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On Complexity of Regular (1, +k)-Branching Programs

Farid Ablayev*

Abstract

A regular (1, +k)-branching program ((1, +k)-ReBP) is an ordinary branching program
with the following restrictions: (i) along every consistent path at most k variables are
tested more than once, (ii) for each node v on all paths from the source to v the same
set X (v) C X of variables is tested, and (iii) on each path from the source to a sink all
variables X are tested.

We show that polynomial size (1, +1)-ReBP-s are more powerful than polynomial size
read-once branching programs and that polynomial size (1,+(k + 1))-ReBP-s are more
powerful than polynomial size (1, +k)-ReBP-s.

We prove lower bound 2(n—#)/2-klog(n*/k) /2 /5 for k = o(n?) on the size of any non-
deterministic (1, +k)-ReBP computing permutation function PERM,2 on n? arguments.
The proof is based on combination of decomposing of (1, +k)-ReBP with communication
complexity technique.

Keywords: Branching Programs, OBDD, Circuits complexity, Communication com-
plexity, Lower bounds

1 Preliminaries and definitions

In theory branching programs (for short BP-s) are useful for investigation the amount of
space necessary to compute various functions (see survey [13]). Developments in the field of
digital design and verification have led to the restricted forms of branching programs. A most
common model used for verifying circuits is a polynomial size ordered read-once branching
program also called an ordered binary decision diagram (OBDD).

BP models that requires some kind of ordering of variables testings such as oblivious and
OBDD based models are computation models for which communication complexity methods
are very productive, see [1, 3, 10, 17]. It is appeared in last decade that communication
complexity methods are very productive tool for investigation of power of different models
of computations. See books [7, 11] for more information on the subject. Borodin Razborov
and Smolensky developed combinatorial method for proving lower bounds for syntactic read-
k-times nondeterministic BP-s [2]. Their method can be viewed as a generalization of com-
munication complexity technique. As it is mentioned in [2] in a special cases their method
turns to a pure communication complexity technique. The possibility of applying of pure
communication complexity methods for nonsyntactic branching programs without ordering
of variables testing was open. See, for example, [12] for discussion.
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In the paper we spread communication complexity methods for proving lower bounds of
complexity for branching programs without conditions of ordered testing of variables. Namely
we develop communication complexity method for proving lower bounds of complexity for
ordinary read-once BP-s and their generalizations (1,+4k)-ReBP-s. Using our method we
prove lower bound 2(#)/2-klog(n*/k) /9. /m for k = 0(n?) on the size of any nondeterministic
(1,4+k)-ReBP computing known permutation function PERM,,> on n? arguments.

Next we show that polynomial size (1,+1)-ReBP-s are more powerful than polynomial
size read-once branching programs and that polynomial size (1, +(k + 1))-ReBP-s are more
powerful than polynomial size (1, +k)-ReBP-s.

Recall definition of branching programs. An X-input (X = {z1,...,z,}) nondeterministic
BP (NBP) P for computing a function g(X) (g : {0,1}" — {0,1}) is a directed acyclic multi-
graph with a distinguished source node s and distinguished sink nodes accept and reject.
The out degree of each non-sink node is at least 2, all outgoing edges are labeled by z; = 0
or z; = 1 for variable z; associated with the node and at least one of outgoing edge is labeled
by z; = 0 and at least one of outgoing edge is labeled by z; = 1. The label “z; = ¢§” indicates
that only inputs satisfying x; = ¢ may follow this edge in the computation. NBP P computes
a function ¢ in the obvious way. That is, for each o € {0,1}" we let g(o0) = 1 iff there is
a directed path starting in the source and leading to the accepting node such that all labels
z; = o; along this path are consistent with ¢ = 01, 09,...,0,.

BP P is deterministic (DBP) if the out degree of each non-sink node is exactly 2 and the
two outgoing edges are labeled by x; = 0 and z; = 1 for variable x; associated with the node.
Note that for DBP P each input sequence o determines unique path consistent with o.

For BP P we define size(P) (complexity of the branching program P) as the number of
internal nodes in P.

Regular (1,+k)-BP and one-way communication with

Definition 1 Call P a regular (1,+k)-branching program ((1,+k)-ReBP) iff (i) for each
node v of P on each path from the source to v the same set X (v) C X of variables is tested,
(ii) on each path from the source to a sink all variables X are tested, and (ii) along every
consistent path at most k variables are tested more than once.

Clearly we have that OBDD-s and oblivious BP-s are regular BP-s. Note that an arbitrary
read-once BP P can be transformed into a regular read-once BP P’ by inserting dummy
tests such that size(P') < 2nsize(P). Note that the procedure of inserting dummy tests
for ordinary (1,+k)-BP P (in order to get regular BP P’ from P) can violates the (1,+k)
property.

Using the communication complexity approach we prove exponential (in n) lower bound for
the size for any nondeterministic (1, +k)-ReBP which presents permutation function PERM,,>
over n? variables. Remind that PERM,,> is polynomially easy for ordinary nondeterministic
(1,41)-BP [6]. We also show that nondeterministic (1,+%)-ReBP are more powerful than
read-once NBP. Note that the problem of proving exponential lower bound for some explicit
function presented in nonsyntactic NBP models more powerful than read-once model has
been open before our result. Remind that in [9] it was proved that polynomial size read-once
NBPs are more powerful than their deterministic counterpart.



2 Results

Sieling defined and investigated the power of OBDD,; and syntactic (1, +k%)-BP models in
[15]. Informally speaking OBDD,; is OBDD which can test up to k variables after first
reading of all his variables. Note that different paths of OBDD_j can test different k extra
variables. It is proved in [15] that polynomial size OBDD_ ()-8 are more powerful than
polynomial size OBDD _ k-s.

Clearly we have that for £ = O(logn) X-input, (|X| = n) polynomial size OBDD_; can
be transformed to X-input polynomial size (1, +k)-ReBP.

The Boolean function f, ; is defined in [14]. Informally it is defined as follows. The n
variables X are divided into k blocks of length m. For every j = 1,2,...,k a weighted sum
of the bits of block j determines an index 7; of input bits. Then, the value of the function is
the parity of bits determined by ¢; for j =1,2,...,k. See [14] for the formal definition.

Savicky and Zak proved [14] that f,, , needs exponential size for presentation by (1, +(k —
1))-DBP. Using the method of the paper [15] we can construct (1,+k)-ReBP (in the form
OBDD.y) for presentation f, j of size O(n*). This proves proper hierarchy of the compu-
tational power of (1,+4k)-ReBP-s in respect of parameter k£ . In particular this proves that
(1,+k)-ReBP-s are more powerful than read-once BP-s.

Permutation (PERM,,») function (or ezact-perfect-matching function) investigated by dif-
ferent authors (see for example [4, 9]). Given n X n Boolean matrix A. One has to determine
whether A is a permutation matrix. That is, whether there is precisely one 1 in every row
and every column.

For g € [0,1] denote H(gq) the Shannon entropy function. That is, H(q) = —qlogq — (1 —

q) log(1 — q).

Theorem 1 For any nondeterministic (1,+k)-ReBP P that computes PERM,, for q =
k/n? it holds that

size(P) > 2(”_"2H(q)_k)/2/2\/ﬁ.

The proof of the theorem presented in the section 3.3.

Corollary 1 Letk = o(n?). For any nondeterministic (1, +k)-ReBP P that computes PERM,,2
for arbitrary € € (0,1) for n large enough it holds that

sz'ze(P) > 2(n—k)/2—klog(n2/lc)/2\/,r_l_

Proof. For k = o(n?) we have that H(q) ~ (k/n?)log(n?/k). Using the lower bound of
the theorem 1 we get the statement of the corollary. O

Note that PERM,,> is polynomially easy for (1,+1)-NBP [5], for deterministic read-2-
times branching programs [20] and randomized OBDD [19].

3 Proofs

Below we present two general lower bounds for (1,+k)-ReBP based on combination of de-
composing of (1, +k)-ReBP with overlapping communication complexity technique (note that



overlapping communication complexity appeared to be very productive for the investigation
VLSI circuits [8]). Next we apply the general lower bounds for proving lower bounds for
Theorem 1.

3.1 Decomposition of (1, +k)-ReBP

Consider X-input (1,+k)-ReBP P. Call an edge (v,v') of P an z;-edge if it is labeled by
z; =0o0r z; = 1.

Path 7 of P is called a consistent path (see [2]) if it is consistent with some input sequence
o =01,...,0n. That is, 7 = (vo,...,v;), where vy is a source of P, v; is one of a sinks of P
and each z;-edge (v;,v;11) of 7 is labeled by z; = o;.

Definition 2 We call a consistent path of BP P a computation of P.

Let S C X. Define an S-border set B(S) of nodes of P as follows:

B(S) ={v: X (v) = S and for all offspring nodes of v S C X (v') properly }.

Denote P(S) a subgraph of P (and call it subprogram of P) which is determined by
all computations m with the property: path m contains a node from B(S). Note that for
nondeterministic P its P(S) subprogram can be deterministic.

Property 1 Each path © of P(S) contains exactly one node from B(S).

Proof: Evident. O

We will view on P(S) as a BP consisting of two parts P! and P2 where P! consists of the
part of P(S) “before” B(S), including S-border B(S) and P2 — is a remind part of P(S).

Formally P! and P? can be described as follows. Due to Property 1 nodes of S-border set
B(S) determines a partition of each computation  of P(S) into two parts 7! and 72. That is,
if = (vo,.-.,V,i11,---v;) where v; € B(S) then 7! = (v, ...,v;) and 72 = (viy1,-..,1))-
Now we define P! to be a first part of P(S) determined by first parts 7' of computations m
of P(S) and define P? to be a remind part of P(S).

Let Z C X, |Z]| < k and let p be a map p : Z — {0,1}. Denote P|,(S) a subgraph of
Py (S) with the property:

e for any computation w of P(S) only variables from Z are tested both by the first part
P! and the second part P? of P(S).

e for any computation 7 all its z;-edges, z; € Z, are marked z; = o; in according to the
map p.

Definition 3 We call a family R ={S: S C X} of subsets of X a P-family if it is true that
each computation m of P belongs to some subprogram P(S) of P for S € R and removing
arbitrary set S from R violates this property.

The following lemma is motivated by the exposition in [2].



Lemma 1 (decomposing lemma) Let P be a nondeterministic (1,+k)-ReBP. Let R be a
P-family. Then P can be represented in the form

p= U PL®.

SER p:2—{0,1},
1Z|<k

Proof: Each S € R determines a subprogram P(S) of P and each computation 7 belongs
to some subprogram P(S) of P for S € R. So, P = gci P(S). Each computation 7 of P(S)
uniquely determines a set Z C X, |Z| < k, of all variables tested along 7 both in the first part
P! and the second part P? of P(S) and a map p: Z — {0,1}. So, P(S) = Up:Z|—>|{0,1}, P|,(S).
Z|<k
0 <

We call the presentation of (1,+k)-ReBP P from Lemma 1 an R-decomposition of P or
just decomposition of P.

Let ¥ C {0,1}/X] be some selected set of inputs for P. Call || (cardinality of %) a -
weight of P and denote it wy(P). Next consider an R-decomposition of P. For a subprogram
P|,(S) of R-decomposition of P let X' C X be a set of all inputs which determine computations
of P|,(S). Call |[¥'| a E-weight of P|,(S) and denote it wx(P|,(S)).

Denote M Pg a subprogram from R-decomposition of P of maximum }-weight and denote
wx (M Pg) its L-weight. That is,

wy(MPg) = max ”‘leglz{ig;”’{wz(Pb(S))}'
Z|<

Lemma 2 Let P be an X-input (1,4k)-ReBP and let ¥ C {0,1}X| be some selected set of
inputs for P. Let g = k/|X| < 1/2. Then for arbitrary P-family R the following is true

ws(MPg) > |5/ (2X1H@OHsize(P))

Proof: From Lemma 1 it follows that the sum of X-weights of all subprograms of R-decom-
position of P is at least wy (P) (exactly wy(P) when P is deterministic)

Bl=ws(P)< > > ws(Pl(9))

SER p:Z2—{0,1},
|Z|<k

Observe that for S, 8’ € R, S # S, from the regularity property of P it follows that B(S) N
B(S'") = (. From this we get that

[R| < > |B(S)| < size(P).
SER

Now from the above two inequalities it follows that

k
|z < Z Z wx(P|,(S)) < size(P) (Z <|X|>) 28wy, (M Pg).

SER p:Z2—1{0,1}, i—1 \ *
1Z|<k

Using Chernoff upper bound 3% ; (‘)ﬂ) < 21X1H(9) for the case ¢ = k/|X| < 1/2 we get
the statement of the lemma. O



3.2 Lower bounds for (1,+k)-ReBP

Let MP = P|,(S). Let B(S) be an S-border set of P|,(S). We reduce a problem of proving
lower bound for size(P) for proving a lower bound for |B(S)|.
For estimating a lower bound for |B(S)| we apply two combinatorial methods based on:
(i) ”communication” technique used for ordered and oblivious models of BP-s [1, 3, 10]
and
(ii) ”weights” technique based on that of [9]. This technique was generalized in [18, 2].

Denote 1 a Boolean function computable by subprogram P|,(S) of P. Note that for DBP
P that computes function f for all inputs v of P|,(S) it holds that f|,(y) = %(y) but for
NBP P this can be not true (for an input + for which f|,(y) = 1 the subprogram P|,(S) can
contain only rejecting computations of P).

Communication technique. Denote S; = S\Z, S, = X\(S1 UZ). Subprogram P|,(S5)
of P is a weak ordered.

Consider an (S7 : S2)-communication computation of 1) based on that of Yao [21]. Two
players A (Alice) and B (Bob) wish to compute 1. A gets all bits in S; and B — all in
So. A starts a computation, B on obtaining a message from A finishes the computation
and outputs the result. Denote NCS1:%2(¢)) (DC152(4))) a nondeterministic (deterministic)
one-way communication complexity of computing 1 described above. Denote CM51:%2(3)) a
communication matrix. That is, CM51:52(¢)) is an |S;| X |S2| Boolean matrix, (S;,S2) entry
of CMS1:52(4)) is 1(S1, S2). Denote nrow(CM>S152(1))) to be a number of different rows of
CMS5S2(y).

Lemma 3 Let P be an X-input (1,+k)-ReBP. Let P|,(S) be an arbitrary subprogram of
decomposition of P and v be a function computable by P|,(S). If P is nondeterministic then

|B(S)| > 2NC'51:52(¢)_

If P is deterministic then
|B(S)| > nrow(CM52(y))).

Proof: Describe the following communication protocol ®, which computes function .
Let v € ¥ be a valuation of X. Denote v = (0';0;02), where o' — S, 0 — Z, 0% = Sy
assignments of v to S1, S2, and Z respectively.

Players A and B receive respectively o' and o2. Setting o ~ Z is known both to A
and B. This model of computation is known as a communication computation with overlap
information [7, 11]. Let v1,...,vq be all internal nodes of P|,(S) that are reachable during
paths of computation on the part o' of ~.

During the computation on the input o' player A nondeterministically selects and sends
node v; to player B. Player B on obtaining message v; from A starts its computation (simu-
lation of P|,(9)) from the node v; on the part o2 of the input 7.

The statements of the lemma result from the definition of the protocol ® and known fact

that DCS152(1h) = [log nrow(CM51:92(1))] [21]. O

Weights technique. Let ¥ be some subset of inputs, & C {0,1}*! of P. Consider
R-decomposition of P. Let P|,(S) be a subprogram from R-decomposition of P and let B(S)



be an S-border set of P|,(S). The set X of inputs of P determines a set X' of inputs of P|,(S5).
For v € B(S) we define ¥(v) as follows:

Y(v) ={y €X' : exists m, that goes through v }.
Denote

w5 (Pp(S)) = max{|X(v)| : v € B(5)}.

Lemma 4 Let P be a nondeterministic X -input (1,+k)-ReBP. Let P|,(S) be an arbitrary
subprogram of decomposition of P. Then for arbitrary subset ¥ of {0, 1}‘X| it holds that

[B(S)| 2 ws(P[p(S))/ws:(Po(S))-

Proof: From the definition of B(S) it follows that U,cp(s) X(v) = X'. This means that
Loven(s) [E(v)| =[] or

|B(S)|ws(P|p(5)) 2 ws(Pp(5))-

Clearly we have that in our case the weight technique is a variant of communication
method. That is, in the case of one-way communication game w* is the maximum number of
inputs which initialize the same message of player A to player B. So, the number w of different
inputs divided by w* gives the lower bound to the number of messages used by communication
protocol.

3.3 Proof of Theorem 1

Let P be a (1,+k)-ReBP P that computes PERM,,>.
Part 1: Consider X to be a set of ones of PERM,,» that is, ¥ = PERMn_zl(l), |Z| =n!
Part 2: Let m = n/2. For v € ¥ denote m, an accepting computation of P consistent
with «. for accepting computation 7, denote 7r,1y a first part of 7, such that exactly m edges
of 7r}y marked by 1 (say that an edge (v,v') is marked by 1 if it is labeled by z; = 1 for some
z; € X). Denote S(m}) a set of all variables tested along m). Now define the P-family R as
follows.

R={SCcX:S5= S(?T,ly),’)’ € Z,mly — is the accepting path }.

Consider R-decomposition of P and subprogram M P from R-decomposition of P. Remind
that M P = P|,(S) is a subprogram from R-decomposition of P of maximum 3-weight. For
q = k/n? from Lemma 2 it follows that

ws(MP) > nl/ (27 7@+ size(P))) . (1)
Part 3: Use the ”weight” technique.
Lemma 5 For MP it holds that

wi(MP) < (m!)?.



Proof: Denote X' set of all inputs from ¥ which determine computations of M P = P|,(S5).

Input y € ¥’ determines permutation I, = ( 2.1 zn ) Due to the map p: Z — {0,1}
1 eee 1p

the part Hf of I, determined by the set Z is the same for all v € ¥'. From this using known

arguments (see for example [9]) we get that

wi(MP) < ((m—1))? < (m!)?,

Now from the lemma above, Lemma 4, and from (1) we get the following lower bound
[B(S)| > 2" " H O/ (24/n size(P)),

or
size(P)? > gn—n*H(q)~k-log vn 9.

The last in equation proves the lower bound of the theorem 1.

Concluding remarks

In the paper we used only technique described in part “weight technique” and did not use
the technique described in part “communication technique” for proving lower bounds. Note,
that (as an example of using explicitly the “communication technique”) one can directly prove
exponential lower bound (known from [14]) for presentation f, ; by deterministic (1,4 (k—1))-
ReBP.

Detlef Sieling in his comments for the draft version of the paper mentioned that he think
that lower bound method from [15] can be adapted for regular (1,+k)-BPs. In this context
also the results of the paper [16] might be interesting.

It is an interesting open problem to prove exponential lower bound for complexity of
presentation multiplication function by (1,+k%)-ReBP using the communication complexity
technique.
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