Electronic Colloquium on Computational Complexity, Report No. 45 (1999) e TaTs

Circuit Minimization Problem

Valentine Kabanets* Jin-Yi Caif

November 15, 1999

Abstract

We study the complexity of the circuit minimization problem: given the truth table of a
Boolean function f and a parameter s, decide whether f can be realized by a Boolean circuit
of size at most s. We argue why this problem is unlikely to be in P (or even in P/poly) by
giving a number of surprising consequences of such an assumption. We also argue that proving
this problem to be NP-complete (if it is indeed true) would imply proving strong circuit lower
bounds for the class E, which appears beyond the currently known techniques.

Keywords: hard Boolean functions, derandomization, natural properties, NP-completeness.

1 Introduction

An n-variable Boolean function f, : {0,1}" — {0,1} can be given by either its truth table of size
2™, or a Boolean circuit whose size may be significantly smaller than 2”. It is well known that most
Boolean functions on n variables have circuit complexity at least 2" /n [Sha49], but so far no family
of sufficiently hard functions has been proven to exist in any relatively small uniform complexity
clags. As far as we know, every language in E = DTIME(QO(”)) may be decided by a family of
linear-size circuits.

So the state of affairs is this: extremely hard Boolean functions abound, but we cannot exhibit
any particular example of a hard function that is computable within reasonable time bounds. Can
we at least recognize a hard function when we see one? In other words, is there an efficient algorithm
that solves the following problem?

Minimum Circuit Size Problem (MCSP)

Instance: A Boolean function f, : {0,1}" — {0, 1} given by its truth table (of length 2”) and a
number s, € N (in binary).

Question: Is f, computable by a Boolean circuit of size at most s,?

We would like to point out that the above problem was considered in the past; in fact, it was
studied in the USSR already in the 50’s (see, e.g., [Yab59b, Yab59al). Actually, Yablonski [Yab59b,
Yab59a] believed that he had shown the impossibility of eliminating the “brute-force search” when
solving a related problem: “Compute a family { f,}»>0 of n-variable Boolean functions where each
fn has the maximum circuit complexity among all n-variable Boolean functions”. However, his
proof had to do with a restricted class of algorithms, and cannot be interpreted to mean that
such a family of Boolean functions is impossible to construct in time polynomial in the sizes of

*Department of Computer Science, University of Toronto, Toronto, Canada. Email: kabanets@cs.toronto.edu.
"Mepartment of Computer Science, State University of New York at Buffalo, Buffalo, NY 14260. FEmail:
cai@cs.buffalo.edu.

ISSN 1433-8092

their truth tables (see [Tra84] for a more detailed discussion). It is not hard to see that if such a
family of n-variable Boolean functions cannot be constructed in time poly(2™), then P # NP. So,
if Yablonski succeeded in proving his intended claim, he would have found a negative solution to
the P vs. NP problem even before that problem was formally stated in [CooT71].

Returning to our problem, we observe that MCSP is obviously in NP (just note that the input
size is O(2"), and so we have enough time to check that a guessed circuit of appropriate size
computes a given function of n variables). We would like to argue that MCSP is intractable. The
most convincing argument would be a proof that MCSP is not in P. But this would prove a
separation of NP from P, which appears to be well beyond the currently known techniques.

The next best argument would be a proof that MCSP is NP-complete. However, as we argue
below, any natural proof of this would imply non-trivial circuit lower bounds for languages in K,
and hence is unlikely to be found soon. Here, by “natural”, we mean a proof that gives a Karp
reduction from, say, SAT to MCSP such that the size of the output depends on the size of the input
only, and these sizes are polynomially related. We note that all the NP-completeness proofs that
we are aware of are natural in this sense.

Unable to reduce SAT to MCSP, we nonetheless show that the assumption that MCSP is in
P does have a number of surprising consequences. In particular, it would imply the existence of
an average-case algorithm for factoring integers which is faster than any known algorithm, the
existence in ENF of a family of Boolean functions of maximum circuit complexity, the inclusion
BPP C ZPP, the equivalence between E containing a language of circuit complexity at least 2",
for some € > 0, and E containing a language of circuit complexity at least Z-(1 + (1 — 7)]ﬁfﬂ), for
any v < 1, and the equivalence of certain local and global complexity assumptions sufficient for
derandomization.

The rest of the paper. In Section 2, we give some consequences of the assumption that MCSP
is easy. Section 3 contains an argument why it seems unlikely that one can prove MCSP to be
NP-complete without proving strong circuit lower bounds. We give concluding remarks and present
some open problems in Section 4.

2 MCSP and P

2.1 Natural Properties

Recall that the hardness H(G}) of a pseudorandom generator Gy : {0,1}F — {0,1}%* is defined as
the minimal s such that there exists a circuit C' of size at most s for which

|Prxe{0,1}k[C(Gk($)) =1] - Prye{0,1}2k[c(y) =1]| > 1/s.

The pseudorandom generator G, is called strong if it has hardness H(Gy) > k)

Let I' be a complexity class. Following Razborov and Rudich [RR97], we call a combinatorial
property {C} }n30 of n-variable Boolean functions f, I'-natural with density 4, if each C), contains
a subset C such that

1. the predicate f, € C is computable in I', where f, is given by its truth table, and

2. C7 contains at least 4, fraction of all n-variable Boolean functions.

Informally, a natural property is easy to check, and it holds for a significant fraction of all
Boolean functions. One standard setting of the parameters in the above definition is I' = P and
b, =279,

For a complexity class A, a combinatorial property {C)}nx0 is useful against A if every family
of Boolean functions {f,},>0 such that f, € C, i.0. is not in A.

The main result in [RR97] can be stated as follows.

Theorem 1 (Razborov-Rudich) If a P/poly-natural property useful against P/poly ewists, then
there is no strong pseudorandom generator in P /poly.

As an immediate corollary of Theorem 1, we get the following.

Theorem 2 If MCSP is in P/poly, then there is no strong pseudorandom generator in P/poly.

Proof: It is easy to see that if MCSP is in P/poly, then we get a P/poly-natural property useful
against P/poly, and hence the claim follows by Theorem 1. |

An example of a generator which is believed to be strong pseudorandom is the generator based
on factoring Blum integers (recall that a Blum integer is a product of two primes, each congruent to
3 mod 4). Breaking this generator implies being able to factor Blum integers well on the average.
Theorem 2 shows that the existence of an efficient algorithm for MCSP yields an average-case
algorithm for factoring that beats any known factoring algorithm; the best known (worst-case)
deterministic factoring algorithm has the running time approximately 2/4 on n-bit integers [Pol74,
Str76], while the best probabilistic algorithm runs in time approximately e [1.P92].

Corollary 3 If MCSP is in P, then, for any ¢ > 0, there is an algorithm running in time 2" that
factors Blum integers well on the average.

The widely believed hardness of factoring may be taken as the most compelling piece of evidence
that MCSP is hard. However, we give more examples below of some unlikely consequences to the
assumption that MCSP is easy.

2.2 Hardness Amplification

Suppose that one has an n-variable Boolean function of high circuit complexity, say, 2" for some
€ > 0. Given the truth table of such a function, can one efficiently (i.e., in time polynomial in
2™) produce the truth table of a harder Boolean function in m € Q(n) variables, e.g., of circuit
complexity greater than 2™ /m?

The affirmative answer to this question would be surprising. However, we can show that such
an algorithm exists, under the assumption that MCSP is in P.

Theorem 4 Assume MCSP is in P. Then there exists a polynomial-time algorithm that, given
the truth table of an n-variable Boolean function of circuit complexity at least 2°7, for some ¢ > 0,
outputs 2" Boolean functions on m € Q(n) variables each, such that all of the output functions
have circuit complexity greater than %(1 + (1 - 7)13;‘%), for any v > 0.

Our proof will use the following result that can be readily extracted from [IW97].

Theorem 5 (Impagliazzo-Wigderson) For every e > 0, there exist ¢,d € N such that the truth
table of a Boolean function f., :{0,1}" — {0, 1} of circuit complexity 2°™ can be transformed, in
time 2°0") into a pseudorandom generator Gg, : {0,1}%* — {0,1}*" running in time 2°0") that
has hardness H(Gg4,) > 2".

We also need a lower bound on the circuit complexity of most Boolean functions from [Lup59,
Lup63].

Theorem 6 (Lupanov) For any € > 0 and sufficiently large n, almost all n-variable Boolean

. g 1
functions require Boolean circuits of size greater than = (1 +(1- e)%).

Proof of Theorem 4. Let v > 0 be arbitrary, and let s(n) = (1 + (1 - 7)10%). Assuming
that MCSP is in P, we get a polynomial-size circuit family that accepts only the truth tables
of n-variable Boolean functions of circuit complexity greater than s(n), by fixing the parameter
sp, = s(n). Clearly, the acceptance probability of our circuits will be very close to one, by Theorem 6.

Since the size of these circuits is bounded by some fixed polynomial in the input size, the
Impagliazzo-Wigderson generator GG from Theorem 5 will fool them. That is, almost all 2"-bit
strings output by G will be the truth tables of n-variable Boolean functions of circuit complexity
greater than s(n). We can tell which functions are hard by running an algorithm for MCSP, which
is assumed to be in P, and hence we can output hard functions only. |

As a consequence of the theorem above, we get, under the assumption that MCSP is easy, that
E contains a relatively hard Boolean function iff it contains a very hard function. More precisely,
we have the following.

Corollary 7 Assume MCSP is in P. Then E contains a family of Boolean functions f, : {0,1}" —
{0, 1} of circuit complexity at least 2™, for some € > 0, iff E contains a family of Boolean functions
gn 1 {0,1}" — {0, 1} of circuit complezity greater than £-(1+ (1 — 7)10%), for any v > 0.

Proof: <. This direction is obvious.

=. As in the proof of Theorem 4, let v > 0 be arbitrary and let s(n) = £-(1 4 (1 — 'y)k’%).
Assuming that MCSP is in P, we obtain that most of the outputs of the Impagliazzo-Wigderson
generator G from Theorem 5 are the truth tables of n-variable Boolean functions of circuit com-
plexity greater that s(n). Choose the lexicographically first string of length dn which is mapped
by G4, into the truth table of such a hard function. Call this hard function ¢, : {0,1}" — {0,1}.

If E contains a family of Boolean functions f, : {0,1}" — {0, 1} of circuit complexity at least
27" for some ¢ > 0, then we can compute the truth table of f., on en inputs in time 2°0(7),
Thereupon, we can compute the truth table of the hard function g, : {0,1}" — {0, 1} as described
in the previous paragraph, using time 20(n), Thus, given an n-bit string z as input, we can compute
gn(z) in time 20(") which means that E contains a family of n-variable Boolean functions of circuit
complexity greater than s(n). [|

2.3 Natural Properties Revisited

Here we observe that the results of the previous subsection are just particular cases of a more
general phenomenon. Recall that a property of n-variable Boolean functions is called natural if it
holds for sufficiently many functions, and if it can be decided efficiently in the size of an input truth
table. Let N = 2". Below, by a natural property, we will mean a P-natural property {C, },30 with
density 1/N.

An obvious question one may ask about a given natural property {Cp},»o is this: What is
the uniform complexity of computing a particular family of n-variable Boolean functions satisfying
property {Cp}nz0? At present, the best answer to this question is the trivial one: we need time
2"

On the other hand, suppose that we are given access to an arbitrary fixed family of sufficiently
hard n-variable Boolean functions. Then, for every natural property {C}}n>0, we can find, in time
20(7) the truth table of a particular n-variable Boolean function satisfying C,. In other words,
any single hard family of Boolean functions contains enough information for an efficient search of
witnesses for every given natural property. Formally, we have the following.

Theorem 8 Let f = {f,}n>0 be an arbitrary fized family of Boolean functions of circuit complexity
at least 2, for some € > 0. Then, for every natural property C' = {Cp}n3z0, the class Ef contains
a family of Boolean functions satisfying C.

Proof: Asin the proofs of Theorem 4 and Corollary 7, we use Theorem 5 to transform the truth
table of a hard Boolean function f., into a pseudorandom generator (G4, that fools the circuit
deciding Cy, for appropriate ¢,d € N. The hardness of GGy, implies that its range will contain
an n-variable Boolean function satisfying C'y. We can fix one such function g, by choosing the
lexicographically first input « such that Gy, () satisfies Cy. |

It follows from the proof of Theorem 8 that, on inputs of size n, the size of oracle queries is
O(n). Hence, we get the following.

Corollary 9 Suppose E contains a family of Boolean functions f, : {0,1}" — {0,1} of circuit
complexity at least 2, for some ¢ > 0. Then, for every natural property C' = {Cp}n30, the class
E contains a family of Boolean functions satisfying C'.

2.4 Hard Functions in Uniform Complexity Classes

It is well-known that E*2 contains a family of Boolean functions of maximum circuit complexity.
If MCSP were easy, we would get the following improvement to this result.

Theorem 10 If MCSP is in P, then ENY contains a family of Boolean functions of mazimum
circuit complexity.

Proof: We essentially follow the proof of a similar result from [MVW99, Lemma 2]. First, for a
given n, we find the maximum circuit complexity over all n-variable Boolean functions by asking a
series of questions of the form: “Is there a string ¢; ...#3n representing the truth table of a Boolean
function that requires circuit size at least s7”, for s = 27,2" — 1,...; the first value of s = s*
that gets the positive answer will be the required maximum circuit size. Note that, under our
assumption that MCSP is in P, these questions will be NP-questions.

Now we find the lexicographically first truth table 1" = ¢;...t3» of a Boolean function with
circuit complexity s*, by starting with the empty truth table 7" = ¢, and appending 0 to 7" if the
answer to the following NP-question is positive: “Can the string 70 be extended to a truth table of
a Boolean function with circuit complexity at least s*?”, and appending 1 otherwise. Continuing in
this way for 2" steps, we completely specify the truth table of a Boolean function with maximum
circuit complexity. Clearly, the overall running time of the described algorithm is 20(n), given
access to an NP-oracle. |

It was shown in [Kan82] that, for every £ € N, X5 N II§ contains a family of Boolean functions
fn of circuit complexity greater than n*; in [KW98], 3 N 115 was replaced by the class 7PPNP By
a padding argument, we easily get from Theorem 10 the following.

Corollary 11 If MCSP is in P, then, for every k € N, there exists a language Ly in PNY that
requires circuit size at least n*.

As we noted above, the best unconditional result along the lines of Corollary 11 states that
languages of circuit complexity at least n* exist in ZPPNY [KW98]. This is about the best possible
one can get using relativizable techniques since there are oracles with respect to which all of PNP
can be computed by linear-size circuits [Wil85]. In particular, it follows that MCSP is not in P,

with respect to the same oracle.

2.5 Two-Sided Error vs. Zero Error

It is well-known that BPP C ZPPNF [ZHS6] (see also [Sip83, Lau83, NW94, GZ97]). It is also
obvious from the definitions that ZPP C RP C BPP. On the other hand, it is not known whether
BPP C RP or BPP C NP.

We observe that if MCSP is easy, then any probabilistic algorithm with a two-sided error can
be replaced by an equivalent probabilistic algorithm with no error. We prove the following theorem
first.

Theorem 12 BPP C ZPPMCSP,

Proof: Impagliazzo and Wigderson [IW97] show how to use a hard Boolean function on O(logn)
variables to derandomize BPP. We use their result to get the following algorithm in ZPPMSP for
every given BPP algorithm. (A similar argument was given in [NW94] to obtain another proof that
BPP C zPPYF))

First, our algorithm guesses a truth table of a Boolean function on O(logn) variables of circuit
complexity nf*(). This step is in ZPPM®S since most Boolean functions are sufficiently hard and we
reject any easy function with the help of the MCSP oracle. Having found a hard Boolean function,
we use Theorem 5 to obtain an efficient deterministic simulation of the given BPP algorithm on
any n-bit input. Since the second step of our algorithm is in P, the claim follows. [|

We should point out that the result of Theorem 12 would follow trivially from the well-known
inclusion BPP C ZPPYY if one could show that MCSP is NP-hard. However, as we argue below,
the proof that MCSP is NP-hard (if it is indeed true) is beyond the current state of the art of
theoretical computer science.

Now we can state an easy corollary to Theorem 12.

Corollary 13 If MCSP is in P, then BPP C ZPP.

2.6 Global vs. Local Conditions Sufficient for Derandomization

In the study of the P vs. BPP question, several conditions were formulated that are sufficient for
derandomizing BPP. They can be split into two categories: global conditions and local conditions.
Roughly speaking, a global condition assumes the existence of an efficient algorithm for generating
a certain combinatorial object (usually, a set of binary strings) which contains some information
“useful” with respect to all small circuits. On the other hand, a local condition assumes the
existence of an efficient algorithm that, given a small circuit as input, produces some information
“useful” with respect to this particular circuit.

Intutively, local conditions seem much weaker than global ones. Below, we give the standard
examples of both global and local conditions, and show that the assumption that MCSP is easy
leads to a surprising conclusion: the two kinds of conditions are equivalent.

The global conditions usually have to do with the existence of pseudorandom generators that
can “fool” every sufficently small Boolean circuit. One standard meaning of the term fooling is

that every small circuit C on n inputs must accept the fraction of outputs of the generator that is
sufficiently close to Prye(o,13»[C(z) = 1], the actual acceptance probability of C'. The other one
is that C' must accept at least one of the outputs of the generator, provided that the acceptance
probability of C' is sufficiently high (say, at least 1/2).

Generators of the first kind are usually called discrepancy set generators, and those of the
second kind hitting set generators; a discrepancy set generator is also a hitting set generator, but
the converse need not be true. Let us call a generator efficient if it outputs n bits on an input of
O(logn) bits, runs in time poly(n), and fools every circuit of size n on n inputs.

It should be obvious that the existence of efficient discrepancy set generators implies BPP = P.
Remarkably, Andreev et al. [ACR98] proved that the same conclusion can be achieved under the
seemingly weaker assumption that efficient hitting set generators exist (see also [ACRT97, BF'99,
GWO99] for simpler proofs). It turns out that these two assumptions are equivalent to the assumption
that E contains a Boolean function of high circuit complexity. Namely, given an efficient hitting
set generator, one can construct a Boolean function computable in K that has very high circuit
complexity; the idea of such a construction was implicit already in [NW94], and is stated explicitly
in [ISW99, Theorem 9]. Conversely, an efficient discrepancy set generator can be obtained from a
hard Boolean function, using the results in [IW97] (recall Theorem 5 above).

An example of a local condition is the existence of an efficient circuit approximator, the algorithm
that sufficiently closely approximates the acceptance probability of a given circuit. This condition
is obviously sufficient for derandomizing BPP, and it is trivially implied by the global conditions
stated above. In fact, it can be viewed as a local version of the condition that efficient discrepancy
set generators exist.

A local version of the condition that efficient hitting set generators exist is the existence of an
efficient algorithm for solving the following promise problem.

Promise SAT
Given: A Boolean circuit C' on n inputs.
Output: 0 if Prycio1)2[C(z) = 1] =0, and 1 if Prycgg 13 [C(z) = 1] > 1/2.

As in the case of their global counterparts, the two local conditions stated above are also
equivalent; the proof can be extracted from [ACRT97] (see also [BF99]).

Now we show that, under the assumption that MSCP is easy, all of the global and local condi-
tions stated above are equivalent. That is, if MCSP is in P, the following conditions are equivalent:

1. E contains a family of Boolean functions f, : {0,1}" — {0, 1} of circuit complexity at least
2", for some € > 0,

2. there is an efficient discrepancy set generator,
there is an efficient hitting set generator,

there is a polynomial-time algorithm solving Promise SAT, and

DA o

there is a polynomial-time circuit approximator.

As we mentioned above, it is known that, without any assumptions, (1) < (2) < (3) and
(4) < (5). Hence, it suffices to prove the following theorem.

Theorem 14 If MCSP is in P, then the following conditions are equivalent:

1. E contains a family of Boolean functions f, : {0,1}" — {0, 1} of circuit complezity at least
2¢% . for some ¢ > 0, and

2. there is a polynomial-time circuit approximator.

Proof [Sketch]: (1) = (2). Given a hard function in E, we get an efficient discrepancy set
generator as in [IW97]. Obviously, such a generator can be used as a circuit approximator.

(2) = (1). Given an efficient circuit approximator, we can construct an efficient algorithm
that, when given a circuit with acceptance probability of at least 1/2, finds an input accepted by
this circuit. The idea is to look for an accepted input by fixing one bit at a time, using the circuit
approximator to guide the search: fix the bit value so as to get a greater estimate for the acceptance
probability of the resulting circuit. Note that since this witness-finding algorithm is deterministic,
its output is uniquely determined by the input circuit.

Under our assumption, there is a polynomial-time uniform family {C,},.>0 of Boolean circuits
deciding MCSP. By fixing the parameter s, in MCSP to be 2°*, we obtain the family of circuits
C'. accepting only the truth tables of n-variable Boolean functions of circuit complexity greater
than 2¢". Clearly, each circuit C! accepts more than a half of its inputs (see Theorem 6 above).

Now we can apply our witness-finding algorithm to the family of circuits C%.. and find a unique
family of m-variable Boolean functions of high circuit complexity. The total running time for
constructing a particular n-variable function from this family will be poly(2"). |

3 MCSP and NP-completeness

3.1 Implications for Circuit Complexity

Even though we have given some evidence that MCSP is probably not in P, we cannot show that
it is NP-hard. The difficulty is that any “natural” proof of the NP-hardness of a problem A yields
a way to construct hard instances of A. In the case of MCSP, such a proof would give rise to an
explicit Boolean function in E with superpolynomial circuit complexity.

More formally, for two problems A and B and a Karp reduction R from A to B, we call the
reduction R natural if, for any instance I of problem A, the size of R([) (as well as the possible
numerical parameters of R(I)) depends only on the size of I, and the sizes of I and R([) are
polynomially related. For example, the text-book reductions from SAT to 3-SAT, and from 3-SAT
to Vertex Cover [GJ79] are natural in the above sense. In fact, all “natural” NP-complete problems
that we are aware of are complete under natural reductions; this includes the Minimum Size DNF
Problem, for which a natural reduction from SAT is given in [Mas79].

In the next theorem, we use the notation SUBEXP = N,5oDTIME(2"™).

Theorem 15 If MCSP is NP-hard under a natural reduction from SAT, then
1. E contains a family of Boolean functions f, not in P/poly i.0., and

2. B contains a family of Boolean functions f, of circuit complexity 2%") i.0., unless NP C

SUBEXP.

Proof: Statement 1. First, we observe that if NP C QP, where QP = DTIME(nPOlleg(”)), then
PH C QP. Also, it can be easily shown that QPEi, for some k& € N, contains a language of
superpolynomial circuit complexity. Combining these two results, we get that NP C QP implies
that QPYH C QPRY C QP C E contains a family of functions not in P/poly.

Now suppose that NP ¢ QP. A given natural reduction R from SAT to MCSP maps every
family of formulas of size n to the truth tables of Boolean functions on k = #(logn) variables and

a parameter s,. Since the reduction is natural, s, is a function of n only. If s, could be upper-
bounded by some fixed polynomial (logn)¢, then all such instances of MCSP would be solvable in
deterministic time nP°¥1os() (since there are at most that many different circuits on k inputs with
(logn)¢ gates). This would imply that SAT is in QP.

Thus, under the assumption that NP ¢ QP, we can obtain the desired family of k-variable
functions not in P/poly by applying reduction R to any trivial family of unsatisfiable formulas.
Clearly, this family of hard functions would be computable in time 2°0).

Statement 2 is similar. If s, could be upper-bounded by 2¢'°8" for every ¢ > 0, then SAT
would be solvable in deterministic time 2™’ for every § > 0. Assuming that NP ¢ SUBEXP, we get
that any trivial family of unsatisfiable formulas will be transformed by R to a family of Boolean
functions on k = #(logn) variables of circuit complexity 24 for infinitely many k. |

3.2 Implications for BPP
We need the following two theorems on hardness-randomness trade-offs from [IW97] and [BFNW93],

respectively.

Theorem 16 (Impagliazzo-Wigderson) If the class E contains a family of Boolean functions
Jn :{0,1}" — {0, 1} of circuit complezity at least 2, for some ¢ > 0, (i.0.), then BPP =P (i.0.).

Theorem 17 (Babai-Fortnow-Nisan-Wigderson) [f the class EXP contains a family of Boolean
functions of superpolynomial circuit complezity (i.o.), then BPP C SUBEXP (i.o0.).

Using Theorems 16 and 17 above, we now easily obtain the following corollary from Theorem 15.

Theorem 18 If MCSP is NP-hard under a natural reduction from SAT, then
1. BPP C SUBEXP i.o0., and
2. BPP = P i.0., unless NP C SUBEXP.

In other words, assuming that MCSP is NP-complete under a natural reduction from SAT, we
get the following: if NP is hard i.o. (a.e.), then BPP is easy i.0. (a.e.). We should contrast this
with the fact implied by the inclusion BPP C ¥F [Sip83, Lau83]: if NP is easy a.e., then BPP is
also easy a.e.

Corollary 19 If MCSP is NP-hard under a natural reduction from SAT, then BPP C E.

Proof: If MCSP is NP-hard under a natural reduction from SAT, then BPP is in SUBEXP for
infinitely many input lengths, by Theorem 18. Since we can diagonalize against SUBEXP with a
Turing machine in E so that this diagonalizing machine differs from every machine in SUBEXP on
at least one input for all sufficiently large input lengths, the claim follows. |

4 Concluding Remarks and Open Problems

In Section 3, we have argued that proving the NP-hardness of MCSP would be difficult because
of the lack of any superlinear lower bounds for a language in E. However, we have very strong
lower bounds for some restricted models of computation, e.g., constant-depth circuits and monotone
circuits. Is the Minimum Depth-d (Unbounded Fan-in) Circuit Size Problem NP-complete for every
d > 2?7 At present, only the case of d = 2 is known [Mas79].

Unfortunately, one obstacle to proving the NP-completeness result for minimum circuit size of
depth-d ACPcircuits is the lack of strongly exponential lower bounds; the known lower bounds
for AC? (e.g., for parity) are exponential in some root of n only. We do not have a proof that
E contains a Boolean function with a strongly exponential lower bound for AC®. On the other
hand, the output of a natural reduction, when given an unsatisfiable formula, will need to produce
a function in E with strongly exponential lower bound, unless NP C SUBEXP.

There also appear to be no strongly exponential lower bounds for the case of monotone Boolean
circuits; the lower bounds for CLIQUE and BMS (Broken Mosquito Screen) are exponential in
some root of the input size only. So we have the same obstacle in proving the NP-completeness
result for monotone circuits as we do for ACY.

We point out two more open problems. Can Corollary 7 be improved to say that, under the
assumption that MCSP is in P, the class E contains a language of circuit complexity at least 2°7,
for some € > 0, iff E contains a language of mazimum circuit complexity? Our proof used the fact
that a significant fraction of n-variable Boolean functions have high circuit complexity, whereas
there may be very few functions of maximum circuit complexity.

Another question is whether MCSP is self-reducible. Namely, is it possible to find a minimum-
size circuit for a given Boolean function f in time polynomial in the size of the truth table of f,
when given oracle access to the language of MCSP? If MCSP is NP-complete, then, obviously, the
answer should be positive.

Acknowledgments. The first author wishes to thank Stephen Cook for many remarks and in-
sightful comments on the results of this paper, Richard Lipton for a fruitful discussion at an early
stage of the research described here, and Charles Rackoff for his helpful remarks. Also, many thanks
to Stephen Cook and Dieter van Melkebeek for reading and commenting on an earlier version of
this paper.

References

[ACRI8] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. A new general derandomization
method. Journal of the Association for Computing Machinery, 45(1):179-213, 1998.
(preliminary version in ICALP’96).

[ACRT97] A.E. Andreev, A.E.F. Clementi, J.D.P. Rolim, and L. Trevisan. Weak random sources,
hitting sets, and BPP simulations. In Proceedings of the Thirty-Fighth Annual [FEE
Symposium on Foundations of Computer Science, pages 264-272, 1997.

[BF99] H. Buhrman and L. Fortnow. One-sided versus two-sided error in probabilistic com-
putation. In C. Meinel and S. Tison, editors, Proceedings of the Sizteenth Annual
Symposium on Theoretical Aspects of Computer Science, volume 1563 of Lecture Notes
in Computer Science, pages 100-109. Springer Verlag, 1999.

[BFNWO93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Complexity, 3:307-318, 1993.

[CooT1] S.A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third
Annual ACM Symposium on Theory of Computing, pages 151-158, 1971.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York, 1979.

10

[GW99]

[G797]

[ISW99]

[TW97]

[Kan82]

[KW98]

[Lau83]

[1.P92]

[Lup59]

[Lup63]

[Mas79]
[MVW99]

[NWO4]

[Pol74]

[RRI7]

[Sha49]

0. Goldreich and A. Wigderson. Improved derandomization of BPP using a hitting set
generator. In . Hochbaum, K. Jansen, J.D.P. Rolim, and A. Sinclair, editors, Random-

ization, Approzimation, and Combinatorial Optimization, volume 1671 of Lecture Notes
in Computer Science, pages 131-137. Springer Verlag, 1999. (RANDOM-APPROX’99).

O. Goldreich and D. Zuckerman. Another proof that BPPCPH (and more). FElectronic
Colloguium on Computational Complexity, TR97-045, 1997.

R. Impagliazzo, R. Shaltiel, and A. Wigderson. Near-optimal conversion of hardness
into pseudo-randomness. In Proceedings of the Fortieth Annual IKEE Symposium on
Foundations of Computer Science, pages 181-190, 1999.

R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Deran-
domizing the XOR Lemma. In Proceedings of the Twenty-Ninth Annual ACM Sympo-
sium on Theory of Computing, pages 220-229, 1997.

R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information

and Control, 55:40-56, 1982.

J. Kébler and O. Watanabe. New collapse consequences of NP having small circuits.
SIAM Journal on Computing, 28(1):311-324, 1998.

C. Lautemann. BPP and the polynomial time hierarchy. Information Processing Letters,

17:215-218, 1983.

H.W. Lenstra Jr. and C. Pomerance. A rigorous time bound for factoring integers.
Journal of the American Mathematical Society, 5(3):483-516, 1992.

O.B. Lupanov. A method of circuit synthesis. lzvestiya VUZ, Radiofizika, 1(1):120-140,
1959. (in Russian).

O.B. Lupanov. On the synthesis of certain classes of control systems. In Problemy
Kibernetiki 10, pages 63-97. Fizmatgiz, Moscow, 1963. (in Russian).

W.J. Masek. Some NP-complete set covering problems. Manuscript, 1979.

P. B. Miltersen, N.V. Vinodchadran, and O. Watanabe. Super-polynomial versus half-
exponential circuit size in the exponential hierarchy. In T. Asano, H. Imai, D.T. Lee,
S. Nakano, and T. Tokuyama, editors, Proceedings of the Fifth Annual International
Conference on Computing and Combinatorics, volume 1627 of Lecture Notes in Com-
puter Science, pages 210-220. Springer Verlag, 1999. (COCOON’99).

N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Computer and
System Sciences, 49:149-167, 1994.

J.M. Pollard. Theorems on factorization and primality testing. Proceedings of the
Cambridge Philosophical Society, 76:521-528, 1974.

A.A. Razborov and S. Rudich. Natural proofs. Journal of Computer and System
Sciences, 55:24-35, 1997.

C.E. Shannon. The synthesis of two-terminal switching circuits. Bell Systems Technical
Journal, 28(1):59-98, 1949.

11

[Sip8&3] M. Sipser. A complexity theoretic approach to randomness. In Proceedings of the
Fifteenth Annual ACM Symposium on Theory of Computing, pages 330-335, 1983.

[Str76] V. Strassen. Einige Resultate iiber Berechnungskomplexitdt. Jahresberichte der DMV,
78:1-8, 1976.

[Tra84] B.A. Trakhtenbrot. A survey of Russian approaches to perebor (brute-force search)
algorithms. Annals of the History of Computing, 6(4):384-400, 1984.

[Wil85] C.B. Wilson. Relativized circuit complexity. Journal of Computer and System Sciences,
31:169-181, 1985.

[Yab59a] S.V. Yablonski. The algorithmic difficulties of synthesizing minimal switching circuits.
In Problemy Kibernetiki 2, pages 75—121. Fizmatgiz, Moscow, 1959. English translation
in Problems of Cybernetics I1.

[Yab59b] S.V. Yablonski. On the impossibility of eliminating perebor in solving some problems of
circuit theory. Doklady Akademii Nauk SSSR, 124(1):44-47, 1959. English translation
in Soviet Mathematics Doklady.

[ZH86] S. Zachos and H. Heller. A decisive characterization of BPP. Information and Control,
69(1-3):125-135, 1986.

ECCC ISSN 1433-8092
12 http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

