
ASYMPTOTICALLY OPTIMAL BOUNDS

FOR OBDDs AND THE SOLUTION OF SOME

BASIC OBDD PROBLEMS

Beate Bollig? and Ingo Wegener?

FB Informatik, LS2, Univ. Dortmund, 44221 Dortmund, Germany
bollig,wegener@ls2.cs.uni-dortmund.de

Abstract. Ordered binary decision diagrams (OBDDs) are nowadays
the most common dynamic data structure or representation type for
Boolean functions. Among the many areas of application are verifica-
tion, model checking, and computer aided design. For many functions it
is easy to estimate the OBDD size but asymptotically optimal bounds
are only known in simple situations. In this paper, methods for proving
asymptotically optimal bounds are presented and applied to the solution
of some basic problems concerning OBDDs. The largest size increase by
a synthesis step of π-OBDDs followed by an optimal reordering is de-
termined as well as the largest ratio of the size of deterministic finite
automata, quasi-reduced OBDDs, and zero-suppressed BDDs compared
to the size of OBDDs. Moreover, the worst case OBDD size of functions
with a given number of 1-inputs is investigated.

1 Introduction and results

Branching programs (BPs) are a well established representation type or compu-
tation model for Boolean functions. Its size is tightly related to the nonuniform
space complexity (see e.g. Wegener (1987)). Hence, one is interested in expo-
nential lower bounds for more and more general types of BPs (for the latest
breakthrough for semantic linear depth BPs see Ajtai (1999)). In order to use
variants of BPs as dynamic data structure one needs a BP variant such that
a list of important operations (see e.g. Wegener (2000)) can be performed effi-
ciently. E.g., for verification, model checking, and a lot of CAD applications we
need an efficient test whether a representation has a satisfying input (satisfia-
bility test) and an efficient test whether two representations describe the same
function (equality test). These are NP-hard problems for general BPs.

Bryant (1986, 1992) has presented π-OBDDs as a simple BP variant allow-
ing efficient algorithms for all important operations. Although we now have ef-
ficient algorithms for more general and, therefore, more compact representation
types, π-OBDDs are used in most applications and the use of an OBDD package
(Somenzi (1998)) is nowadays a standard technique.

? Supported in part by DFG We 1066/8.

Electronic Colloquium on Computational Complexity, Report No. 48 (1999)

ISSN 1433-8092

Definition 1. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A variable
ordering π on Xn is a permutation on {1, . . . , n} leading to the ordered list
xπ(1), . . . , xπ(n) of the variables.

Definition 2. A π-OBDD on Xn (see Figure 1) is a directed acyclic graph
G = (V, E) whose sinks are labeled by Boolean constants and whose non sink
(or inner) nodes are labeled by Boolean variables from Xn. Each inner node
has two outgoing edges one labeled by 0 and the other by 1. The edges between
inner nodes have to respect the variable ordering π, i.e., if an edge leads from
an xi-node to an xj-node, π−1(i) ≤ π−1(j) (xi precedes xj in xπ(1), . . . , xπ(n)).
Each node v represents a Boolean function fv : {0, 1}n → {0, 1} defined in the
following way. In order to evaluate fv(a), a ∈ {0, 1}n, start at v. After reaching
an xi-node choose the outgoing edge with label ai until a sink is reached. The
label of this sink defines fv(a). The size of the π-OBDD G is equal to the number
of its nodes.

Bryant (1986) has already shown that the minimal-size π-OBDD for a func-
tion f is unique (up to isomorphism) and it is called the reduced π-OBDD
(or shortly the π-OBDD) for f . Its size is described by the following struc-
ture theorem (Sieling and Wegener (1993)). In order to simplify the description
we describe the theorem only for the special case where π equals the identity
id(i) = i.

Theorem 1. The number of xi-nodes of the id-OBDD for f is the number si

of different subfunctions f|x1=a1,... ,xi−1=ai−1
, a1, . . . , ai−1 ∈ {0, 1}, essentially

depending on xi (a function g depends essentially on xi if g|xi=0 6= g|xi=1).

It is a simple corollary that the number s∗i of different subfunctions
f|x1=a1,... ,xi−1=ai−1

, a1, . . . , ai−1 ∈ {0, 1}, is a lower bound on the id-OBDD size
of f . Obviously, dlog s∗i e is the one-way deterministic communication complexity
of f if Alice holds x1, . . . , xi−1 and Bob holds xi, . . . , xn. (See Hromkovič (1997)
and Kushilevitz and Nisan (1997) for the theory of communication complexity.)
For non-constant functions the id-OBDD size of f equals s1 + · · · + sn + 2 (2
for the sinks). If many si have asymptotically the same and the largest value,
one-way communication complexity is not strong enough to obtain asymptoti-
cally optimal bounds. Moreover, we have the freedom to choose an appropriate
variable ordering for f . Let π-OBDD(f) denote the π-OBDD size of f .

Definition 3. The OBDD size of f (denoted by OBDD(f)) is the minimum of
all π-OBDD(f).

Using Theorem 1 or one-way communication complexity a lot of exponential
lower bounds on the OBDD size of functions have been proved (see e.g. Wegener
(2000)). But there are only a few functions whose OBDD size is asymptoti-
cally known exactly. These are functions with linear OBDD size, symmetric
functions, and a few more functions. The difficulty in proving asymptotically
optimal bounds is often the necessity to prove asymptotically optimal bounds
for many levels and all variable orderings.

2

As an example of an exponential but nevertheless unsatisfactory lower bound
we mention the best known lower bound on the OBDD size of the middle bit
(position n− 1) of multiplication. The bound (Bryant (1991)) equals 2n/8. Since
the function is defined on 2n variables, the trivial upper bound is of size 22n/n.
People working on OBDDs agree on the conjecture that the OBDD size is at least
of order 2n and millions of OBDD nodes are not sufficient to represent the middle
bit of multiplication for n = 32 or n = 64. The best known lower bound only
gives the value 256 for n = 64. Hence, the known lower bound does not answer
the question on the OBDD size in real life applications (verification of multipliers
and dividers). This problem remains open and we only use it as a motivation
to develop lower bound methods for asymptotically optimal OBDD bounds.
We solve problems motivated from OBDD applications, automata theory, and
complexity theory.

In order to use OBDDs we have to transform a logical description of a func-
tion, e.g. a circuit, into an OBDD representation. This is done by a sequence
of binary synthesis steps. A binary synthesis step computes a π-OBDD Gh for
h = f ⊗g (⊗ is a binary Boolean operation like AND or EXOR) from π-OBDDs
Gf and Gg for f resp. g. Bryant (1991) has shown how this can be done in time
O(|Gf | · |Gg|) and he has presented an example that the result may need size
Θ(|Gf | · |Gg|). His example has two drawbacks. The chosen variable ordering
is bad for h, f , and g (and, therefore, such a synthesis step will not occur in
applications) and the functions f and g depend essentially on disjoint sets of
variables. It is not too hard to present an example without these drawbacks.
But this is nevertheless not the answer to the question about the worst case for
the binary synthesis problem. If a binary step leads to a π-OBDD much larger
than the given π-OBDDs, all recent OBDD packages start to look for a better
variable ordering. Although the search for an optimal OBDD variable ordering is
NP-hard (Bollig and Wegener (1996)) and this holds even for the corresponding
approximation problems for arbitrary constant factors (Sieling (1998)), heuristic
algorithms like sifting (Rudell (1993)) often lead to very good results. Hence,
the main step is a binary synthesis step followed by reordering. This leads to the
problem whether it is possible that OBDD(h) = Θ(π-OBDD(f) · π-OBDD(g))
for functions f and g essentially depending on all considered variables. (Here we
should mention the folklore result (see Wegener (2000)) that OBDD(h) may be
exponential even if OBDD(f) and OBDD(g) are linear but the linear size only
is possible for different variable orderings.) In Section 4, we solve the problem
by representing an example where π-OBDD(fn) = Θ(n), π-OBDD(gn) = Θ(n),
and OBDD(hn) = Θ(n2). This surely is the less surprising answer but the lower
bound proof for the OBDD size of hn has some interesting features.

Some applications (Ochi, Yasuoka, and Yajima (1993)) work with a restricted
variant of π-OBDDs which may be called leveled π-OBDDs or quasi-π-OBDDs
(π-QOBDDs).

Definition 4. A π-QOBDD is a π-OBDD with the additional property that each
edge leaving an xπ(i)-node, i < n, reaches an xπ(i+1)-node.

3

We are interested in QOBDDs also because of their tight relationship to
deterministic finite automata (DFAs) for so-called Boolean languages L where
L ⊆ {0, 1}n for some n. It is an easy exercise to verify for Lf = f−1(1) that

DFA(Lf) ≤ id-QOBDD(f) ≤ DFA(Lf) + n.

Hence, id-QOBDDs and DFAs are almost the same. For general regular lan-
guages consisting of strings of different lengths it makes no sense to discuss
different “variable orderings” or permutations of the input string. For Boolean
languages, a π-DFA may apply the reordering π to all inputs of length n. The
above inequality can be generalized to

π-DFA(Lf) ≤ π-QOBDD(f) ≤ π-DFA(Lf) + n.

Moreover, it is obvious that

π-QOBDD(f) ≤ (n + 1) · π-OBDD(f)

and this bound is tight for the constant functions (syntactically depending on n
variables). It is also not too difficult to see that π-QOBDD(f) =
Θ(n · π-OBDD(f)) for some function f essentially depending on all n variables.

Definition 5. The multiplexer MUXn (or direct storage access function DSAn)
is defined on n + k variables ak−1, . . . , a0, x0, . . . , xn−1 where n = 2k.
MUXn(a, x) = x|a| where |a| is the number whose binary representation equals
(ak−1, . . . , a0).

Let π be the variable ordering (ak−1, . . . , a0, x0, . . . , xn−1). Then
π-OBDD(MUXn) = OBDD(MUXn) = 2n + 1. The π-OBDD (see Figure 1)
starts with a complete binary tree on the a-variables. For the path where |a| = i
it is sufficient to test xi. For the π-OBDD we need i extra nodes before the xi-
node and n−1 extra nodes before each of the sinks. Hence, π-QOBDD(MUXn) =
1
2n2 + 7

2n − 1 = Θ(n · π-OBDD(MUXn)).
But in order to compare the size of OBDDs and QOBDDs (and DFAs for

Boolean languages with reordering) we ask whether QOBBD(fn) =
Θ(n · OBDD(fn)) for functions fn essentially depending on n variables. This
is the question whether the possibility of OBDDs to omit the test of variables
may save a size factor of Θ(n).

Since it is the main rule of thumb for the variable ordering problem to test
control or address variables (like the a-variables of MUXn) before the data vari-
ables (like the x-variables of MUXn), it was a well-established conjecture that
the considered variable ordering π is optimal for QOBDDs for MUXn and that
QOBDD(MUXn) = Θ(n2). In Section 2, we prove the surprising result that
QOBDD(MUXn) = Θ(n2/ log n).

Moreover, π-ZBDD(MUXn) = Θ(n2) and ZBDD(MUXn) = Θ(n2/ log n)
for zero-suppressed BDDs (ZBDDs) (defined in Section 2) which are used in
many applications (see e.g. Minato (1993, 1994)). This is the first example of
a function (moreover, a ”natural” function) and of BDD models of practical

4

a1

a0

x0

a0

10

x3

x2

x1

Fig. 1. An OBDD for MUX4 (dotted edges are edges with label 0 and solid edges are
edges with label 1).

relevance that the rule of thumb ”control variables before data variables” is
wrong. In Section 3, we present a function fn essentially depending on n variables
such that QOBDD(fn) = Θ(n ·OBDD(fn)) proving that the freedom of OBDDs
to omit tests may indeed decrease the size by a factor of Θ(n).

In Section 5, we investigate the dependence of the OBDD size on the size of
f−1

n (1). Let N(a(n)) be the number of Boolean functions f where |f−1
n (1)| ≤

a(n). The standard counting argument proves the existence of functions fn

where |f−1
n (1)| ≤ a(n) such that its OBDD size and even its circuit size is

Ω
(

log N(a(n))/ log log N(a(n))
)

. On the other hand, obviously OBDD(fn) ≤
O(na(n)) for these functions. For a(n) = 2n, the lower bound of size 2n/n is
optimal (see Wegener (2000)). For a(n) = 1, the upper bound of size n is op-
timal. The question is how large can we choose a(n) such that we can define
functions fn where |f−1

n (1)| ≤ a(n) and OBDD(fn) = Θ(n a(n)). We describe
such functions for polynomially increasing a(n).

2 QOBDDs, DFAs, and ZBDDs for the multiplexer

In this section, we determine the size of QOBDDs, DFAs with reordering, and
ZBDDs for the representation of the multiplexer.

Theorem 2. QOBDD(MUXn) = Θ(n2/ log n).

This result implies by the discussion in Section 1 the same result for DFAs
with reordering.

5

Proof of Theorem 2. First, we prove for some variable ordering π that the
π-QOBDD size of MUXn is O(n2/ log n). Let m := k−blog kc+ 1. The variable
ordering π is given by

ak−1, . . . , ak−m, x0, . . . , xn−1, ak−m−1, . . . , a0.

The x-variables are partitioned to 2m groups such that the indices of the variables
of each group agree in their binary representation in the m most significant bits.
The size of each group is n/2m. Figure 2 shows a schematic description of the
π-QOBDD representing MUXn. Triangles are complete binary trees. Vertical
lines represent tests of x-nodes where both edges leaving a node reach the same
successor. We start with a complete binary tree of the first m a-variables. The

0 1

· · ·

ak−m

.

.

.

ak−1

x-variables of group G0

x-variables of group G1

x-variables of group G2m
−1

a0

.

.

.

ak−m−1

· · ·

· · ·

· · · · · ·

Fig. 2. A schematic description of the π-QOBDD representing MUXn.

tree has 2m leaves and 2m − 1 inner nodes. Then we test the x-variables of
group G0. Only the subfunction where ak−1 = · · · = ak−m = 0 essentially
depends on these variables. For all other groups we need xi-nodes, since we
consider QOBDDs. Hence, we need one complete binary tree with 2n/2m

leaves

6

and 2n/2m

− 1 inner nodes and (2m − 1)n/2m < n further nodes which could
be eliminated in OBDDs. One leaf can be replaced by the 0-sink. The same
arguments work for the next group. Here the width for the first group is 2n/2m

and the total width is bounded by 2 ·2n/2m

+2m−2. The crucial argument is the
following one. We can merge the 2n/2m

nodes for the case (ak−1, . . . , ak−m) =
(0, . . . , 0, 0) with the 2n/2m

nodes for the case (ak−1, . . . , ak−m) = (0, . . . , 0, 1).
We only have to store the data vector namely the x-vector. The result only
depends on the further address bits. The width after the tests of the x-variables
of group G2m−1 equals 2n/2m

− 1. The size of the last k − m levels is bounded

by 22k−m

. The total size is bounded above by

2m − 1 + 22k−m

+ n(2 · 2n/2m

+ 2m − 2) ≤ n2m + 2n2n/2m

+ 22k−m

.

By the choice of m,

2n/ log n ≤ 2m ≤ 4n/ log n

and

n2m ≤ 4n2/ log n,

2n2n/2m

≤ 2n2(log n)/2 ≤ 2n3/2,

and

22k−m

= 22blog kc−1

≤ 2(log n)/2 ≤ n1/2.

Now we prove the lower bound for arbitrary variable orderings π. It is sufficient
to prove a lower bound of size Ω(n/ log n) on the size of Ω(n) x-levels of π-
QOBDDs.

We claim that the xi-level of a π-QOBDD representing MUXn has a size of
Ω(n/ log n) if xi belongs to the second quarter of all x-variables with respect
to π. Let l be the number of address bits tested before xi. Since the size of
the xi-level does not depend on the ordering of the variables tested before xi,
we assume that π starts with l address variables, w.l.o.g. ak−1, . . . , ak−l. This
leads to 2l groups of x-variables each of size n/2l (compare the proof of the
upper bound). If r < n/2l variables of a group are tested and xj is a variable
of this group which is not yet tested, all subfunctions for the corresponding
assignment to the tested address variables essentially depend on xj while all
other assignments to the tested address variables lead to subfunctions which do
not essentially depend on xj . Hence, nodes for such groups cannot be merged
but nodes for groups completely tested can be merged (see the upper bound).

Case 1: l ≥ k− log k−2. Since at most half the x-variables have been tested,
at most half of the groups have been tested completely. Therefore, we have at
least 2l−1 groups each represented by at least one node. This leads to a lower
bound of 2l−1 ≥ 1

8n/ log n.

7

Case 2: l < k − log k − 2. The number of groups is bounded above by
2l < 1

4n/ log n. We have already tested 1
4n x-variables. Hence, there is one group

such that at least 1
4n/(1

4n/ log n) = log n variables of this group have been tested.
This group is represented by at least 2log n = n nodes.

Altogether, we have proved that the size of each of at least n/4 levels is
bounded below by 1

8n/ log n. 2

Definition 6. A π-ZBDD (zero-suppressed BDD with variable ordering π) G
shares its syntax with π-OBDDs. Let v be a node of G and let fv be the Boolean
function represented by G as a π-OBDD. The π-ZBDD G represents at v the
following function gv. If the computation path for fv and the input a contains
xi-nodes for all variables xi where ai = 1, then gv(a) := fv(a). Otherwise,
gv(a) := 0.

In π-ZBDDs we may omit xi-nodes representing functions which are called 1-
simple with respect to xi, i.e., functions h such that h|xi=1 ≡ 0. It is not possible
to omit xi-nodes representing functions which do not essentially depend on xi.

Corollary 1. ZBDD(MUXn) = Θ(n2/ log n).

Proof. The upper bound follows from Theorem 2, since, by definition, ZBDD(f) ≤
QOBDD(f) for all f . The lower bound proof follows the lines of the lower bound
proof of Theorem 2 with the following additional remark.

A level of a π-ZBDD can only save the nodes for 1-simple functions compared
to π-QOBDDs. The crucial observation is that

MUXn|xi=0 ≤ MUXn|xi=1

for all data variables xi. This implies that a subfunction of MUXn which is 1-
simple with respect to xi is the constant 0. Hence, the xi-level of a π-ZBDD
representing MUXn is at most by 1 smaller than the corresponding level of a
π-QOBDD. 2

The rule of thumb “control variables before data variables” does not lead to
minimal-size QOBDD and ZBDD representations of the practically fundamental
multiplexer.

3 The maximal size gap between OBDDs and QOBDDs,

DFAs, and ZBDDs

We look for functions fN essentially depending on all their N variables such
that the size gap of OBDDs on one hand and QOBDDs, DFAs with reordering,
and ZBDDs on the other hand is a factor of Θ(N) which is by the discussion in
Section 1 the largest possible gap. For such a function it is necessary that many
edges in the optimal OBDD omit many tests. Therefore, the multiplexer has
been considered as a good candidate for the largest possible gap. But the result
of Section 2 implies that the multiplexer only leads to a gap of Θ(N/ log N). The

8

multiplexer has many more data variables than address variables. We can prove
the largest possible gap for a function fN on N = n2 +2n variables, among them
n2 control or address variables (here called selection variables) s0, . . . , sn2−1 and
only 2n data variables x0, y0, . . . , xn−1, yn−1 which lead to n2 data pairs xiyj ,
0 ≤ i, j ≤ n− 1. The data pairs are partitioned to n blocks Bm, 0 ≤ m ≤ n− 1,
such that Bm contains all pairs xiyi+m (the indices are computed mod n). We
consider the following ordering p0, . . . , pn2−1 of the pairs. The pair pk where
k = in + j equals xjyi+j , i.e., we start with the pairs from B0, followed by the
pairs from B1, In each block we start with the pair containing x0, followed
by the pair containing x1, and so on. The main property is that the distance
between two pairs containing xi equals n and the distance between the pairs
containing yi is at least n − 1. Finally, we define fN by

fN (s, x, y) =
∨

0≤k≤n2−1

s0 . . . sk−1skpk,

i.e., the s-vector selects with its first zero which pair has to be evaluated.

Theorem 3. OBDD(fN) = Θ(N) while QOBDD(fN) = Θ(N2), DFA(fN) =
Θ(N2), and ZBDD(fN) = Θ(N2).

Proof. It is obvious that the OBDD size of fN for the “natural” variable ordering
s0, . . . , sn2−1, x0, . . . , xn−1, y0, . . . , yn−1 equals 2n2 + n + 2 = Θ(N) and that
fN essentially depends on all its variables. This implies OBDD(fN) = Θ(N) and
the upper bounds for the other models.

In the following we prove the lower bound on the QOBDD size. This implies
the lower bound for DFAs with reordering. During the lower bound proof we
add remarks that we obtain the same lower bound for ZBDDs.

For the lower bound proof we fix an arbitrary variable ordering π. There are
n2/24 levels where a selection variable is tested and the number of already tested
selection variables is at least n2/8 and less than n2/6. It is sufficient to prove
that each of these levels has a size of Ω(n2).

We fix one of the described levels and use the following notation. The sets
T (x), T (y), and T (s) contain the x-, y-, and s-variables, resp., which are tested
before the considered levels. The sets R(x), R(y), and R(s) contain the corre-
sponding remaining variables. Moreover, T (p) contains the pairs pk = xiyj such
that at least one of the variables xi and yj is contained in T (x, y) := T (x)∪T (y)
and R(p) contains the remaining pairs. We distinguish whether the size of T (x, y)
is small, large, or medium. If it is small, we can argue similarly to the case of the
natural variable ordering. If it is large, we have to store too much information
on the data variables like in the case of the multiplexer. The most difficult case
is the case where T (x, y) is of medium size.

Case 1: |T (x, y)| ≤ 1
9n (small size).

The number of pairs in T (p) can be bounded above by 1
9n2. Hence, there are

at least (1
8 − 1

9)n2 = Ω(n2) pairs in R(p) such that the corresponding selection
variable is in T (s). For each of these pairs pk = xiyj we consider the subfunc-
tion gk of fN which corresponds to the following assignment to the variables

9

in T (x, y, s) := T (x, y) ∪ T(s). We assign the value 0 to sk and all variables in
T (x, y) and the value 1 to all variables in T (s) − {sk}. The subfunction gk con-
tains a prime implicant consisting of perhaps some selection variables and pk.
For the subfunction gk′ , k′ 6= k, the value 1 is assigned to sk and the resulting
subfunction does not have a prime implicant containing pk. Hence, we obtain
Ω(n2) different subfunctions and the size of the level is Ω(n2) for π-QOBDDs.
The same holds for ZBDDs, since the considered functions are not 1-simple with
respect to an s-variable.

Case 2: There are at least 2 log n variables in T (x) (or T (y)) such that for
each of these variables xi there is a pair pk = xiyj where sk ∈ R(s) (large size).

Remark: This case is called “large size”, since one of the conditions |T (x)| ≥
1
6n + 2 log n and |T (y)| ≥ 1

6n + 2 log n is sufficient for Case 2. First, we prove
this statement. If w.l.o.g. |T (x)| ≥ 1

6n + 2 log n, there are at least 1
6n2 + 2n log n

pairs whose x-variable is contained in T (x). Since, by the choice of the level,
|T (s)| ≤ 1

6n2, there are at least 2n log n pairs pk = xiyj such that sk ∈ R(s) and
xi ∈ T (x). By the pigeonhole principle, we can choose 2 log n pairs pk = xiyj

with different variables xi ∈ T (x) and selection variables sk ∈ R(s).

We prove a lower bound of size n2 for the size of the level by investigating
the following n2 assignments to the variables in T (x, y, s). We assign 1 to all s-
and y-variables, 0 to all x-variables which do not belong to a chosen pair, and
arbitrary values to all x-variables belonging to a chosen pair. We claim that we
obtain n2 different subfunctions leading to the bound n2 on the size of this level.
Let pk = xiyj be one of the chosen pairs. Let s∗ be the conjunction of all sm,
m < k, contained in R(s). Let y∗ = yj , if yj ∈ R(y), and y∗ = 1, otherwise. The
subfunction contains the prime implicant s∗sky∗ iff the value 1 is assigned to xi.
Hence, different assignments lead to different subfunctions. Such a subfunction
can only be 1-simple with respect to sk. This implies a lower bound of n2 for
π-QOBDDs and of n2 − 1 for π-ZBDDs.

Case 3: Not Case 1 or Case 2 (medium size).
Using the Remark the following conditions are fulfilled:

- |T (x, y)| > 1
9n.

- |T (x)| < 1
6n + 2 log n and |T (y)| < 1

6n + 2 log n.

- There are less than 2 log n variables xi in T (x) (and also less than 2 log n
variables yj in T (y)) such that sk ∈ R(s) for some pair pk = xiyj .

The first condition implies that |T (x)| ≥ 1
18n or |T (y)| ≥ 1

18n. We assume that
|T (x)| ≥ 1

18n (the other case can be handled similarly). The third condition
implies the existence of a subset T ′(x) of T (x) of size 1

18n − 2 log n ≥ 1
20n (for

large n) such that sk ∈ T (s) for all pairs pk = xiyj where xi ∈ T ′(x). The
condition |T (y)| < 1

6n + 2 log n ≤ 1
5n (for large n) implies for each xi ∈ T ′(x)

the existence of at least 4
5n pairs pk = xiyj such that sk ∈ T (s) and yj ∈ R(y).

Altogether, we argue about these 4
5 · 1

20n2 = 1
25n2 pairs.

10

We have partitioned the set of all n2 pairs p0, . . . , pn2−1 into n blocks B0, . . . ,
Bn−1 such that Bi = {pin, . . . , pin+n−1}.

Claim 1. There are 7
9n blocks each containing at least 1

200n of the chosen pairs.

Claim 1 is proved by simple counting arguments. First, we mark all 1
20n2

pairs pk = xiyj such that xi ∈ T ′(x). Each block contains 1
20n marks because

of the chosen ordering of the pairs. Each yj ∈ T (y) is combined with each xi by
a pair. We erase the marks for the pairs where yj ∈ T (y), altogether at most
1

100n2 marks. A block is called good if it still contains 1
200n marks, i.e., if at most

9
200n marks have been erased. The number of bad blocks is bounded above by
(1/100)n2

(9/200)n = 2
9n. Hence, we still have 7

9n good blocks.

We investigate the set P of the Ω(n2) chosen pairs pk belonging to the 7
9n

good blocks. For each such pair pk = xiyj we know that sk ∈ T (s), xi ∈ T (x),
and yj ∈ R(y). Moreover, we define a subfunction gk of fN by assigning the
following values to the tested variables. We assign the value 0 to sk and the
value 1 to all other variables in T (s). We assign the value 1 to xi and the value 0
to all other variables in T (x, y). The function gk has a prime implicant consisting
of yj and perhaps some s-variables. Hence, it is not 1-simple with respect to an
s-variable. It is possible that gk = gl, k 6= l, but then we have some implications
on the set T (s).

Claim 2. If k < l and gk = gl, then sk+1, · · · , sl−1 ∈ T (s) and the pairs pk and
pl contain the same y-variable.

Claim 2 is proved by contradiction. If pk contains yj and pl contains yi 6= yj ,
we obtain different outputs for gk and gl by assigning 1 to yj and all variables
in R(s) and by assigning 0 to yi. If pk and pl both contain yj but sm ∈ R(s) for
some k < m < l, we obtain different outputs for gk and gl by assigning 0 to sm,
1 to all other variables in R(s), 1 to yj , and 0 to all other variables in R(x, y).

Since each variable is contained in exactly one pair in each block, gk = gl
implies that pk and pl belong to different blocks.

Claim 3. There are less than 1
2n blocks containing some pk ∈ P such that

gk = gl for some pl ∈ P and l 6= k.

The proof of Claim 3 is based on the assumption that |T (s)| < 1
6n2. Let us as-

sume that Bi(1), · · · , Bi(n/2), i(1) < · · · < i(n/2), are blocks where Bi(j) contains
some pair pi(j) ∈ P such that gi(j) = gl for some pl ∈ P and l 6= i(j). We know
from the construction of the pairs and from Claim 2 that si(j), si(j)+1, . . . , sl−1, sl ∈
T (s), if i(j) < l, or sl, · · · , si(j) ∈ T (s), if i(j) > l.

The number of these selection variables equals |l − i(j) + 1| ≥ n, since pairs
with the same y-variable have a distance of at least n − 1. We claim that T (s)
contains at least 1

6n2 variables in contradiction to our assumption.
The assumption for pi(j) ensures the existence of n selection variables in

T (s) among them si(1), and n − 1 selection variables directly to the left (i.e.,
si(1)−1, · · · , si(1)−n+1) or directly to the right (i.e., si(1)+1, · · · , si(1)+n−1) of si(1).
The pair pi(2) may not ensure the existence of further variables in T (s). If pi(1)

is at the right border of its block and pi(3) at the left border of its block, also

11

pi(3) does not ensure the existence of many further variables in T (s). The pair
pi(4) ensures that si(4) and n− 1 variables directly to the left or to the right are
in T (s). These variables are different from the variables counted for pi(1), since
pi(1) and pi(4) are separated by 2 blocks of length n each. This argument holds

for each third pair proving that |T (s)| ≥ 1
6n2.

From Claim 1 and Claim 3 we conclude that there are at least (7
9 − 1

2)n = 5
18n

blocks each containing 1
200n pairs such that all the corresponding Ω(n2) sub-

functions gk are different. This implies the lower bound Ω(n2) on the size of the
level. 2

4 The maximal size increase of a π-OBDD synthesis step

with optimal reordering

In this section, we prove that the synthesis of π-OBDDs essentially depending
on the same set of variables can lead to a multiplicative size increase (like the
well-known result for DFAs) and that this result even holds if the synthesis can
be followed by an optimal reordering.

The functions are defined on n + 2k variables x0, . . . , xk−1, y0, . . . , yk−1,
z0, . . . , zn−1 where n = 2k. Let fn(x, y, z) = MUXn(x, z) and gn(x, y, z) =
MUXn(y, z). These functions do not depend essentially on all variables. Nev-
ertheless, we first investigate fn, gn, and hn = fn ⊕ gn. Afterwards, we define
modified functions f∗

n, g∗n, and h∗
n = f∗

n ⊕ g∗n depending essentially on all vari-
ables and having similar properties. We also will argue that we essentially get
the same results if we replace ⊕ by +. The function hn is defined by

hn(x, y, z) =
∨

0≤i,j≤n−1

(|x| = i) ∧ (|y| = j) ∧ (zi ⊕ zj).

Theorem 4. Let π∗ be the variable ordering x0, . . . , xk−1, y0, . . . , yk−1,
x0, . . . , xn−1. Then π∗-OBDD(fn) = π∗-OBDD(gn) = 2n + 1 but OBDD(hn) =
Ω(n2), i.e., a synthesis step followed by optimal reordering can lead to a multi-
plicative size increase.

We will see that the effect of the choice of the variable ordering for hn has
interesting features. We have already seen in Section 2 that the representation
size of multiplexer based functions has surprising effects. Here we prove a lower
bound of size Ω(n2) by proving that each of Ω(n) levels has size Ω(n). The
interesting aspect is that there is not necessarily a block of Ω(n) levels each of
size Ω(n). It may happen that small levels and large levels occur in a rather
irregular order. Nevertheless, we are able to bound the number of small levels
in a sufficient way. This is the first proof of an asymptotically optimal OBDD
lower bound in such a situation.

Proof of Theorem 4. The upper bounds are obvious. For the lower bound
proof we fix an arbitrary variable ordering π.

12

First, we visualize the situation after the test of some variables. We do not
use the communication matrix, since we believe that a different representation
better supports the counting of different subfunctions essentially depending on
some specific z-variable. Again we use the notation T (x), T (y), and T (z) for the
sets of already tested variables. Let r := T (x) and c := T (y). Then we have
2r partial x-addresses which partition the set of all z-variables into 2r blocks of
size n2−r each. Two z-variables zi and zj belong to the same block if the binary
representations of i and j agree in the positions belonging to variables in T (x). In
the same way we obtain 2c blocks of size n2−c each corresponding to the variables
in T (y). We consider the following n × n-matrix. The rows correspond to the
z-variables and they are ordered blockwise with respect to the 2r row blocks.
In each block we order the variables according to the canonical ordering with
respect to the vector describing the value of the x-variables which have not been
tested yet. The columns also correspond to the z-variables and they are ordered
blockwise with respect to the 2c column blocks. The entry at the zi-row and the
zj-column equals zi⊕zj . Our aim is to prove a lower bound on the size of the zi-

zi

zi

2c blocks each containing n2−c columns

each containing
2r blocks

n2−r rows

Fig. 3. A macroscopic view.

level of the π-OBDD representing hn. For this reason it is sufficient to investigate
those 2r + 2c − 1 assignments to the variables in T (x, y) where at least one of
the partial addresses allows the value i. In Figure 3 the corresponding blocks
are shaded. Our aim is to count the number of different subfunctions essentially
depending on zi. First, we consider the subfunctions for some fixed assignment
to the variables in T (x, y). This leads to a submatrix of the matrix considered

13

above (see Figure 4). In our example the submatrix contains the zi-row but not
the zi-column. It is called a zi-row-rectangle. Variables zj ∈ T (z) are replaced
by aj . This zi-row-rectangle is a description of the considered subfunction of
hn. Let s be the number of different variables from T (z) which correspond to a

aj · · · al · · · zm

ap ap ⊕ aj · · · ap ⊕ al · · · ap ⊕ zm

... .
aq aq ⊕ aj · · · aq ⊕ al · · · aq ⊕ zm

... .
zi zi ⊕ aj · · · zi ⊕ al · · · zi ⊕ zm

... .
zt zt ⊕ aj · · · zt ⊕ al · · · zt ⊕ zm

Fig. 4. A microscopic view.

column or row of the considered submatrix. Then we obtain exactly 2s different
subfunctions all essentially depending on zi. The zi-row has entries from {zi, zi}
in the columns corresponding to variables from T (z). Reading the zi-row we can
compute the assignment to the z-variables corresponding to the columns. Now
let us consider a row belonging to a variable from T (z) which does not occur
as a column of this block, e.g., the ap-row. Since we have computed aj , we can
compute ap from ap ⊕ aj or from ap ⊕ zm. Similar results hold for zi-column-
rectangles.

We have computed the number of subfunctions essentially depending on zi

for a fixed assignment to the variables from T (x, y) and all assignments to the
variables from T (z). Is it possible to obtain the same subfunction for different
assignments to the variables from T (x, y) ? This happens iff the a-entries are
replaced in such a way by constants that two zi-rectangles are equal. We assume
that r < k or c < k (if r = c = k, all address variables have been tested
which leads to an easy subcase). A zi-row-rectangle Ri differs from a zi-column-
rectangle Ci, since Ri contains entries essentially depending on zi exactly in
the zi-row while this happens in Ci exactly in the zi-column. Now we consider
w.l.o.g. two zi-row-rectangles Ri and R′

i. If Ri contains a zm-column, it contains
a column where all entries essentially depend on zm. This cannot happen in R′

i

where at most one row can depend essentially on zm. Hence, two different zi-
row-rectangles agree iff all z-variables corresponding to the columns have already
been tested and the corresponding vectors are equal (remember the agreement
that the variables of each block are ordered according to the canonical ordering
with respect to the vector describing the value of the y-variables not from T (y)).
The only-if-part follows from the consideration of the case |x| = i. The if-part
follows, since the remaining assignments to x-variables and z-variables belonging
to rows of the block have the same influence on Ri and R′

i.

14

Summarizing we can conclude that we are able to determine the size of each
z-level of a π-OBDD representing hn. We still have to prove that Ω(n) z-levels
have size Ω(n). The first and last z-levels can be very small. We concentrate on
the levels where the z-variables at the positions n/2+1, . . . , 3n/4 of the variable
ordering on the z-variables are tested.

Case 1. There is no block such that all corresponding row variables have
already been tested. (The same arguments work for the column variables.)

We consider the zi-column-rectangles. Let rj be the number of T (z)-variables
belonging to the jth row block, 1 ≤ j ≤ 2r. The sum of all rj is at least n/2 (by
the choice of the considered levels) and our lower bound arguments lead to the
lower bound

∑

1≤j≤2r

2rj

on the size of the considered zi-level. This lower bound is minimal if the sum of
all rj is equal to n/2 and all rj are equal to n

2 /2r. This leads to the lower bound

2r2n/2r+1

.

As long as n/2r+1 ≥ 2, this exponent decreases at least by 1 if r is increased by
1. In these cases the lower bound is decreasing with r. This happens as long as
r + 2 ≤ log n. Hence, we obtain an Ω(n) bound on the size of the zi-level.

Case 2. Not Case 1 and r ≤ log n − log log n (or c ≤ log n − log log n).
There is a zi-column-rectangle where all n2−r z-variables corresponding to

the rows of the rectangle have already been tested. This leads to a lower bound
of size 2n2−r

≥ n.
Case 3. r ≥ log n − c∗ (or c ≥ log n − c∗) for some constant c∗ (c∗ = 8 is

appropriate in this proof).
We have 2r zi-column-rectangles and at least n/4 z-variables which have not

been tested. Each row block contains n2−r z-variables. Hence, there are at least
1
42r = Ω(n) zi-column-rectangles such that at least one row variable has not
been tested.

For each of these rectangles we obtain a lower bound of size 1 and we have
shown above that the different zi-column-rectangles cannot agree and describe
different subfunctions. Altogether, we obtain also in this case a lower bound of
size Ω(n).

We obtain the proposed Ω(n2) lower bound if Ω(n) of the n/4 considered
levels belong to one of the three cases. Hence, we only have to consider the
situation where n/4− o(n) of the considered levels do not fulfil the assumptions
of one of the three cases. We assume w.l.o.g. that on n/8 − o(n) of these levels
the condition c ≤ r holds.

On these levels, log n − log log n < c ≤ r < log n − c∗. Only to simplify the
notation we assume that N = log log n is an integer. We consider the levels where
r = log n − log log n + t has a fixed value. In particular, 1 ≤ t ≤ log log n − c∗.
We have 2r = 2tn/ log n zi-column-rectangles. Since at least n/4 z-variables
have not been tested, there are at least 2r−2 zi-column-rectangles such that
some corresponding row variable has not been tested. Let m be the number

15

of already tested z-variables belonging to the column block containing zi. This
leads to the lower bound 1

42r2m. If m ≥ log log n − t, the lower bound is of size
Ω(n). We have 2c column blocks of size n2−c each. Hence, there are at most
2c(log log n − t) ≤ 2r(log log n − t) z-levels where we have not proved an Ω(n)
bound.

We estimate the number of bad levels, i.e., those levels where we have not
proved an Ω(n) bound. Let n ≥ 4. Then the number of bad levels can be esti-
mated by

∑

1≤t<N−c∗

2t n

log n
(N − t) =

n

log n

(

N(2N−c∗ − 2) − (N − c∗ − 1)2N−c∗ + 2N−c∗ − 2
)

≤

n

log n
(c∗ + 2)2−c∗2N = (c∗ + 2)2−c∗n.

For c∗ = 8 these are at most 10
256n bad levels out of 1

8n− o(n) levels. Hence, also
in this situation we have proved the existence of Ω(n) levels whose size is Ω(n).
This implies the proposed Ω(n2) bound. 2

If h′
n = fn+gn, we can use almost the same arguments. If all column variables

of a zi-row-rectangle have been replaced by ones, the corresponding subfunction
does not essentially depend on zi. It is obvious that the lower bound decreases
at most by a factor of 2.

In a last step, we generalize our results to functions essentially depending on
all their variables. We work with two additional variables namely xk and yk. Let
x = (xk, . . . , x0), x∗ = (xk−1, . . . , x0) and let the predicate (⊕x = 1) be true iff
x0 ⊕ · · · ⊕ xk = 1, similarly for y, y∗, and ⊕y. Let

f∗
n(x, y, z) =

∨

0≤i≤n−1

(|x∗| = i) ∧ (⊕x = 1) ∧ (⊕y = 1) ∧ zi

and
g∗n(x, y, z) =

∨

0≤j≤n−1

(|y∗| = j) ∧ (⊕x = 1) ∧ (⊕y = 1) ∧ zj .

It is obvious that f∗
n and g∗n essentially depend on all their variables. For a small

representation of f∗
n and g∗n it is not sufficient to test the x- and y-variables

before the z-variables. We choose the variable ordering

x0, y0, x1, y1, . . . , xk, yk, z0, . . . , zn−1.

Then the OBDD size of f∗
n is bounded above by 11n. The number of xi-nodes,

1 ≤ i ≤ k − 1, equals 2i+1, since we store all tested x-variables and the parity of
the tested y-variables. The number of yi-nodes is twice the number of xi-nodes.
Hence, the first 2k levels have a size which is bounded above by 6n−2. We have
to store |x| and the parity of y0 . . . , yk−1. Hence, we have 2n xk-nodes and 2n
yk-nodes followed by n z-nodes and two sinks. The OBDD size of g∗

n and the

16

chosen variable ordering is even bounded above by 8n. The function h∗
n = f∗

n⊕g∗n
is described by

h∗
n(x, y, z) =

∨

0≤i,j≤n−1

(|x∗| = i) ∧ (|y∗| = j) ∧ (⊕x = 1) ∧ (⊕y = 1) ∧ (zi ⊕ zj).

The same arguments as for hn lead to an Ω(n2) bound on the OBDD size of h∗
n

for arbitrary variable orderings. Also here we can replace ⊕ by +.

5 On the maximal OBDD size with respect to the

number of 1-inputs

For the construction of a function fn,k with |f−1
n (1)| =

(

n
k

)

and OBDD(fn,k) =
Θ(n|f−1

n (1)|) we use the construction of Kovari, Sós, and Turán (1954) for the
solution of the well-known problem of Zarankiewicz. Their result can be ex-
plained as follows. Let n = p2 for some odd prime p. Let U := {0, . . . , n − 1}
be the universe which is partitioned to p blocks B0, . . . , Bp−1 where Bi =
{ip, . . . , ip + p − 1}. Then it is possible to define explicitly sets A0, . . . , An−1

with the following properties:

- |Ai| = p for all i,

- |Ai ∩ Aj | ≤ 1 for all i 6= j,

- |Ai ∩ Bj | = 1 for all i and j,

- for all i ∈ Bk and j ∈ Bl where k 6= l there exists some m such that i, j ∈ Am.

For the definition of fn,k we consider for each choice of 0 ≤ i1 < i2 <
· · · < ik ≤ n the set Ai1,...,ik

defined as union of all Aij
, 1 ≤ j ≤ k, and the

corresponding minterm mi1,...,ik
on {x0, . . . , xn−1} which computes 1 iff xi = 1

exactly for all i ∈ Ai1,...,ik
. The function fn,k computes 1 iff one of the minterms

mi1,...,ik
computes 1.

Theorem 5. Let k be a constant. Then |f−1
n (1)| ≤

(

n
k

)

and OBDD(fn,k) =

Θ(n
(

n
k

)

).

Proof. By definition, |f−1
n,k(1)| ≤

(

n
k

)

. (For large n, even |f−1
n,k(1)| =

(

n
k

)

.) This

implies the upper bound n
(

n
k

)

+ 2 on the OBDD size of fn,k, since at most
(

n
k

)

of all assignments to some set of variables can be different from the constant 0.
For the lower bound proof we fix a variable ordering π and investigate the

set P of all 1-paths namely all computation paths pi1,... ,ik
corresponding to the

minterms mi1,... ,ik
. The proof strategy is the following one. We identify a set

P ′ ⊆ P such that two different paths from P ′ have been split before or at level
1
3n, i.e., there is a node where one path chooses the 0-edge and the other one

17

chooses the 1-edge. Afterwards, we identify a subset of P ′ such that two paths
from this subset cannot share a node on the levels 1

3n, . . . , 2
5n. We ensure that

the size of this subset is Ω(N) for N =
(

n
k

)

. This proves the lower bound.
First we remark that |Ai1,... ,ik

∩ Ai| ≤ k, if i 6∈ {i1, . . . , ik}. This has the
following consequences. Since (for large n) p ≥ k + 2, the inputs from f−1

n,k(1)
have a Hamming distance of at least 2 and each 1-path contains n inner nodes.
Moreover, an input a′ which is the characteristic vector of A′ such that |A′∩Ai| ≥
k + 1 and Ai 6⊆ A′ has the property that fn,k(a′) = 0.

As next step, we prove that many 1-paths split early. Let I contain the
indices of the first 1

3n variables according to π. The average size of all Bi ∩ I
equals 1

3p and (for large n) there are two different blocks Bi and Bj such that

|Bi∩I| ≥ 1
4p and |Bj∩I| ≥ 1

4p. There are at least
(

p/4
k

)(

p/4
k

)

= Ω(N) (remember
that k is a constant) possibilities to choose k elements i1, . . . , ik from Bi ∩ I and
k elements j1, . . . , jk from Bj ∩ I. We identify each such choice with a unique
minterm. The pair (ir, jr) determines by the properties of the A-sets uniquely
a set Amr

such that ir, jr ∈ Amr
. Since Am1,... ,mk

∩ Bi = {i1, . . . , ik} and
Am1,... ,mk

∩Bj = {j1, . . . , jk}, different choices lead to different 1-paths. Let P ′

be the set of the chosen Ω(N) 1-paths. Let us consider two different of these
1-paths or minterms. They correspond to the choices i1, . . . , ik, j1, . . . , jk and
i′1, . . . , i′k, j′1, . . . , j′k and w.l.o.g. i1 6∈ {i′1, . . . , i′k}. The variable xi1 is tested on
one of the first 1

3n levels and the first minterm chooses a 1-edge on this level and
the second one a 0-edge. Hence, the paths from P ′ split before or at level 1

3n.
As final step, we prove that many 1-paths from P ′ do not merge again before

level 2
5n. Let I∗ contain the indices of the first 2

5n variables according to π. Let
r be the number of rich sets Ai, i.e., sets where |Ai ∩ I∗| ≥ p − k. We prove
by contradiction that r ≤ p − k − 1. We assume that |Ai1 ∩ I∗| ≥ p − k, . . . ,
|Aip−k

∩I∗| ≥ p−k. Since |Ai1 ∩Ai2 | ≤ 1, |(Ai1 ∪Ai2)∩I∗| ≥ (p−k)+(p−k−1).
In the same way, we conclude (for large n) that

|(Ai1 ∪ · · · ∪ Aip−k
) ∩ I∗| ≥ (p − k) + (p − k − 1) + · · · + 1 ≥

1

2
(p − k)2 >

2

5
n

in contradiction to |I∗| = 2
5n.

Let P ′′ ⊆ P be the set of 1-paths corresponding to sets Ai1,... ,ik
such that

all Air
are poor, i.e., not rich. The number of rich A-sets has been shown to be

at most p − k − 1. Hence, we have more than n − p poor sets and more than
(

n−p
k

)

sets Ai1,... ,ik
consisting of poor sets only. Since n − p = n − o(n) and k

is a constant, |P ′′| >
(

n−p
k

)

= N − o(N). Hence, P ′ and P ′′ are subsets of P
where |P | = N , |P ′| = Ω(N), and |P ′′| = N − o(N). Hence, |P ′ ∩ P ′′| = Ω(N).
We consider two different paths p1 and p2 from P ′ ∩P ′′. They have split before
or at level 1

3n. We assume w.l.o.g. that p1 and p2 correspond to Ai1,... ,ik
and

Aj1,... ,jk
and split on the xi-level, i ∈ I, where i ∈ Ai1,... ,ik

(w.l.o.g. i ∈ Ai1)
and i 6∈ Aj1,... ,jk

. Now we assume that p1 and p2 share the node v on one of
the levels between 1

3n and 2
5n. Then the path p∗ following p2 from the source

to v and p1 from v also is a 1-path corresponding to an input a′ which is the
characteristic vector of some set A′. Since Ai1 is poor, at least k + 1 variables

18

xr, r ∈ Ai1 , are tested positively on p∗, namely on that part of p1 which starts
at v. Hence, |A′ ∩ Ai1 | ≥ k + 1. Since xi is tested negatively on p∗, namely on
that part of p2 which stops at v, Ai1 6⊆ A′ and fn,k(a′) = 0 (as shown above) in
contradiction to the construction of p∗ as 1-path. This proves Theorem 5. 2

The bounds of Theorem 5 even hold for nondeterministic OBDDs which
we do not define explicitly here (see Wegener (2000)). This is obvious for the
upper bound. For the lower bound it is sufficient to choose for each 1-input one
computation path leading to the 1-sink. Then we may argue in the same way
with this set of paths.

Many lower bounds for variants of BPs have been obtained for the character-
istic sets of certain linear codes (see e.g. Okol’nishnikova (1993), Jukna (1995),
and Jukna and Razborov (1998)). The important property of linear codes is the
large Hamming distance between different code words. This seems to be not
sufficient to obtain lower bounds on the OBDD size of size Ω(n|f−1(1)|). Our
construction uses the fact that the 1-inputs of our function have a large Hamming
distance and additionally the other structural properties of the A-sets.

References

1. Ajtai, M. (1999). A non-linear time lower bound for Boolean branching programs.
40. FOCS, 60–70.

2. Bollig, B. and Wegener, I. (1996). Improving the variable ordering of OBDDs is
NP-complete. IEEE Trans. on Computers 45(9), 993–1002.

3. Bryant, R. E. (1986). Graph-based algorithms for Boolean manipulation. IEEE
Trans. on Computers 35, 677–691.

4. Bryant, R. E. (1991). On the complexity of VLSI implementations and graph rep-
resentations of Boolean functions with application to integer multiplication. IEEE
Trans. on Computers 40, 205–213.

5. Bryant, R. E. (1992). Symbolic Boolean manipulation with ordered binary decision
diagrams. ACM Computing Surveys 24, 535–541.

6. Hromkovič, J. (1997). Communication Complexity and Parallel Computing.
Springer.

7. Jukna, S. (1995). A note on read-k-times branching programs. RAIRO-Theoretical
Informatics and Applications 29, 75-83.

8. Jukna, S. and Razborov, A. (1998). Neither reading few bits twice nor reading
illegally helps much. Discrete Applied Mathematics 85, 223–238.

9. Kovari, T. Sós, V., and Turán, P. (1954). On a problem of K. Zarankiewicz. Collo-
quium Mathematicum 3, 50–57.

10. Kushilevitz, E. and Nisan, N. (1997). Communication Complexity. Cambridge Uni-
versity Press.

11. Minato, S. (1993). Zero-suppressed BDDs for set manipulation in combinatorial
problems. 30. DAC, 272–277.

12. Minato, S. (1994). Calculation of unate cube set algebra using zero-suppressed
BDDs. 31. DAC, 420–424.

13. Ochi, H., Yasuoka, K., and Yajima, S. (1993). Breadth-first manipulation of very
large binary-decision diagrams. ICCAD ’93, 48–55.

19

14. Okol’nishnikova, E. A. (1993). On lower bounds for branching programs. Siberian
Advances in Mathematics 3(1), 152–166.

15. Rudell, R. (1993). Dynamic variable ordering for ordered binary decision diagrams.
ICCAD ’93, 42–47.

16. Sieling, D. (1998). On the existence of polynomial time approximation schemes for
OBDD minimization. STACS ’98, LNCS 1373, 205–215.

17. Sieling, D. and Wegener, I. (1993). NC-algorithms for operations on binary decision
diagrams. Parallel Processing Letters 48, 139–144

18. Somenzi, F. (1998). CUDD: CU decision diagram package release 2.3.0. Techn.
Rep. of the University of Colorado at Boulder.

19. Wegener, I. (1987). The Complexity of Boolean Functions. Wiley-Teubner.
20. Wegener, I. (2000). Branching Programs and Binary Decision Diagrams - Theory

and Applications. SIAM Monographs in Discrete Mathematics and Its Applications.
In print.

20

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

