the parameter p is implicitly
used in bias of the random choice of the function h.)

The proof of Theorem 6 is now complete modulo the proofs of Lemmas 6.1 and 6.2. O (Theorem 6)

We now set out to prove Lemmas 6.1 and 6.2. The following fact will be very useful in the proofs of
the above two Lemmas. (The simple proof of this fact can be found in [6]; the result there is stated
for folded B tables, but that was clearly not necessary as the proof only uses Parseval’s identity.)

Lemma 6.3 Let B : Fjyju — {1,—1}, and let D(B) be a smooth distribution on projection functions
m: [T]* — [2]*. Then, for any p, 0 <p < 1,

E 32(1 _p)lﬂ(ﬂ)l <§
n€rD(B) I:ﬁ;zK A]

provided K > 2p~"Ind™%),

"In the case when A is folded, the Fourier coefficient A@ = 0, and so this case will never arise.

11

We now prove Lemmas 6.1 and 6.2. The proofs follow the ones in [6] closely except for some
parts where additional arguments are used to take care of the fact that B is not assumed to be
folded.

Proof of Lemma 6.1: Using the Fourier expansions of B(g) and B(—g - (f o ® A h)) as in
Equation (2), the properties of linear functions, and using linearity of expectation, we transform
the given expectation, for each fixed p, into

Z Bﬂléﬂz E [_ (_1)|ﬁ2|lﬂ1Aﬁ2(g)lﬂz(f °’/T/\h)] .
ﬂl;ﬂ2 ﬂvfagah'

Since g is picked uniformly and independently at random, the inner expectation is 0 unless
B1 = B2 = (B. Let us take expectation fixing 7 also for the moment. For z € w((), we define
Bz ={y € B:7(y) = z}. We need to compute, for each S,

E ()T Ab@)] = T 0P E [T (F@) A)]
Logh yep zen(s) " yes.
— H (—1)61+1 (1 + 1, (2p — 1)\5m|)_
zem(B) 22

For § with || even, this expectation is clearly negative (since p > 0). Hence we only worry
about terms with |3| odd, and we need to upper bound the sum

1 1 B,
>, I (— 5 (2 —1))
8:18| odd zew(8)

For each fixed p the we need to estimate the expectation:

R —1)|8l _ |Ba|
e[¥ -5 (S0 U2 3)

Bils odd wen(p)

One hopes to estimate this sum as a function of p which tends to 0 as p tends to 0. Unfortunately
such a estimate does not exist; it turns out, however, that it is easy to bound the expectation of
Equation (3) above for small § and large § and this is very useful as it will allow us to vary p as
per some distribution so that one can bound (3) (actually even its absolute value) when we take
expectations over p as well. Let ¢ > 1 be a small absolute constant to be determined. We have

Claim 1 For each fized p > 0 and B,

E[¥ B3]I (o (1_2p)ﬁm|)] <+ > B

B8 odd zem(B) Blp~1/2<|B|<p—c/P

Proof: We split the sum of Equation (3) into three parts depending upon which of the three
disjoint intervals [1,p~ /2], (p~1/2,p ¢/P) and [p /P, 0), |B| lies in. The middle interval need not
be estimated as it appears on the right hand side of the estimate stated in the Claim.

Let us now consider 8 with |3| small, i.e | 3| < p~'/2. Since || is odd, there must exist z € 7(3)
with |8,] odd (also |8, < |B| < p~'/?). For such an z

(—1)!8s| N (1— Qp)lﬂm\)

1
0> (=) 2 (=14 (1=2l6:))) = —plBe| > —p'? . (4)

12

Hence, when |g| < p1/2,

0 ((—1)|ﬂx| L= 2p) 6|)‘ By

zem(f) 2 2

(using (4) and the fact that all factors are bounded by 1 in absolute value), and so

Z Bﬂ H (\ﬁm (1 — Zp)ﬁml)‘ < Z B%pl/Q Splﬂ) (5)

B:|B|<p~1/2 zem(B) B:|B|<p~1/2

Let us now consider the §’s with |5] > p¢/P. For these the relevant expectation to bound is:

™

B[Y BT 1) 16| (1—Zp)ﬂm|)]‘ <B[¥ B0-p]

B:|B|>p=c/» zEm(B) B:|B|>p—c/»
= > BIE[1-p)"
B:|B|>p=c/»
< T
B:|B|>p=e/P
< p'/2. (6)

where the last but one step follows using Lemma 6.3 together with an appropriate choice of the
(absolute) constant ¢ > 1.

The statement of our Claim now follows from Equations (5) and (6). O (Claim 1)

All that remains to be done is to now take expectations over the choice of p as well in (3). Recall

that p is drawn uniformly at random from {e1,€3,...,&} for t = [6~1] and where &; = 526/15’ ' for

1 < 4 < t. Hence using Claim 1, we have

|,3:c _ | Bz | .
el ¥ - [Ch 2 < mty Y By

P 5.8 odd zen(B) Bp—1/2<| B <p—clP

IN

< 1/2_'_1

where the last step follows because €1 > ¢; for 1 < 4 < t and because the ranges of |3| for the

different values of p are disjoint and -4 Bﬁ = 1. Since g1 = ¢ and 1/t < 4, 251/2 + 1/t <36, and
the Lemma follows. O (Lemma 6.1)

Proof of Lemma 6.2: Using the Fourier expansions of A™(f), B(g) and B(—g-(fom Ah)) as in
Equation (2), the properties of linear functions, and using linearity of expectation, we transform
the given expectation, for each fixed 7, into

Y AuBsBs, E [— (=11l (1)ls, 88, (9)1, (f °7T/\h)]-
a,B1,B2 1,9:h

(We have omitted the superscript m on A for notational convenience.)

13

Since g is picked uniformly and independently at random, the inner expectation is 0 unless
B1 = P2 = B (say). Since f is also picked uniformly and independently at random, we can also
conclude a C 7(8). Using this, our expression simplifies, once a 7 is fixed, to

E [—A(H)B@)B(—g- (forah)] = 3 AB3(-1)E [la(f)is(f o7 A
foh 8, aCn(p) L
= > AB31)IT T E[f@) [T (F(@) AR())]
acfr(ﬂ) TEQ YEPz
_ A, B2(—1)A+1 (—(2p - 1)“’“)
0@%3) zl;[a ?
1 (2p— 1)ﬁ$|)
o R R
acewl(—g)\a <2 2
PN (_1)|ﬂm‘ (1 _ 2p)|ﬂm)
= — A, B2 _
(=1)l8=l (1 — 2p) Bl
en(\a < 2 2) "

Define h(a, 3) to be the quantity

H ((—]_2)|ﬂm| (- Zp)ﬁd) H ((_]_2)|,3m| N (1— Zp)ﬁﬂ)
zem(f)\a

TEQ

It is not difficult to see that

(1% -2\ (sl ap)lel
Zen = I |(S -] ()
7 (8)]

)
< (1-p"

(8)
The last step follows from the fact that if |a],|b| < 1 —p and |a| + |b] = 1, then a? + b < (1 — p).

It is also easy to see that
Y |he,B)=1. (9)
aCn(B)

Using this with Equation (7), we have, for each fixed w and p,

E [-A(NB@B(—g-(fornh)] < 3 B3(|4allh(e,8))

f,9:h B
aCm(B)
N 1/2
< > B(Y 2)7(T)
B:BI>K aCn(B) aCn(B)
+ > Bj| Aal|h(e, B)] +
B:BISK

aCn(B),|Aa|<5/4

14

BiABISK
aCn(B),|Aal26/4

N 1) A
< ¥ B(E wen)e] ¥ B+

BISEK aCa(B) BIBI<K
4 ~o
ts5 > A2B [23 (using Equation 9))

B:BISK
aCn(B),|Aal>6/4

< Y Bja-)|’r(ﬁ)|/2+ + S AZB (10)
B: B> K 2, lpi<x

where the last step follows using (8). We now take expectations over the projection 7 (which is
picked from a smooth distribution D(B)). Using Lemma 6.3 we conclude

E [3 Bi1-)\W(ﬂﬂ/2] T (11)
T BBk

[«

provided K = 290~ 1007 " Qych a choice of K is possible provided 7* > K, and we assume that
u is large enough for this purpose. Now, combining (10) and (11), together with the hypothesis of
the Lemma that E [— A™(f)B(g9)B(—g-(fom Ah))] > 6, we get

7r7 595
§ & &2
[ZAQBﬁ]ZZ 5= (12)
T piBI<K 8
aCn(B)
We now estimate the probability of success of the decoding strategy.
11
Pr Decode(A™) = w(Decode(B > A2B%
m,coin tosses of Decode[(4%) (BN 2 Z fla| |l \ﬂl]
arm (820
i 2o 1
> E[> A?xB;F] : (13)
BiB<K
aCn(B)

(The last step above is valid because when a C 7(3), we may assume o C w(8) = o # 0 as Ay = 0.
It is critical for this step that A is folded.)

Combining (12) and (13) we get

[Decode(A™) = w(Decode(B))] > i

r . 14
m,coin tosses of Decode 8K? (14)
Recalling that K = 22?1061 the success probability depends only on p,d, and the proof is
complete. O (Lemma 6.2)

Proof of Theorem 4: There is a simple reduction from E3SAT to non-mixed 3SAT obtained by
replacing a clause (a V bV ¢) with two non-mixed clauses (a VbV t) and (¢ V ¢) where ¢ is a new
variable used only in these two clauses, and by similarly replacing a clause (a V bV &) with two
non-mixed clauses (a V t) and (£ V ¢V ¢). Starting from a hard instance of E3SAT (3SAT with all
clauses having ezactly three literals) as in Theorem 6, satisfiable instances of E3SAT get mapped

15

to satisfiable instances of MAX 3-NM-SAT, while instances where at most a fraction 7/8 + ¢ of
the clauses are satisfiable get mapped to instances of MAX 3-NM-SAT where at most a fraction
11/12+ 2¢/3 of the clauses are satisfiable. Since ¢ > 0 is arbitrary, the result of Theorem 4 follows.
O (Theorem 4)

Proof of Theorem 5: The proof is similar to the above, except now a clause (aV bV ¢) is replaced
by the three non-mixed clauses (a VbV t), (aVbVty) and (¢V i V), and a clause (a VbV €) is
replaced by the three non-mixed clauses (bVeV i), (bVeViy) and (a Vit Vis) where t1,ty are new
variables used only in these three clauses. Using the result of Theorem 6, this implies a hardness of
approximating (even satisfiable instances of) MAX E3-NM-SAT within any factor strictly greater
than 15/16. O (Theorem 5)

5 Concluding Remarks

The exact approximability of MAX E3-SET SPLITTING remains an intriguing open question, though
by now the gap between the positive and negative results is quite small (there is a 0.908 approxi-
mation algorithm, and it is NP-hard to get a 0.955 approximation). A similar situation exists with
MAx CuT where an 0.878 approximation algorithm exists, while approximating within a factor of
0.942 is NP-hard.

We established the tight result that approximating MAX E3-SAT where at most half the number
of clauses are mixed to within any factor better than 7/8 is NP-hard. We then used this result to
deduce hardness of approximating MAX 3-NM-SAT and MAX E3-NM-SAT within factors better
than 11/12 and 15/16 respectively. It is not clear how to algorithmically exploit the non-mixed
nature of all clauses and devise an algorithm with performance ratio better than 7/8 for either of
these problems; in fact it is very well possible that these problems are hard to approximate within
7/8 4 ¢, though an approach which could potentially establish such a result has eluded us.

We close by mentioning an open question that is related to MAX E4-SET SPLITTING. If the
goal is only to split as many sets as possible, then Hastad’s result gives that the best one can do
is a factor of 7/8. One can ask, more specifically, that we wish to maximize the number of 4-sets
which have a 1-3 split under the partition, and similarly maximize the number of sets that have a
2-2 split under the partition. It turns out that the former problem can be cast as a system of linear
equations over GF(2) each of the form z;, @ z;, ® z;, ® z;, = 1, and by yet another powerful result
in [8], this problem is hard to approximate within any factor better than 1/2 (of course picking a
random partition will satisfy half of these linear constraints, so this result is tight). The 2-2 splitting
problem, however, turns out to be another instance where a tight result is still unknown. It is easy
to see that our hardness result for MAX E3-SET SPLITTING implies that this problem is hard
to approximate within a factor better than 21/22; no approximation algorithm achieving better
performance ratio than reducing the problem to MAX E3-SET SPLITTING or picking a random
solution, and returning the better of the two solutions, seems to be known for this problem.

Acknowledgments

I would like to thank Greg Sorkin, Madhu Sudan and Uri Zwick for useful discussions. Thanks also
to Johan Hastad whose tight hardness result for 4-set splitting prompted this work.

16

References

1]

2]

[10]

[11]

[12]

[13]

[14]

GUNNAR ANDERSSON AND LARS ENGEBRETSEN. Better approximation algorithms for SET
SPLITTING and NOT-ALL-EQUAL SAT. Information Processing Letters, 65:305-311, 1998.

MiHIR BELLARE, ODED GOLDREICH AND MADHU SUDAN. Free bits, PCP’s and non-
approximability — towards tight results. SIAM Journal on Computing, 27(3):804-915, 1998.
Preliminary version in Proc. of FOCS’95.

PierLUIGI CRESCENZI, RICCARDO SILVESTRI AND LUCA TREVISAN. To weight or not to
weight: Where is the question? Proc. of 4th Israel Symposium on Theory of Computing and
Systems, pp- 68-77, 1996.

URI FEIGE AND MICHEL GOEMANS. Approximating the value of two prover proof systems,
with applications to MAX-2SAT and MAX-DICUT. Proc. of the 8rd Israel Symposium on
Theory and Computing Systems, Tel Aviv, pp. 182-189, 1995.

MiCHEL GOEMANS AND DAVID WILLIAMSON. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of the ACM,
42:1115-1145, 1995.

VENKATESAN GURUSWAMI. Query-efficient Checking of Proofs and Improved PCP Charac-
terizations of NP. S.M Thesis, MIT, May 1999.

VENKATESAN GURUSWAMI, DANIEL LEWIN, MADHU SUDAN AND LUCA TREVISAN. A tight
characterization of NP with 3 query PCPs. ECCC Technical Report TR98-034, 1998. Prelim-
inary Version in Proc. of FOCS’98.

JOHAN HASTAD Some optimal inapproximability results. Technical Report TR97-37, Elec-
tronic Colloquium on Computational Complexity, 1997. Preliminary version in Proc. of
STOC"97.

Viceo KANN, JENS LAGERGREN AND ALESSANDRO PANCONESI. Approximability of max-

imum splitting of k-sets and some other APX-complete problems. Information Processing
Letters, 58:105-110, 1996.

HOWARD KARLOFF AND URI ZWICK. A (7/8 — ¢)-approximation algorithm for MAX 3SAT?
In Proceedings of the 38th IEEE Symposium on Foundations of Computer Science, 1997.

SANJEEV KHANNA, MADHU SUDAN AND DAVID WILLIAMSON. A complete classification of

the approximability of maximization problems derived from Boolean constraint satisfaction.
Proc. of the 29th ACM Symposium on Theory of Computing, 1997.

LAszL6 LovAsz. Coverings and colorings of hypergraphs. Proc. 4th Southeastern Conf. on
Combinatorics, Graph Theory, and Computing, pp. 3-12, Utilitas Mathematica Publishing,
Winnipeg, 1973.

EREZ PETRANK. The hardness of approximation: Gap location. Computational Complexity,
4:133-157, 1994.

RAN RAzZ. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763-803, 1998.
Preliminary version in Proc. of STOC’95.

17

[15] LucA TREVISAN, GREG SORKIN, MADHU SUDAN AND DAvID WILLIAMSON. Gadgets, ap-
proximation and linear programming. Proceedings of the 37th Annual Symposium on Founda-
tions of Computer Science, pp. 517-626, 1996.

[16] UrI ZWICK. Approximation algorithms for constraint satisfaction problems involving at most
three variables per constraint. In Proceedings of the 9th ACM-SIAM Symposium on Discrete
Algorithms, 1998.

[17] Urt ZwickK. Outward rotations: a tool for rounding solutions of semidefinite programming
relaxations, with applications to MAX CUT and other problems. In Proceedings of STOC’99.

ECCC ISSN 1433-8092
18 http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

