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Abstract

We give explicit constructions of extractors which work for a source of any min-entropy on strings of
length n. These extractors can extract any constant fraction of the min-entropy using O(log® n) additional
random bits, and can extract all the min-entropy using O(log® n) additional random bits. Both of these
constructions use fewer truly random bits than any previous construction which works for all min-
entropies and extracts a constant fraction of the min-entropy. We then improve our second construction
and show that we can reduce the entropy loss to 2log(1/¢) + O(1) bits, while still using O(log® n) truly
random bits (where entropy loss is defined as [(source min-entropy) + (# truly random bits used) —
(# output bits)], and ¢ is the statistical difference from uniform achieved). This entropy loss is optimal
up to a constant additive term.

Our extractors are obtained by observing that a weaker notion of “combinatorial design” suffices for
the Nisan-Wigderson pseudorandom generator, which underlies the recent extractor of Trevisan. We give
near-optimal constructions of such “weak designs” which achieve much better parameters than possible
with the notion of designs used by Nisan-Wigderson and Trevisan.

We also show how to improve our constructions (and Trevisan’s construction) when the required
statistical difference € from the uniform distribution is relatively small. This improvement is obtained
by using multilinear error-correcting codes over finite fields, rather than the arbitrary error-correcting
codes used by Trevisan.
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1 Introduction

Roughly speaking, an extractor is a function which extracts (almost) truly random bits from a weak random
source, using a small number of additional random bits as a catalyst. A large body of work has focused on
giving explicit constructions of extractors, as such constructions have a wide variety of applications. A recent
breakthrough was made by Luca Trevisan [Tre99], who discovered that the Nisan—Wigderson pseudorandom
generator [NW94], previously only used in a computational setting, could be used to construct extractors. For
certain settings of the parameters, Trevisan’s extractor is optimal and improves on previous constructions.
More explicitly, Trevisan’s extractor improves over previous constructions in the case of extracting a relatively
small number of random bits (e.g., extracting k'~ bits from source with “k bits of randomness”, where
a > 0 is an arbitrarily small constant) with a relatively large statistical difference from uniform distribution
(e.g., constant e, where ¢ is the statistical difference from uniform distribution required from the output).
However, when one wants to extract more than a small fraction of the randomness from the weak random
source, or when one wants to achieve a small statistical difference from uniform distribution, Trevisan’s
extractor performs poorly (in that a large number of truly random “catalyst” bits are needed).

In this paper, we show that Trevisan’s ideas can be used in a more general and efficient way. We present
two new ideas that improve Trevisan’s construction. The first idea allows one to extract more than a small
fraction of the randomness from the weakly random source. In particular, the idea can be used to extract
all of the randomness from the weak random source. This is accomplished by improving the combinatorial
construction underlying the Nisan—Wigderson generator used in Trevisan’s construction. Applying a result
of Wigderson and Zuckerman [WZ95] to these extractors, we also obtain improved constructions of highly
expanding graphs and superconcentrators.

The second idea improves Trevisan’s construction in the case where the output bits are required to be
of a relatively small statistical difference from uniform distribution. The two ideas can be combined, and
the final outcome is a set of new extractors that use fewer truly random bits than any previous construction
which extracts at least a constant fraction of the randomness from any weak random source.

Extractors

The definition of an extractor requires quantifying two notions: how much “randomness” is in a probability
distribution, and what it means for two distributions to be “close”. The first is measured using a variant of
entropy. A distribution X on {0,1}" is said to have min-entropy k if for all x € {0,1}", Pr[X =] < 2%,
This should be thought of as saying that X has (at least) “k bits of randomness.” For example, if X is
uniformly distributed on a set of size 2¥, then X has min-entropy k.

The distance measure between probability distributions used is a standard one. Two distributions X and
Y on a set S are said to have statistical difference (or variation distance) ¢ if

max[Pr[D(X) = 1]~ Pr[D(Y) = 1]| =,

where the maximum is taken over all functions (“distinguishers”) D : S — {0,1}.

A function Ext : {0,1}" x {0,1}¢ — {0,1}™ is called a (k,e)-extractor if for every distribution X
on {0,1}" of min-entropy k, the induced distribution EXT(X,Uy) on {0,1}™ has statistical difference at
most € from U, (where U; denotes the uniform distribution on {0,1}7). In other words, EXT extracts m
(almost) truly random bits from a source with k bits of hidden randomness using d additional random bits
as a catalyst. The goal is to construct extractors which minimize d while m is as close to k as possible.
Nonconstructively, it can be shown that for every n, k < n, and € > 0, there exists a (k,¢e)-extractor
EXT : {0,1}" x {0,1}* = {0,1}™ with m = k and d = O(log(n/¢)), i.e. all the randomness of the source
is extracted using only logarithmically many additional truly random bits.! However, we are interested in
ezplicit constructions. More precisely, a family of extractors {EXT; : {0,1}™ x {0,1}% — {0,1}™ };¢; is
called ezxplicit if EXT; can be evaluated in time poly(n;,d;).

Dispersers are the analogue of extractors for one-sided error; instead of inducing the uniform distribution,
they simply hit all but a € fraction of points in {0,1}™ with nonzero probability.

I Actually, since the extractor is fed d truly random bits in addition to the k bits of hidden randomness, one can hope to
have m be close to k + d. This will be discussed in more detail under the heading “Strong extractors and entropy loss.”



Other notations. “log” indicates the logarithm base 2 and “In” denotes the natural logarithm. If X is a
probability distribution on a finite set, we write <X to indicate that x is selected according to X.

Previous work

Dispersers were first defined by Sipser [Sip88] and extractors were first defined by Nisan and Zucker-
man [NZ96]. Much of the motivation for research on extractors comes from work done on “somewhat
random sources” [SV86, CG88, Vaz87h, VV85, Vaz84, Vaz87a, CW89]. There have been a number of
papers giving explicit constructions of dispersers and extractors, with a steady improvement in the parame-
ters [Zuc96, NZ96, WZ95, GW97, SZ98, SSZ98, NT98, Zuc97, Ta-98, Tre99]. Most of the work on extractors
is based on techniques such as k-wise independence, the Leftover hash lemma [ILL89], and various forms
of composition. A new approach to constructing extractors was recently initiated by Trevisan [Tre99], who
discovered that the Nisan-Wigderson pseudorandom generator [NW94] could be used to construct extractors.

Explicit constructions of extractors and dispersers have a wide variety of applications, including simu-
lating randomized algorithms with weak random sources [Zuc96]; constructing oblivious samplers [Zuc97];
constructive leader election [Zuc97]; randomness-efficient error reduction in randomized algorithms and in-
teractive proofs [Zuc97]; explicit constructions of expander graphs, superconcentrators, and sorting net-
works [WZ95]; hardness of approximation [Zuc96]; pseudorandom generators for space-bounded computa-
tion [NZ96, RR99]; derandomizing BPP under circuit complexity assumptions [ACR97, STV99]; and other
problems in complexity theory [Sip88, GZ97].

For a detailed survey of previous work on extractors and their applications, see [NT98].

Main results

The first family of extractors constructed in this paper are given in the following theorem:

Theorem 1 For every n,k,m € N and € > 0, such that m < k < n, there are explicit (k,¢)-extractors
EXT:{0,1}" x {0,1}4 — {0,1}™ with

1.d=0 (11?5(1(;7{5))): or

2.d=0 (log2(n/6) -log(1/7)), where 1+~ =k/(m — 1), and v < 1/2.

In particular, using the second extractor with ¥ = m, we can extract all of the min-entropy of the source
using

O (log*(n/e) - log k)

additional random bits. (If € is constant then this is just O(log® n - logk) additional random bits). Using
the first extractor with k/m constant, we can extract any constant fraction of the min-entropy of the source

using
O (log*(n/e))

additional random bits. (If € is constant then this is just O(log® n) additional random bits).

An undesirable feature of the extractors in Theorem 1 (and the extractor of Trevisan [Tre99]) is that the
number of truly random bits depends quadratically on log(1/¢). In (nonconstructive) optimal extractors and
even some previous constructions (discussed later), this dependence is linear. Indeed, some applications of
extractors, such as [RR99], require a linear dependence. In our second theorem, we improve our extractors
to have a linear dependence on log(1/¢).

Theorem 2 For every n, k, m, and €, such that m < k < n, there are explicit (k,e)-extractors EXT :
{0,1}" x {0,1}¢ — {0,1}™ with

log? n-log(1
1.d=0 ( Oglorgl(ko/gy(n)/g))’ or

2.d=0 (logzn -log(1/7) -log(1/e)), where 1+ v =k/(m —1), and v < 1/2.



Thus, in all cases, the log®(n/e) in Theorem 1 has been replaced with log?n - log(1/e), which is an
improvement when ¢ is relatively small. One case of note is when we want to extract m = k'~ bits
from a source of min-entropy k& > n®, for an arbitrarily small constant a > 0. This is the case in which
Trevisan’s extractor performs best, using d = O(log®(n/e)/logn) truly random bits (which is O(logn) for
€ > 1/poly(n)). In this case, Theorem 2 gives

d = 0 (logn -log(1/e)),

which is an improvement for small . We only provide a sketch of Theorem 2, because the results have been
superseded by our recent work [RRV99a] which gives a general method to reduce the error of any extractor.

A summary of our results is given in Figure 1, and a comparison with the best previous constructions
is given in Figure 2. Trevisan’s construction [Tre99] uses only O(log?(n/e)/logk) truly random bits but

reference | min-entropy k ‘ output length m ‘ additional randomness d ‘ type

Thm.1 | any k m=(1-a)k d= O(logz(n/s)) extractor
Thm.1 | any k m=k O(log?(n/e) - logk) extractor
Thm. 2 | any k m = k=@ d= O(log2 n -log(1/e)/logk) | extractor
Thm. 2 | any k m=(1-a)k d = O(log®n - log(1/¢)) extractor
Thm. 2 | any k m=k d = O(log®n -log(1/¢) - log k) | extractor

Above, a is an arbitrarily small constant.

Figure 1: Summary of our constructions

‘ reference ‘ min-entropy k ‘ output length m ‘ additional randomness d ‘ type
[GW9IT7] any k m=k d= O(n —k+1log(1/e)) | extractor
[Zuc97) k=Q(n) m=(1-a)k O(log(n/e)) extractor
[NT98] any k m=k d= O(log9 n-log(l/e)) | extractor
[Ta-98] any k m = k — polylog(n) | d = O(log(n/e)) disperser
[Tre99] any k m=Fkl-@ d = O(log®>(n/e)/logk) | extractor

‘ ultimate goal ‘ any k m=k ‘ d = O(log(n/e)) ‘ extractor

Above, a is an arbitrarily small constant.
Figure 2: Best previous constructions

extracts only a small fraction (k' ~%) of the source min-entropy. The best previous construction that extracts
all of the source min-entropy was given by Ta-Shma [NT98] and used O(log® n -log(1/¢)) truly random bits.?
Our extractors use more truly random bits than the extractor of [Zuc97] and the disperser of [Ta-98], but
our extractors have the advantage that they work for any min-entropy (unlike [Zuc97]) and are extractors
rather than dispersers (unlike [Ta-98]). The disadvantage of the extractors of [GW97] described in Figure 2
is that they only use a small number of truly random bits when the source min-entropy k is very close to the
input length n (e.g., K = n — polylog(n)). There are also extractors given in [GW97, SZ98] which extract
all of the min-entropy, but these use a small number of truly random bits only when the source min-entropy
is very small (e.g., k = polylog(n)), and these extractors are better discussed later in the context of strong
extractors.

Plugging the second extractor of Theorem 1 into a construction of [WZ95] (see also [NT98]) immediately
yields the following construction of highly expanding graphs:

2In [NT98], the number of truly random bits used by the extractor is given as d = polylogn, a polynomial of unspecified
degree in log n. Ta-Shma [TS98] estimates the degree of this polynomial to be 9.



Corollary 3 For every N and K < N, there is an explicitly constructible® graph on N nodes with degree
(N/K) - 20((loglog N)"(loglog K)) gy,ch, that every two disjoint sets of vertices of size at least K have an edge
between them.

This compares with a degree bound of (N/K) - 20((egleg N)*) que to Ta-Shma [NT98]. We also obtain
similarly improved constructions of depth-2 superconcentrators, using general techniques for building them
from extractors [WZ95, NT98]. These highly expanding graphs and depth-2 superconcentrators have further
applications to sorting and selecting in rounds, constructing small-depth linear-sized superconcentrators, and
constructing non-blocking networks [Pip87, AKSS89, WZ95], so our results translate similar improvements
in each of these applications. We remark that the construction of [WZ95] used to obtain Corollary 3 requires
extractors that extract nearly all the entropy of the source.

Techniques

Our work builds upon Trevisan’s beautiful discovery of a connection between constructing extractors and
constructing pseudorandom generators from hard functions [Tre99]. In addition to establishing this con-
nection, Trevisan used it to give a strikingly simple extractor construction based on the Nisan-Wigderson
generator. This is the starting point for our work.

The Trevisan extractor. The Nisan—-Wigderson generator [NW94] is a method of building a pseudoran-
dom generator out of any Boolean function P such that the quality of the pseudorandom generator is closely
related to how hard P is to compute (on average). Let S = (51, . .., Sn) be a collection of subsets of [d], each
of size £, and let P : {0,1}* — {0,1} be any Boolean function. For a string y € {0, 1}¢, define y|s, to be the
string in {0, 1}¢ obtained by projecting y onto the coordinates specified by S;. Then the Nisan-Wigderson
generator NWg p : {0,1}¢ — {0,1}™ is defined as

NWs,p(y) = P(yls,)--- P(yls,.)-

In the “indistinguishability proof” of [NW94], it is shown that for any function D : {0,1}™ — {0, 1} which
distinguishes the output of NWg p(y) (for uniformly selected y) from the uniform distribution on {0,1}™,
there is a small circuit C (or procedure of small “description size”) such that CP(-) (i.e. C with oracle access
to D) approximates P(-) reasonably well. It is shown that the size of the C is related to max;; |S; N .S;|, so
one should use a collection of sets in which this quantity is small, while trying to minimize the seed length
d.

We now give a rough description of the Trevisan extractor ExT : {0,1}" x {0,1}? — {0,1}™. For a string
u € {0,1}", let w € {0,1}" be an encoding of u in an error-correcting code and define £ = logm. We view u
as a Boolean function % : {0,1}¢ — {0,1}. As above, we fix a collection S = (S4, ..., S,,) of subsets of [d] of
size £.

Then the extractor is simply

ExTs(u,y) = NWsz(y) = a(yls,) - --a(yls.,)-

The analysis of this extractor in [Tre99] shows that the output of this extractor is close to uniform as
long as the source min-entropy is greater than the size of the circuit C' built in the indistinguishability proof
of [NW94]. Hence, one needs to make sure this circuit size is not much larger than the number m of output
bits while minimizing the number d of truly random bits needed, which is equal to the seed length of the
Nisan—Wigderson generator.

Our improvements. The first improvement of this paper stems from the observation that actually
max; Y, ;2% is much better than max;z;|S; N S| as a measure of the size of the circuit built in
the Nisan—Wigderson indistinguishability proof. So we are left with the problem of constructing set systems
in which this quantity is small; we call such set systems weak designs (in contrast to designs, in which
max;x; |S; NS;| is bounded). We show that with weak designs, one can have d much smaller than is possible

3By explicitly constructible, we mean that, given N and K, the graph can be constructed deterministically in time poly(N).



with the corresponding designs. The weak designs used in the first extractor of Theorem 1 are constructed
using an application of the Probabilistic Method, which we then derandomize using the Method of Condi-
tional Expectations (cf., [ASE92] and [MR95, Ch. 5]). We then apply a simple iteration to these first weak
designs to obtain the weak designs used in the second extractor. We also prove a lower bound showing that
our weak designs are near-optimal.

The second improvement is achieved by using a specific error-correcting code rather than an arbitrary
one. More specifically, we use multilinear error-correcting codes over finite fields. In Trevisan’s analysis for
the size of the circuit C, the fact that @ is an error-correcting code (rather than just an arbitrary function)
is not used. The circuit complexity of the function w, restricted to the subset of inputs S; N Sj;, is hence
bounded by ~ O(2/5:7%i1). Sometimes, however, this is a very bad upper bound. For example, the circuit
complexity of the function @ itself (without restriction) is & O(2") which is sometimes much smaller than
O(2™). This gap is significant when ¢ is relatively small (because small & requires an error-correcting code
with very good distance properties, which in turn requires long codewords.) Here, we suggest that if one uses
multilinear error-correcting codes and constructs the weak designs appropriately then the circuit complexity

of the function w, restricted to the subset of inputs S; N S;, can be bounded by a value much smaller than
2\5,’051' | .

Strong extractors and entropy loss

Since a (k,e)-extractor EXT : {0,1}" x {0,1}¢ — {0,1}™ is given k bits of hidden randomness in its first
input and d truly random bits in its second input, one can actually hope for the output length m to be
almost k + d, rather than just k. The quantity A = k + d — m is therefore called the entropy loss of the
extractor. Hence, in this language, the goal in constructing extractors is to simultaneously minimize both d
and the entropy loss.

Actually, in some applications of extractors, it is important not only to retain the randomness of the d
truly random bits invested, but to explicitly retain their values in the output. This leads to a more stringent
notion of extractors. A function Ext : {0,1}"x{0,1}¢ — {0,1}™ is called a strong (k, ¢)-extractor if for every
distribution X on {0,1}" of min-entropy &, the induced distribution (U, EXT(X,Uy)) on {0, l}d x {0,1}™
has statistical difference at most € from Uy x U,,. Naturally, the entropy loss of a strong extractor is defined
tobe A=k —m.

Nonconstructively, one can show that, for any n and k¥ < n, there exist strong extractors EXT, ; :
{0,1}7x {0,1}¢ — {0,1}*~2 with d = log(n — k) 4+ 21log(1/¢) + O(1) and entropy loss A = 2log(1/e)+O(1),
and these bounds on d and A are tight up to additive constants (even for non-strong extractors) [RT97]. The
explicit constructions, however, are still far from achieving these parameters. As for what is known, every
entry in Figure 2 yields a (not necessarily strong) extractor with an entropy loss of k + d — m, by definition.
For example, the extractor of [NT98] and the disperser of [Ta-98] have entropy losses of polylogn. The
extractor of [GW97] is actually better than Figure 2 indicates; it is a strong extractor with an entropy loss of
n—k+O(log(1/¢)) (though this is only interesting when k is very close to n). In addition, the “tiny families
of hash functions” of [SZ98] give strong extractors with d = O(k + logn) and entropy loss 2log(1/e) + O(1);
these have optimal entropy loss but are only interesting when k is very small (e.g., k = polylogn), as d is
linear in k. (The fact that d does not explicitly depend on ¢ here is not a contradiction, as no nontrivial
extraction is occuring when k < A and the lower bounds do not apply.)

Our extractors are in fact strong extractors. Moreover, by combining the second extractors of Theorem 1
and Theorem 2 with the low min-entropy extractors of [SZ98], we are able to achieve optimal entropy loss
(up to an additive constant):

Theorem 4 For every n,k € N, and € > 0 such that k < n, there are explicit strong (k,e)-extractors
EXT : {0,1}" x {0,1}? = {0,1}*=2 with entropy loss

A =2log(l/e) + O(1),

and

1.d=0 (logz(n/e) -logk), or



2. d =0 (log’n -log(1/e) - logk).

In particular, in order for the output of the extractor to have statistical difference .01 from uniform, one
need only lose a constant number of bits of entropy. A comparison of this result with previous results on
entropy loss is given in Figure 3.

‘ reference ‘ additional randomness d ‘ entropy loss A ‘ type ‘ strong? ‘
[GW9IT7] d= O(n —k+log(1/¢)) A =n—k+12log(1/e) + O(1) | extractor | yes
[SZ98] O(k +logn) A =2log(l/e) + O(1) extractor | yes
[NT98] d= O(log n -log(1/e)) A = O(log” n - log(1/¢)) extractor | no
[Ta-98] d = O(log(n/e)) A = polylog(n/e) disperser | no
Thm. 4 d = O (log’(n/e) - log k) A =2log(1/e) + 0(1) extractor | yes
Thm. 4 d = O (log” n - log(1/e) - log k) A =2log(1/e) + O(1) extractor | yes
nonconstructive d =log(n — k) + 2log(1/e) + O(1) | A =2log(1/e) + O(1) extractor | yes
& optimal [RT97)

All of the above work for any source of min-entropy &.

Figure 3: Results on entropy loss

Actually, the method we use to reduce the entropy loss of our extractor is quite general, and can also be
used to reduce the entropy losses of the extractors of [GW97] and [NT98] to 2log(1/e) + O(1) while only
increasing the number of truly random bits used by a constant factor.

Organization

In Section 2, we introduce the notion of a weak design, and state our results on constructing them. We also
state lower bounds showing that the parameters achieved by our weak designs are impossible for standard
designs, and that our constructions of them are nearly optimal. Theorem 1 is proven in Section 3, where
we analyze Trevisan’s extractor when our weak designs are used. In Section 4, we sketch our method for
improving the dependence on the error as claimed in Theorem 2. Section 5 contains our construction of weak
designs via the Probabilistic Method, and our lower bounds for designs are proven in Section 6. In Section 7,
we argue that our extractors are actually strong extractors, and show how to achieve optimal entropy loss.
In Section 8, we show that using a relaxed notion of designs also gives some quantitative improvements over
[NW94] in the construction of pseudorandom generators from hard Boolean functions.

2 Combinatorial designs
The combinatorial construction underlying the Nisan—Wigderson generator are combinatorial designs.
Definition 5 ([NW94]) * For £ € N and p > 1, a family of sets Si,...,Sm C [d] is an (¢, p)-design if

1. For all i, |S;| = L.
2. For alli # j, |S: N S| <logp.

4There is a somewhat related notion in the combinatorics literature known as a 2-design (see, e.g. [AK92]). In 2-designs,
strong additional regularity requirements are imposed (such as all the pairwise intersections being ezactly the same size and all
points being contained in the same number of sets). These additional requirements are irrelevant in our applications.



Motivation. In Trevisan’s extractor, the parameters of a design correspond to the parameters of the
extractor as follows (in the discussion below the parameter £ of the extractor is fixed, for simplicity, to be
some small constant):

source min-entropy <~ pm

output length = m
input length = 26(6)
additional randomness = d

Hence, our goal in constructing designs is to minimize d given parameters m, £, and p (such that p > 1).
Notice that 1/p is essentially the fraction of the source min-entropy that is extracted, so ideally p would be
as close to 1 as possible.

One explicit construction of designs is given by the following:

Lemma 6 ([NW94, Tre99]) For every m,f € N, and p > 1, there exists an efficiently constructible (¢, p)-
design S1,...,Sm C [d] with
02 . mO(1/logp)

log p

Notice that the dependence on p is very poor. In particular, if we want to extract a constant fraction of the
min-entropy, we need more than m®®) truly random bits. This is unavoidable with the current definition
of designs: if p < 2, then all the sets must be disjoint, so d > m#. In general, we have the following lower
bound, proved in Section 6:

Proposition 7 If Si,...,S, C [d] is an (£, p)-design, then
d > m'/'°8% . (£ —log p)

A slightly weaker bound (without the (£ —log p) factor) can be deduced from the Ray-Chaudhuri-Wilson
Theorem [BF92].

The first improvement of this paper stems from the observation that actually a weaker form of design
suffices for the Nisan—Wigderson generator and the construction of extractors:

Definition 8 A family of sets S1,...,Sm C[d] is a weak (£, p)-design if
1. For all i, |S;| = £.

2. For all i,
Z2\Siﬂsj‘| S p- (m _ 1)

i<i

We will show that the parameters of a weak design correspond to the parameters of our extractors in
the same way that designs corresponded to the parameters of Trevisan’s extractor. Notice that every (¢, p)-
design is a weak (£, p)-design. But one can, for many settings of m, £, and p, achieve weak (¢, p)-designs
S1,..3Sm C [d] with much smaller values of d than possible with (¢, p)-designs. Indeed, we will prove the
following in Section 5 using a probabilistic argument:

Lemma 9 For every £,m € N and p > 1, there exists a weak (£, p)-design S1,...,Sm C [d] with

d= [L-‘ 3
Inp

Moreover, such a family can be found in time poly(m,d).



This is already much better than what is given by Lemma 6; for constant p, d is O(¢2) instead of £2-mS().

However, as p gets very close to 1, d gets very large. Specifically, if p = 1 + « for small ~, then the above
gives d = O(£?/v). To improve this, we notice that the proof of Lemma 9 does not take advantage of the
fact that there are fewer terms in ) j<i 215:15; when i is small; indeed the proof actually shows how to
obtain Y7, 215:NSil < p. (i — 1).5Since we only need a bound of p - (m — 1) for all i, this suggests that
we should “pack” more sets in the beginning. This packing is accomplished by iterating the construction of
Lemma 9 (directly inspired by the iteration of Wigderson and Zuckerman [WZ95] on extractors), and yields
the following improvement.

Lemma 10 For every {,m € N and 0 < v < 1/2, there exists a weak (¢,1+ v)-design S, ..., Sy C [d] with

1
d=0(¢-1o —).
( g7

In particular, for every £,m € N, there is there exists a weak (£,1)-design S1,..., Sy C [d] with
d=0 (¢ -logm) .
Moreover, these families can be found in time poly(m,d).

The “in particular” part of Lemma 10 follows because every weak (¢,1+ 1/m)-design is actually a weak
(¢,1)-design (since [(1 +1/m)-(m —1)] = m —1). In terms of our extractors, Lemma 10 translates to
extracting essentially all of the entropy of a source on {0,1}" of min-entropy k using d = O(log®n - log k)
truly random bits. Lemma 10 will be proven in Section 5.

For extractors which use only O(logn) truly random bits, one would need d = O(f). However, one
cannot hope to do better than Q(£?) using the current analysis with weak designs. Indeed, the following
proposition, proved in Section 6, shows that our weak designs are optimal up to the log(1/v) factor in our
second construction.

Proposition 11 For every (¢, p)-weak design Si,..., Sy, C [d],

d > min L m_ﬁ
=M Olog2p 2

Notice that d = m/{ can be trivially achieved having all the sets disjoint. Moreover, log 2p approaches 1
as p approaches 1, so the lower bound for m > £ and p ~ 1 is Q(£2).

3 The extractor

In this section, we describe the Trevisan extractor and analyze its performance when used with our weak
designs. The description of the extractor follows [Tre99] very closely. The main tool in the Trevisan extractor
is the Nisan-Wigderson generator [NW94]. Let S = (Sy,...,S;;) be a collection of subsets of [d] of size £,
and let P : {0,1}* — {0,1} be any Boolean function. For a string y € {0,1}?, define y|s, to be the string in
{0,1}¢ obtained by projecting y onto the coordinates specified by S;. Then the Nisan-Wigderson generator
NWg, p is defined as

NWs,p(y) = P(yls,) -+ P(yls.,.)-

In addition to the Nisan—Wigderson generator, the Trevisan extractor makes use of error-correcting codes.
We need codes satisfying the following lemma. Such codes can be obtained using standard techniques; for
completeness a proof is given in Appendix A.

Lemma 12 (error-correcting codes) For everyn € N and § > 0 there is a code EC,, 5 : {0,1}" — {0,1}"
where T = poly(n,1/d) such that every Hamming ball of relative radius 1/2 — § in {0,1}" contains at most
1/62 codewords. Furthermore, EC, s can be evaluated in time poly(n,1/8) and m can be assumed to be a
power of 2.

5Tn fact it is necessary that d = Q(¢2/log p) if X< 218i05;1 <« p. (i — 1) for all 7. See Remark 21.



We can now describe the Trevisan extractor, which takes as parameters n,m,k € N, and € > 0, where
m <k <n. Let EC : {0,1}" — {0,1}" be as in Lemma 12, with § = £/4m and define £ = logm = O(logn/e).
For u € {0,1}", we view EC(u) as a Boolean function @ : {0,1}¢ — {0,1}. Let S = (S1,...,Sm) be a
collection of subsets of [d] (for some d) such that |S;| = £ for each i. (How S is selected will crucially affect
the performance of the extractor; we will later choose it to be one of our weak designs.)

Then the extractor EXTg : {0,1}" x {0,1}¢ — {0,1}™ is defined as

ExTs(u,y) = NWsa(y) = u(yls,) - --u(yls,,)-

We will now analyze this extractor. The following lemma, due to Yao, allows us to focus on “next-bit
predictors” instead of distinguishers.

Lemma 13 ([Yao82]) Suppose that Z is a distribution on {0,1}" whose statistical difference from U, is

greater than e. Then there is an i € [m] and a function (“next-bit predicator”) A : {0,1}~" — {0,1} such

that 1
€
Pr (4 iz ) =alS -4 S
Z(_rZ[ (z129-+-2i-1) = 2] > 5t
Moreover, if there is a circuit D : {0,1}" — {0,1} of size s distinguishing Z from U, with advantage e,
then A may also be taken to be of circuit complexity s.

We will not use the “moreover” part of Lemma 13 in the analysis of our extractor; it will only be used
for our quantitative improvement to the pseudorandom generators of [NW94] given in Section 8.

The following lemma is a refinement of ones in [NW94, Tre99]. It shows how, from any next-bit predictor
A for NWg p, one can obtain a “program” of small description size (or circuit complexity) which, using A
as an oracle, computes P with noticeable advantage.

Lemma 14 Fiz S. For every i € [m], there is a set F; of functions from {0,1}¢ to {0,1}~1 (depending
only on S and i) such that

1. For every function P : {0,1}€ — {0,1} and every predictor A : {0,1}=! — {0,1}, there ezists a
function f € F; such that

Pr[A(f(z)) = P(z)] 2 Pr [A(P(yls,) - Plylsi-,)) = Pyls.)]

where x is selected uniformly from {0,1}¢ and y from {0, l}d.

2. log|Fi| < Zj<i2|SmSj|.

3. Each function in F; can be computed by a circuit of size O (qu |S; N'S;] -2‘51'”5]") 6

The improvement over [NW94, Tre99] in Lemma 14 is the use of 3, _; 215051 rather than m -2max: [5:05;]
in the bound on |F;|. This refined bound illustrates the connection with weak designs. We will not use
Item 3 (the bound on circuit size) in the analysis of our extractor; we only use this for the construction of

pseudorandom generators in Section 8.

Proof: Let
@ =Pr[A(PWls)) - POlsi) = Pls.)]

By an averaging argument we can fix all the bits of y outside S; while preserving the prediction probability.
Renaming y|s; as @, we now observe that = varies uniformly over {0,1}¢ while P(y|s,) for j # i is now a
function P; of = that depends on only |S; N .S;| bits of z. So, we have

Pr[A(Pi(z) -+ Pios(2) = P(2)] 2

6We measure circuit size by the number of internal gates, so, for example, the identity function has circuit size 0.



Therefore, it suffices to let F; be the set of functions f of the form z — (P (), P2(x), ..., Pi—1(x)), where
Pj(x) depends only some set Tj; of bits of , where |T;;| = |S;NS;|. The number of bits it takes to represent
each P; is 2IT:i1 = 2190551 So. the total number of bits it takes to represent a function in F; is at most
Z]. <i 215iNSi|  giving the desired bound on log |F;|. For the bound on circuit size, notice that the circuit size
of f is simply the sum of the circuit sizes of the P;’s, and every function on k bits can be computed by a
circuit of size O(k2F). m

We now analyze the extractor EXTs when we take S to be a weak design. The argument follows the
analysis of Trevisan’s extractor in [Tre99] except that we use the more refined bounds on |F;| given by
Lemma 14.

Proposition 15 If S = (S1,...,Sm) (with S; C [d]) is a weak (£, p)-design for p = (k — 3log(m/e) — 3)/m,
then ExTs : {0,1}" x {0,1}? — {0,1}™ is a (k,€)-extractor.

The proof of Proposition 15 basically follows the analysis of Trevisan’s extractor in [Tre99] except that
we use the more refined bounds on |F;| given by Lemma 14.

Proof:  Let X be any distribution of min-entropy k. We need to show that the statistical difference
between U, and EXT(X, U,) is at most €. By Lemma 13, it suffices to show that for every next-bit predictor
A:{0,1}1 - {0,1},

g
+ —
m

N | =

Pr [A(u(yls,)---u(y

u—X,y Si )] S

Si—l)) = ﬂ(y
where y is selected uniformly from {0,1}?. So let A:{0,1}*~! — {0,1} be any next-bit predictor and let F;
be as in Lemma 14, so that |F;| < 2°™.

Let B be the set of u for which there exists an f € F; such that Pr, [A(f(z)) = u(z)] >1/2+¢/2m. In
other words, B is the set of “bad” u for which @ can be approximated by a function of small “description
size” relative to A. Now a counting argument will show that this can only happen with small probability,
since @ is a codeword in an error-correcting code selected according to a distribution with high min-entropy.
By the property of the error-correcting code given in Lemma 12, for each function f € F;, there are at most
(2m/e)? strings u € {0,1}" such that Pr, [A(f(x)) = u(z)] > 1/2 + &/2m. By the union bound,

|B| < (2m/e)? - |Fi| < (2m/e)® - 2°™.
Since X has min-entropy k, each u € B has probability at most 2~* of being selected from X, so

Pr [ue B] < ((2m/e)*2r™).27F

u—X

((2m/6)22k7310g(m/5)73) . 27]6
e/2m

Now, by Lemma 14, if u ¢ B, then

Pr [A (alyls.) -+ Tpls,-) = als)] < 5+ oot
Thus,
_ _ B L.
uf};y [A (a(yls,) - alyls,_,)) =ulyls))] < uErX[u € B] + mlirx[u ¢ B]- (5 + %>
€ 1 €
< — 4=
- 2m 2 2m
_1,e
= 5+
[ ]

10



Combining Proposition 15 with the weak designs given by Lemmas 9 and 10 essentially proves Theorem 1.
The only technicality is that Proposition 15 does not allow us to take p = k/m (or k/(m — 1)) which is
what we would need to deduce Theorem 1 directly. Instead, we use p = (k — A)/m and consequently lose
A = 3log(m/e) + 3 bits of the source entropy in Proposition 15. However, since A is so small, we can give
our extractor A more truly random bits in its seed (increasing d by only a o(d) additive term) which we just
concatenate to the output to compensate for the loss. The details of this are given below.

Proof of Theorem 1: Let A =3log(m/e)+3. Let k' =k—A, m' =m—A—1,and p =k'/m' > k/(m—-1).
For Part 1 (resp., Part 2), apply Proposition 15 with the weak (¢, p)-design S1,...,Sn C [d'] of Lemma 9

(resp., Lemma, 10). This gives an (k, &)-extractor EXT: {0,1}" x {0,1}¢ — {0,1}™, with d' = O (11‘:5(2%5)))

(resp., d = O(log®(n/e)log(1/7))). By using A + 1 additional bits in the seed and simply concatenating
these to the output, we obtain a (k,é)-extractor EXT: {0,1}" x {0,1}¥+A+3 5 {0,1}™, as desired. (In
applying Lemma 10, we need to make sure that p < 3/2, but if p > 3/2, we can use the weak design of
Lemma 9 instead.) W

Remark 16 A finer analysis can improve Proposition 15 to use p = (k — 2log(1/e) — 3logm — 4) /m rather
than p = (k — 3log(m/e) — 3)/m. This is achieved by partitioning the set of “bad” u for which @ can be
approximated by a function of the form A(f(-)), into sets B; according to the quality of approximation (e.g.,
take B; to be those u for which % can be approximated with error between 1/2—27¢/2m and 1/2—27"1¢/2m).
Then we use an error-correcting code in which for every ¢’ > ¢ (rather than just ¢’ = §) any Hamming ball
of relative radius 1/2 — ¢’ contains at most 1/(8")% codewords. Doing the analysis separately for each B; has
the effect of balancing the probability that u<-X lands in B; against the maximum advantage possible for
u in B]'.

4 Reducing the error

The construction given above works well and improves over previous constructions when ¢ is relatively large.
However, the number d of truly random bits needed is quadratic in log(1/¢), which is not as good as the linear
dependency achieved by some previous constructions. In this section, we improve this quadratic dependency
in our constructions (and in Trevisan’s construction) to a linear dependency. We only sketch the proof in
this section, as even better extractors can be obtained using our recent work [RRV99a].

The quadratic dependence on log(1/e) in our extractor arises from the fact that an (¢, p)-weak design
requires a universe whose size grows quadratically with £ (cf., Proposition 11). In the extractor of the previous
section (and Trevisan’s extractor), £ is taken to be the logarithm of the length of the error-correcting code
used (as we view codewords as functions P : {0,1}* — {0,1}). The analysis of the extractor reveals that
in order to achieve a small statistical difference £ from uniform, we must use an error-correcting code with
very good distance properties; namely, one in which no Hamming ball of radius 1/2— O(e/m) contains many
codewords. However, an error-correcting code with such a strong distance property must have length at
least poly(n,€), resulting in £ = Q(log(n/ec)), and a seed length that is quadratic in log(1/e).

The solution we give in this section is to use an error-correcting code over a large alphabet F', in which
we view every codeword as a function from F’ to F rather than a function from {0,1}" to {0,1}. Then it is
possible to have a code with very good distance properties (relative to €) with £ being independent of ¢; only
the alphabet size F' need depend on e. Using this approach, we encounter two problems. The first problem
is that the function which computes the codeword P given a predictor A (as in Lemma 14) will be built from
functions of the form P; : FISi08il 5 F. In the proof of Lemma 14, we bounded the description size of the
Pj’s by the description size of an arbitrary function FISiN%i| — F_which is 2/5:1%! when F = {0,1}. But,
as F increases in size, this bound on description size becomes too large to handle. The second problem is
that, when we use a large alphabet, the output of the extractor consists of elements of F' rather than bits.
We will not be able to argue that these elements of F' are uniformly distributed, but rather that the i’th
element of F' in the output is unpredictable given the first ¢ — 1 elements of F.

The solution to the first problem comes from our choice of error-correcting codes. We use multilinear
error correcting codes (over finite fields) rather than the arbitrary error correcting codes used in Section 3.

11



We can then make use of the fact that the restriction of a multilinear function to a subset of its input
variables is still a multilinear function. We can hence bound the description size of that restriction by the
description size of a multilinear function rather than the description size of an arbitrary function.

The second problem can be solved using standard techniques. Specifically, the fact that the i’th com-
ponent of the output is unpredictable given the first ¢ — 1 components means that the output is what is
known as a block-wise source [CG88]. In our case, the block-wise source has blocks of logarithmic length,
and standard techniques can be used to extract truly random bits from such a source using a small number
of additional truly random bits.

Let F be some fixed finite field such that log|F| = ¢-log(n/¢), where ¢ is some sufficiently large constant
(say ¢ = 10). For € > 1/n, the dependence on ¢ in the extractors of Theorem 1 can be absorbed into the
hidden constant. Thus, we will only need to use the constructions of this section in case e < 1/n, and hence
we may assume that

log |F| = O(log(1/e)).

In this section, we think of an extractor EXT : {0,1}" x {0,1}¢ — {0,1}™ as a function
Ext: F" x F4 o F™

where n' = n/(log|F|), d' = d/(log |F|) and m' = m/(log|F|) (we assume for simplicity that n',d’',m’, logn’,
and log |F'| are all integers).

Let S = (S1,---,Sm ) be a collection of subsets of [d'] such that |S;| = £ for each i, and let P : F* - F
be any function. For a string y € F? | define y|s, to be the string in F*¢ obtained by projecting y onto the
coordinates specified by S;. Then we define NWZ& p as

NWs p(y) = P(yls,) - P(yls,.)-

We will use in this section £ = logn'; note that £ is bounded by logn, independent of . Let G be the set of
all functions from F* to F. There are |F|?* = |F|"" multilinear functions from F* to F (one needs to specify
2¢ coefficients), so we may define an error-correcting code EC : F™ — @ which associates to each element u
of F"' a distinct multilinear function EC(u) =@ : F* - F. The distance property of this code is formalized
by the following standard bound:

Lemma 17 For every function Q : F* — F, there are at most O(\/|F|/{) codewords (i.e., multilinear
functions) that agree with Q in at least a \/2¢/|F| fraction of the points in F*.

We define the function EXTs : F"' x F? — F™ ag

ExTs(u,y) = NWs4(y) =ulyls,) - --a(yls,,, )-

(The function EXT is still not our final extractor). Note that the number of truly random bits used by
ExT is d'log |F| = O(d' - log(1/e)). The following lemma is analogous to Lemma 14. It shows how, from
any next-element predictor A for NW:.;’ p, one can obtain a “program” of small description size (or circuit
complexity) which, using A as an oracle, computes P with noticeable advantage.

Lemma 18 Fiz S. For every i € [m'], there is a set F; of functions from F* to F©=' (depending only on
F,S and i) such that

1. For every multilinear function P : F* — F and every predictor A : F*~' — F, there exists a function
f € F; such that

Pr[A(f(2)) = P(@)] > Pr[4 (P(sls,) -+ Py

51‘—1)) = P(y Si)] )

where z is selected uniformly from F¢ and y from F

2. log|Fi| < 3., 215:0Sil Llog | F|.

j<i
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For the proof, we use the fact that the restriction of a multilinear function to a subset of its input variables
is a multilinear function, and the fact that the logarithm of the number of multilinear functions in |S; N S|
variables is 2/5iM5il . 1og |F'|. Otherwise, the proof is similar to the one of Lemma 14.

Now assume that S is a weak (¢, p)-design for p = (k — ¢ -log|F|)/m (where, say, ¢ = 10), and let X be
any distribution of min-entropy k. The following proposition shows that ExT(X,U;) doesn’t have a good
next-element predictor. The proposition is analogous to Proposition 15.

Proposition 19 If S = (S1,...,Sm) (with S; C [d']) is a weak (£, p)-design for p = (k — ¢ -log|F|)/m
(where c is some sufficiently large constant, say ¢ = 10), and X is a distribution of min-entropy k then for
every next-element predictor A : Fi=1 - F,

1

Pr [A(a(yls,) - u(y ] < P

u—X,y

Si—l)) = E(y S

where & is some (not too small) constant (say § = 1/4), and where y is selected uniformly from F?

The proof is similar to the one of Proposition 15, except that we use the distance property of multilinear
error-correcting codes given by Lemma 17 and we use Lemma 18 rather than Lemma 14.

In general, the function EXTg is not a good extractor. Nevertheless, by Proposition 19, we know that
each element EXT(X,Uy) has large min-entropy (dlog|F| bits) given all its predecessors. That is, it is a
“block-wise source” in the sense of [CG88], in which the min-entropy of each block given the predecessors is
a constant fraction of its length (which is log|F|). We can now construct an extractor from EXTs in one of
the following ways:

1. By applying on the entire output EXT(X, Uy) the extractor of [Zuc97] that extracts a constant fraction
of the min-entropy as long as the min-entropy is at least a constant fraction of the number of bits.

2. By applying on each element of ExT(X,Uy) a pairwise independent hash function h : {0, 1}°8/F| —
{0, 1}‘5"10g 'l where ¢' is some small constant (we can apply the same hash function on all the elements).

Both ways are very efficient in terms of the number of additional random bits needed.
The first part of Theorem 2 is now obtained by using the weak designs given by Lemmas 9 (as in the
proof of Theorem 1). The resulting seed length (using an (¢, p)-weak design for p = (k — clog|F|)/m) is

2

d=0(d'log(1/¢)) = O ( :

Togp log(l/e)) .

However, the number of bits we extract is only ¢’ - log |F| -m' = §'m = §'k/p, for some constant ¢’ < 1.
Hence, we can only directly use this to extract upto a small constant fraction of the min-entropy (even if we
use the weak designs of Lemma 10). In order to extract more of the min-entropy of the source, we will need
to use iterations, as in [WZ95] (cf., Lemma 27). A constant number of iterations will allow us to extract
any constant fraction of the min-entropy. In general, to obtain m = k/(1 + «), we will need O(log(1/7))
iterations and hence we need O (log” n - log(1/e) - log(1/v)) additional random bits.

5 Construction of weak designs

Proof of Lemma 9: Let £, m, and p be given, and let d = [£/1Inp] - £. We view [d] as the disjoint union
of £ blocks By, ..., By, each of size [£/1n p]. We construct the sets Si,...,S,, in sequence so that

1. Each set contains exactly one element from each block, and

2. 32508 < p- (i = 1),

13



Supppose we have Si,...,S;_1 C [d] satisfying the above conditions. We prove that there exists a set
S; satisfying the required conditions using the Probabilistic Method [ASE92] (see also [MR95, Ch. 5]).
Let aq,...,a; be uniformly and independently selected elements of By, ..., By, respectively, and then let
Si ={ai1,-..,ar}. We will argue that with nonzero probability, Condition 2 holds. Let Y} ; be the indicator
random variable for the event a; € Sj, so Pr[Y;, = 1] = 1/|Bg| = 1/[£/Inp]. Notice that for a fixed j, the
random variables Yj 1,...,Y;, are independent.

E [ 2508l = ZE[Q&YM]

= ZE I;IQYM]
- S Iep

j<i

i<i k

. 1\
= 60 (4 g7i)
< (i-1)-p

Hence, with nonzero probability, Condition 2 holds, so a set S; satisfying the requirements exists. How-
ever, we want to find such a set deterministically. This can be accomplished by a straightforward application
of the Method of Conditional Expectations (see [ASE92] and [MR95, Ch. 5]). Details can be found in
Appendix B. =

Remark 20 A perhaps more natural way to carry out the above probabilistic construction is to chose S;
uniformly from the set of all subsets of [d] of size ¢, rather than dividing [d] into £ blocks. This gives essentially
the same bounds, but complicates the analysis because the elements of S; are no longer independent.

Proof of Lemma 10: Let dy = [¢/In2]-¢, h = [log(2/7)], and d = h-dy = O(¢% - log(1/v)). We
view [d] as the disjoint union of h blocks By,...,Bn_1 each of size dy. For each t € {0,...,h — 1}, let
ng = [(1-27%-(1+7~)-m] and m; = ng1 — ng. Note that ny > m.

Now we define our weak design Sy, ...,S,,. Foreach t € {0,...,h—1}, welet Sp,41,---,Sn,+m, C B be
a weak (£,2)-design as given by Lemma 9. In other words, we take the ordered union of h weak (¢, 2)-designs
(consisting of m1,ma, ..., my sets, respectively) using disjoint subsets of the universe for each. The number
of sets is > m, the size of the universe is d, and each set is of size £, so we only need to check that for all
i € [m], Zj<i2\SmSj\ <p-(m-=1). Fori € {n;+1,...,ny +my}, S; is disjoint from any S; for any j < n,
and

i—1
Z 2|SiﬂSj\ S 9. (mt _ 1)
Jj=n:+1
since Sy, 115 - -5 Sny+m, 18 a weak (£,2)-design. Thus, we have
nt 1—1
ZQ\SiﬁSjl - ZQISiﬁSj\ + Z 9l8:inS;|
i<i j=1 J=n:+1

nt+2-(mt—1)
2-nt+1—nt—2
2-(1=-2""Y. 1+y) m-(1-2"Y)-1+7) -m-1
(I+7)-(m-1),

IA A

as desired. H
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6 Lower bounds for designs

Proof of Proposition 7: Let I = max;.; |S; N S;| < logp. For each j =1,...,m, let I'; be the set of

subsets of S; of size I +1, so |T';| = (I_fl). Let T = Uj T';. Notice that the sets I'; are disjoint, because no

two distinct sets S;, S; share more than I elements. Thus, |T| =m - ( 14{1)' At the same time, |T'| consists of

subsets of [d] of size I + 1, so |I'| < (,%,). So we have

I+1
¢ d
m: (1+1) = <I+1)'

Expanding the binomial coefficients and rearranging terms, we have

d\ [d—-1 d—1 d \'* d log 2p
<{=Z ) =) < [ —= <[ -—
m—(E) <6—1) (e—f)—(6—1> —<6—logp>

Proof of Proposition 11: Let m = 2d/¢. If m > m, we are done, so we may assume that m < m. We
will now consider only the first 7 sets.” We have

1
> _§ 9lS:nS;|
p > miax —

j<i
1 m
> 9l5:NS;|
s ey
1 1
— - — 2|SiﬁSj|
w2,

where the last inequality is an application of Jensen’s inequality. Thus,

DO | =

2
log 2 — S;NS; 1
082p > —; > il 1)

j<i<m

By the inclusion-exclusion bound,

Us

> 1sins;| > <Z|Si|>_
j<i<m =1 =1
> ml—d
= 2d—-d=d

Putting this in Inequality 1, we have

log2p> 2224 _ 2
B> T3 T 2djie T 2d

which proves the proposition. M

"In this proof, we are assuming that 7 = 2d/{ is an integer, but, with a slightly more tedious proof, it is possible to obtain
exactly the same bound without this assumption.
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Remark 21 The above proof gives a stronger bound on d if we have a family of sets Si,...,S,, such that
for all i, 3, ; 215:05i1 < p. (i — 1) (e.g., the family of sets constructed in the proof of Lemma 9). If we have
such a bound, then summing over i from 1 to ™ gives

m
. |SinS;|

po(3)> X 2o,

j<i<m
and applying Jensen’s inequality and taking logs as in the above proof gives
2

logp > — Z |S: NS

j<i<m

instead of Inequality 1. Following the rest of the proof without change, this shows that

) 2 me
d>min { ———, — | .
- 2logp’ 2
Remark 22 Using an information-theoretic analogue of the inclusion-exclusion bound, due to Impagliazzo

and Wigderson [IW96], one can generalize the lower bound of Proposition 11 to a wider class of generators
with similar properties to the Nisan—Wigderson generator. Specifically, one can prove the following:

Proposition 23 Suppose X = (X1,...,Xn) and Y = (Y1,...,Yn) are (jointly distributed) random vari-
ables such that

1. For all i, H(X;|Y;) > ¢, and

2. For all 1,
ZQH(XJ'\Yi) <p-(m-1).
i<i
Then )
H(X) > min L7m_f .
9log2p” 2

In Proposition 23, H(-) denotes the entropy function and H(:|-) denotes conditional entropy (cf., [CT91]).
Impagliazzo and Wigderson [IW97] had previously given a statement like Proposition 23 with the second
condition replaced by max; ; H(X;|Y;) < logp; ours is a generalization to the analogue of “weak designs.”
The proof directly follows the proof of Proposition 11, replacing the usual inclusion-exclusion bound with
that of [TW96], which states that H(X) > =, H(X;|V;) — 3, ., H(X;|¥3).8

To compare Proposition 23 with the Nisan-Wigderson generator NWs p, let X; = z|s, and Y; = zlg,
where z is chosen uniformly at random. In the analysis of our extractor, the properties of the Nisan—
Wigderson generator we use are that, conditioned on Y; = y, X; takes on all possible values in {0, 1}£
whereas ) j<iMi S p- (m —1), where n; is the number of values that X; can take on given that ¥; = y. The
properties required by the hypothesis of Proposition 23 are even weaker.

7 Strong extractors and entropy loss

Recall that a strong (k,e)-extractor is a function EXT : {0,1}" x {0,1}¢ — {0,1}™ such that for every
distribution X on {0,1}" of min-entropy k, the induced distribution (U, EXT(X,Uy)) on {0,1}* x {0,1}™
has statistical difference at most € from Uy x Up,. Also recall that the entropy loss of a strong extractor
is defined to be A = k — m, and that nonconstructively it is possible to have A = 2log(1/¢) + O(1) with
d =log(n — k) + 2log(1/e) + O(1).

8The slightly worse constant 4/9 appears instead of 1/2 since we must make sure that 71 is an integer (eg., take m = [2d/£])
and in this case, we don’t know an alternative proof that avoids this problem.
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In this section, we observe that our extractors are in fact strong extractors. Then we show how to achieve
optimal entropy loss while preserving the the number of truly random bits used up to a constant factor. To
show that our extractors EXTs(u,y) = NWsz(y) are actually strong extractors, we simply note that the
analysis of the Nisan—Wigderson generator goes through essentially unchanged even if the seed y is revealed
to the distinguisher. We obtain the following strong-extractor analogue of Proposition 15:

Proposition 24 IfS = (51,...,Sn) (with S; C [d]) is a weak (£, p)-design for p = (k—3log(m/e)—d—3)/m,
then ExTs : {0,1}" x {0,1}¢ — {0,1}™ is a strong (k,e)-extractor.

Proofsketch: Let X be any distribution on {0,1}" of min-entropy k. Suppose that Z = (Uy, ExTs(X,Uy))
has statistical difference greater than ¢ from Uy x Uy,. An analogue of Lemma 13 which uses the fact that the
first d bits of Z are distributed uniformly says that there is an i € [m] and a function A : {0,1}*x{0,1} " —
{0,1},

1 15

u£§,y [A (yaﬂ(y|31) .. .ﬂ(y Si—l)) = ﬂ(y 51)] > 5 + E

where y is selected uniformly from {0,1}%. Now the analysis proceeds just as the proof of Proposition 15,
except that we need an analogue of Lemma 14 for predictors A that are also given y as input. To obtain
such an analogue, we must simply count functions of the form y|s, = (y, P(y|s,),- - -, P(y|s;_,)) rather than
those of the form y|s;, = (P(y|s,),---, P(yl|s,_,)) (where all the bits of y € {0, l}d outside S; are fixed). To
describe the first component y of such a mapping requires an additional d — £ < d bits (to specify the fixed
bits of y outside of S;). Thus, we use the bound log |F;| <d+ ", _; 2191551 in place of Ttem 2 in Lemma 14.
O

Remark 25 The extra d bits of entropy loss caused by the weaker bound on |F;| can be saved if the
analysis is done slightly differently. Specifically, the bits of y outside S; can be fixed at the same time as
when Lemma 13 is applied and absorbed into the predictor A. The key point is that these bits need not
depend on the particular sample u selected from the source X and hence they need not count towards the
“description size” of u. We omit additional details of how to save these d bits lost by the weaker analysis,
as they will be easily regained by the method given below for achieving optimal entropy loss.

Combining Proposition 24 and Lemma 10 with m = k — O(log®(n/e) - log k) gives the following:

Proposition 26 For every n, k, and € such that k < n, there is an explicit strong (k,e)-extractor EXT :
{0,1}" x {0,1} — {0, 1}*~ 2 with
d = O (log>(n/e) - log k)

and entropy loss A = O(d).

By following Remarks 16 and 25, the entropy loss can be reduced to 2log(1/e) + 3logk + O(1), but we
will use a different method to make the entropy loss even better. We use an idea due to Wigderson and Zuck-
erman [WZ95]: Suppose we have a strong (k,¢)-extractor EXT : {0,1}" x {0,1}¢ — {0,1}*~* with entropy
loss A. Now, if X is a source of min-entropy k, then conditioned on “most” values of (Ug, EXT(X, Uy)), X
will still have min-entropy close to A. So, we can use a different extractor (with fresh truly random bits) to
extract some more of this min-entropy. This is formalized by the following lemma, which slightly strengthens
one in [WZ95]:

Lemma 27 Let s > 0. Suppose EXTy : {0,1}" x {0,1}% — {0,1}™ is a strong (k,e1)-extractor with
entropy loss Ay and EXTs : {0,1}" x {0,1}92 — {0,1}™2 is a strong (A; — s,&2)-extractor with entropy loss
Ay. Define EXT : {0,1}" x {0,1}d1+d2 — {0, 1}m1tm2 py

EXT(z, (y1,y2)) = EXT1(2,y1) 0 EXT2(, y2),

1
1-2-s

where o denotes concatenation. Then EXT is a strong (k, ( ) -€1 + 62) with entropy loss Ay + s.
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The main difference from the corresponding lemma in [WZ95] is that the statistical difference from
uniform in EXT has a better dependence on s (in [WZ95], the expression is €1 + €2 + 27). There is also an
analogue of Lemma 27 for non-strong extractors; in that case, EXTs should be applied to the pair (z,y1)
rather than just z. Details can be found in the preliminary version of this work [RRV99b].

Before proving Lemma, 27, let us see how we can use it to make our entropy loss optimal. If we use
the extractor given by Proposition 26 as ExT;, Lemma 27 tells us that we need only find an extractor
ExT, which works well for very small (i.e., polylogarithmic) min-entropy. The following “low min-entropy”
extractor of Srinivasan and Zuckerman [SZ98] achieves exactly what we want:

Lemma 28 ([SZ98]) For every n, k < n, and ¢ > 0, there is an explicit strong (k,e)-extractor EXT :
{0,1}" x {0,1} — {0, 1}F—2 with entropy loss A = 2[log(1/¢)] + 2 and d = O(k + logn).

Now we prove Theorem 4:

Proof of Theorem 4: Let n, kK <n, and € > 0 be given. By Proposition 26, there is an explicit (k,e/4)-
extractor ExTy:{0,1}" x {0,1}% — {0,1}™ with d; = O((log®(n/¢))(logk)) and entropy loss A; = O(d;).
By Lemma 28, there is an explicit (A; — 1,e/2)-extractor ExTs:{0,1}"+% x {0,1}% — {0,1}™2 with
dy = O(A1 +1logn) = O(d1) and entropy loss Ay = 2[log(2/¢)] + 2 = 2[log(1/¢)] + 4. Combining these two
extractors via Lemma 27 (with s = 1), there is an explicit (k,e)-extractor ExT: {0,1}" x {0,1}¢ — {0,1}™
with d = d; + dy = O(log®(n/e) - log k) and entropy loss A = Ay + 1 = 2[log(1/¢)] + 5. Part 2 of Theorem 4
is proven by applying the same observations to the extractors of Theorem 2. That is, we observe, analogous
to Proposition 24, that they are actually strong extractors and then use Lemmas 27 and 28 to reduce the
entropy loss to optimal. MW

We note that the same method can be used to reduce the entropy losses of the extractors of [GW97] and
[NT98] to 21log(1/e) + O(1), while preserving the number of truly random bits used up to a constant factor.
(For [NT98], one should use the version of Lemma 27 for non-strong extractors and the resulting extractor
will not be strong.)

Remark 29 It is possible to achieve entropy loss 2log(1/e) + O(1) with just the extractors in this paper,
without using the extractor of [SZ98]. Following Remark 16, we obtain a version of Proposition 24 in which
p = (k—2log(1l/e) — 3logm — O(1))/m. In particular, we have for any k > 2log(1/e) + O(1), a strong
(k,e)-extractor EXT* : {0,1}" x {0,1}¢ = {0,1}? with d = O(log?(n/c)). We can repeatedly use this
extractor (with careful settings of k and €) as EXTs in Lemma 27 to reduce the entropy loss of the extractor
given by Proposition 26 (i.e., we start with the extractor of Proposition 26 as EXT; and obtain an extractor
with smaller entropy loss which becomes EXT; in the next application of Proposition 26). The fact that
ExT* works for any k > 2log(1/e) + O(1) allows us to keep reducing the entropy loss until it drops to
2log(1/e) + O(1).

Proof of Lemma 27: Let X be any source of min-entropy k. Let L be the set of pairs (y,z) €
{0,1}% x {0,1}™ such that Pr[EXT;(X,y) = 2] < 2-(™+9) (ie., L is the set of pairs (y, z) for which z is
“light” under EXTy (-, y), in the sense that it occurs with probability that is smaller than uniform by a factor
of 2%). Recall that the entropy loss is defined as A; =k — m; .

Claim 30 For every (y,z) ¢ L, the conditional distribution of X given that EXT1(X,y) = z has min-entropy
at least Ay — s.

Proof of claim: For every z such that ExTy(z,y) = 2,

PriX =a|Bxn(X,y) =2 = = [EirT[i);’ ;)] —
2—k
- 2—m1—s
= 27(Ai=s9),

This proves Claim 30. O
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Thus, since EXTy is a (A1 — s,e2)-extractor, for every (y,z) ¢ L, the conditional distribution of
(Ug,, ExT2(X,Uy,)) given that (Ug,, EXT1(X,Uy,)) = (y,2) has statistical difference at most 2 from uni-
form. Now we argue that (Uy,, ExT1(X,Uy,)) lands in L with low probability.

Claim 31 Pr[(Ug,,ExT1(X,Uq,)) € L] <e1/(2° —1).

Proof of claim: Forevery (y,2) € L, Pr[Ug, X Up, = (y,2)] > 2°-Pr[(Uq,, EXT1(X,Uqg,)) = (y, 2)]-
Thus, Pr[Uy, x Up, € L] > 2% - Pr[(Uy,, EXT1(X,Uy,)) € L]. Now, by definition, the statistical
difference between Uy, % Up,, and (Uy,, EXT1(X,Uy,)) is at least

Pr[Un, € L] — Pr[ExXT1(X,Uyq,) € L] > (2° — 1) - Pr[ExT1 (X, Uy,) € L].

Since ExT; is a strong (k,e1)-extractor, this statistical difference is at most 1, and the claim
follows. O

Thus, (Ug,, EXT1(X,Uyg,)) o (Ug,, EXTo(X,Uy,)) can be described as a joint distribution (A, B) with
following properties:

1. A has statistical difference at most ;1 from Uy, % Uy, -

2. With probability at least 1 — § over a<—A, B|a=, has statistical difference at most &3 from Uy, x Up,,
(where 6 = &1/(2° — 1)).

From this, it follows that (A, B) has statistical difference at most 1 + 0 + &2 = (1_;_3) - €1 + &9 from
Ug, x Upy, X Ugy X Upyy = Ugy+dy X Upnytms, Proving Lemma 27. W

8 Better pseudorandom generators

Using alternative types of designs also gives some quantitative improvements in the construction of pseu-
dorandom generators from hard predicates in [NW94]. From Lemma 14, we see that the relevant notion of
design in the setting of pseudorandom generation versus small circuits is the following;:

Definition 32 A family of sets Si,...,Sm C [d] is a type 2 weak (£, p)-design if
1. For all i, |S;| = L.

2. For all i,
Z |S; NS;] - 2!5:inS;| <p-(m-1).

Jj<i

Notice that it is meaningful to consider even values of p less than 1, since |S; N .S;]| - 215:05i] can be zero.
Using a construction like the one in Lemma 9, we obtain

Lemma 33 For every £,m € N and p > 0, there exists a type 2 weak (¢, p)-design Si,...,Sm C [d] with

0(i%) o>

= o(g) ifp <

Moreover, such a family can be found in time poly(m,d).

The quantitative relation between pseudorandom generators and type 2 weak designs follows readily from
Lemmas 13 and 14:
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Lemma 34 Suppose P:{0,1}* — {0,1} is a predicate such that no circuit of size s can compute P correctly
on more than a fraction % + € of the inputs and suppose that S = (Si,...,Sy) where S; C [d] is a type 2
weak (¢, p)-design. Then no circuit of size s — O(pm) can distinguish NWg p from uniform with advantage
greater than me.

Combining this and Lemma 33 with s = 2m and p a small constant, we obtain

Theorem 35 Suppose P:{0,1}* — {0,1} is a predicate such that that no circuit of size 2m can compute P
correctly on more than a fraction % + = of the inputs. Then there is a generator G pm: {0, 1}0("32/log 6
{0,1}™ computable in time poly(m,£), making m oracle calls to P, such that no circuit of size m can
distinguish the output of G from uniform with advantage greater than .

In other words, to obtain m bits which are pseudorandom against circuits of size m, we need only assume
that there is a predicate which is hard against circuits of size O(m). In contrast, the results of [NW94]
always need to assume that the predicate is hard against circuits of size m'*¢ for some constant € > 0 (or
else their generator will require a seed length that is polynomial in m instead of £). In fact, if we instead
take p = 1/¢, we need only assume that the predicate is hard against circuits of size (1 +1/£) - m (and the
generator will have a seed length O(¢?)).

9 Conclusions

We have shown how to improve Trevisan’s extractor construction when using it to extract most or all of
the randomness from a weak random source or when requiring the error of the extractor to be very small.
These results bring us closer to the ultimate goal of having “optimal” explicit extractors for all settings of
parameters, while maintaining the directness and simplicity of Trevisan’s original construction.

One place where our construction could potentially be improved is the construction of weak (¢, p)-designs
when p = 1, which corresponds to the case when one wants to extract all the randomness from the weak
random source. There is a gap of logm between the upper and lower bounds in this case (Lemma 10 and
Proposition 11, respectively). However, this is the only improvement that is possible by just modifying the
construction of weak designs; that is, Q(log” n) is a barrier for extracting even a constant fraction of the
randomness using just the current analysis with weak designs.

Still, there may be room for other kinds of improvements to the Nisan—Wigderson generator and Trevisan’s
construction. One such improvement has been recently given by [ISW99b, ISW99a], who show how to build
extractors with seed length O(logn) for any min-entropy %k (albeit while extracting a sublinear amount of
the randomness); recall that Trevisan’s construction uses O((log”n)/(logk)) truly random bits to extract
k'~ bits, which is only logarithmic when k = n®®),

The definition of extractors assumes that one knows in advance how much randomness is in the weak
random source. It is natural to ask what one can achieve if this is not the case. One reasonable requirement is
that there should be one extractor for all min-entropies, and the extractor should have the following property:
if the source has min-entropy k, then the first k£ (or, more generally, m(k)) bits of the output wil be distributed
almost uniformly. It turns out that our construction (as well as Trevisan’s original construction) can yield
extractors with this property. The reason is that our construction of a weak (¢,2)-design (Si, ..., Sm) has
the property that, for every i, (S, ..., 5;) is a also a weak (¢, 2)-design. It would be interesting to see if this
property can be exploited in any applications.
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A Error-correcting codes

Proof of Lemma 12: The code we need can be obtained by “concatenating” a Reed-Soloman code with a
Hadamard code (cf., [MS77]). Specifically, given parameters n and §, let ¢ = 62 and let m = [log(n/c)]. Let
Had : {0,1}" — {0, 1}2m be the Hadamard code — that is, for z,y € {0,1}™, the y’th component of Had(z)
is the inner-product of z and y mod 2. Thus, for z; # z2, Had(z;) and Had(z2) have (relative) Hamming
distance 1/2. Let F = GF(2™); an explicit description of F' can be found in time poly(2™) = poly(n,1/6)
by exhaustively searching for an irreducible polynomial of degree m over GF(2). We can view strings
z € {0,1}" C ({0,1}™)[*/™1 as giving the coefficients of a polynomial p, of degree at most d = [n/m] over
F.
Now we define the error-correcting code EC : {0,1}" — ({0, 1}2m)|F| as

EC(z) = (Had(ps(a1)),- - -, Had(pz(ar|))),

where a1, ...,a p| are all the elements of F. Thus the codewords are of length m = 2™ - |F| = O(n?/§*). Now
we show that the (relative) minimum distance of this code is 1/2 —¢/2. For any two distinct elements z and
y of {0,1}", p, and p, disagree in at least |F| — d elements F' (as they are distinct polynomials of degree
d). For each a such that p,(a) # py(a), Had(p,(a)) and Had(p,(a)) disagree in 2™ /2 positions. Thus, for
distinct 2 and y, EC(z) and EC(y) disagree in at least ¢ = (|F| — d) - 2™ /2 positions, for a relative distance

of

q 1 d 1 n 1
- = > — —_
|F|-2m 2 2|F| =2 2(nfo) 2
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Now we apply the following general bound (cf., [BGS98, Lemma A.1]).

Lemma 36 Suppose C is an error-correcting code with (relative) minimum distance > 1/2 — /2. Then
every Hamming ball of (relative) radius 1/2 — /B contains at most 1/33 codewords.

Applying this lemma with C = EC and 3 = o, we see that every Hamming ball of relative radius 1/2 — ¢
has at most 1/36% < 1/6% codewords. W

B Derandomizing the proof of Lemma 9

In the analysis of the probabilistic choice of S;, we showed that

E 22|Si05j| Sp(’t—l)
i<i
By averaging, this implies that there exists an oy € By such that
B> 2% =ai| <p-(i-1) (2)

Jj<i

So, assuming we can efficiently calculate the conditional expectation E [qu 918inS;|

a; = al] for every
a1 € By, we can find the a; that makes Inequality 2 hold. Then, fixing such an a;, another averaging
argument implies that there exists an as € Bs such that

E ZZ'S"OS” a; = 01,02 = Q2 SP(Z_l) (3)

Jj<i

Again, assuming that we can compute the appropriate conditional expectations, we can find an ay that

makes Inequality 3 hold. Proceeding like this, we obtain ay, ..., ay such that
E ZZ‘S""]S” a1 = Q1,02 = Q2,...,ag =0y| < p-(i—1) (4)
3<i

But now there is no more randomness left in the experiment, and Inequality 4 simply says that )°, _, 21953 <
p-(i—1), for S; = {ai,...,a;}. To implement this algorithm for finding S;, we need to be able to calculate
the conditional expectation

S:iNS; — —
E E 2' il a1 =01,...,0; = 04|,
j<i

for any t and aq,...,04. If welet T = {ay,...,a;}, then a calculation like the one in the proof of Lemma 9
for the unconditional expectation shows

£—t
1
E Q‘Sinsﬂ a1 = 01,...,0; = Q| = 2|TOSJ-|_ (1‘1‘7) )
Z Z [£/1Inp]

Jj<i j<i

which can be easily computed.
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