
On-Line Load Balancing for Related Machines 1

Piotr Berman

The Pennsylvania State University, University Park, PA16802, USA
E-mail: berman@cse.psu.edu

and

Moses Charikar*

Stanford University, Stanford, CA 94305-9045
E-mail: moses@cs.stanford.edu

and

Marek Karpinski
�

University of Bonn, 53117 Bonn
E-mail: marek@cs.uni-bonn.de

We consider the problem of schedulingpermanent jobs on related machines in an on-line
fashion. We design a new algorithm that achieves the competitive ratio of ����� ���
	�� ����
for the deterministic version, and ��� ���������������	�	������ ����� for its randomized variant,
improving the previous competitive ratios of 8 and � !�"	�� ����# . We also prove lower
bounds of �� ������$ on the competitive ratio of deterministic algorithms and ��� ����%� on the
competitive ratio of randomized algorithms for this problem.

Key Words: On-Line Complexity, Load Balancing, Related Machines, Competitive
Ratio, Lower Bounds

&
A preliminary version of this paper appeared in Proceedings of WADS 97, LNCS 1272, Springer-

Verlag, 1997, 116-125.
* Supported by Stanford School of Engineering Groswith Fellowship, an ARO MURI Grant

DAAH04-96-1-0007 and NSF Award CCR-9357849, with matching funds from IBM, Schlumberger
Foundation, Shell Foundation, and Xerox Corporation.�

Partially supportedby the DFG Grant KA 673/4-1, by the ESPRIT BR Grants 7097, 21726, EC-US
030, and by the Max–Planck Research Prize.

1

Electronic Colloquium on Computational Complexity, Report No. 1 (2000)

ISSN 1433-8092

2 BERMAN, CHARIKAR AND KARPINSKI

1. INTRODUCTION

The problem of on-line load balancing was studied extensively over the years
(cf., e.g., [11], [3], [4], and [2]). In this paper we study the on-line load balancing
problem for related machines (cf. [2]). We are given a set of machines that differ
in speed but are related in the following sense: a job of size � requires time ����� on
a machine with speed � . While we cannot compare structurally different machines
using a single speed parameter, it is a reasonable approach when the machines are
similar; in other cases it may be a good approximation.

Our task is to allocate a sequence of jobs to the machines in an on-line fashion,
while minimizing the maximum load of the machines. This problem was solved
with a competitive ratio 8 by Aspnes et al. [2]. Later, it was noticed by Indyk
[8] that by randomizing properly the key parameter of the original algorithm the
expected competitive ratio can be reduced to ��� . A similar randomization idea
has been used earlier by several authors in different contexts (cf. [5, 9, 12, 10, 6]).

For the version of the problem where the speeds of all the machines are the same,
Albers [1] proved a lower bound of ��� 	�
�� on the competitive ratio of deterministic
algorithms. Chen et al. [7] and independently Sgall [13] proved a lower bound of
�������������������
�	���� on the competitive ratio of randomized algorithms. No better
lower bounds are known for on-line load balancing on related machines.

Adapting the notation of Aspnes et al., we have � machines with speeds
���������������� and a stream of ! jobs with sizes �"�����������#��$. A schedule % as-
signs to each job & the machine %�'&(� that will execute it. We define)�*,+.-�#%���/#� , the
load of a machine / in schedule % and 0�*,+.-1�%�� , the load of entire schedule % as
follows:

)#*,+2-1#%���/��3� �
��4

5
6�7 8�9;: 4

� 8 �<0�*,+.-1�%����>=@?(A4)�*,+.-1�%���/#�

It is easy to observe that finding an optimum schedule %(B is NP-hard off-line, and
impossible on-line. We want to minimize the competitive ratio of our algorithm,
i.e. the ratio 0�*,+.-�#%��C��0�*,+.-1�%DB,� where % is the schedule resulting from our on-line
algorithm, and %�B is an optimum schedule.

In Section 2, we describe an on-line scheduling algorithm with competitive
ratio EGFIH 	KJ�
���	���	 for the deterministic version, and E���E�����LNMO���P��
�
QJSR���E����
for its randomized variant. In Section 3, we prove lower bounds of ��� R.E�	�T on the
competitive ratio of deterministic algorithms and ����	�E�U�� on the competitive ratio
of randomized algorithms for on-line scheduling on related machines.

2. ALGORITHM

2.1. Preliminaries
The previous algorithm for our problem, due to Aspnes et al. [2] uses the

following idea. There exists a simple algorithm that achieves competitive ratio 2

ON-LINE LOAD BALANCING FOR RELATED MACHINES 3

if we know exactly the optimum load � : we simply assign each job to the slowest
machine that would not increase its load above ��� . Because we do not know
� , we make a safely small initial guess and later double it whenever we cannot
schedule a job within the current load threshold. In the worst case, the final guess
is almost twice the optimum, and thus the load created by the jobs scheduled in
that phase can be almost four times the optimum; it is easy to see that the jobs
scheduled in the previous phases can add load of the same magnitude. This way,
converting from known � to unknown increases the resulting load at most four
times. In this paper, we will show more efficient methods of such conversion.

Our innovation is to double (or rather, increase by a fixed factor �) the guess
as soon as we can prove that it is too small, without waiting for the time when
we cannot schedule the subsequent job. Intuitively, we want to avoid wasting the
precious capacity of the fast machines with puny jobs that could be well served by
the slow machines. Therefore we start with describing our method of estimating
the necessary load, i.e. computing lower bounds on the optimal load for the
sequence of jobs seen so far.

Let � ���DT����2�������������� �� (for later convenience, we assume that the sequence
of speeds is nondecreasing). For �	�
� we define ���� ���� as the sum of speeds
of these machines that have speed larger than � . (Cap stands for capacity, note
that ���� #T�� is the sum of speeds of all the machines and �����#� �G� T .) For a
set of jobs � and a load threshold � we define �������������.#����� � �"� as the sum of
sizes of those jobs that have � 8 ���"!#� . (OnlyFor stands for the work that can be
performed only by the machines with speed larger than � if the load cannot exceed
� .) The following lemma is immediate:$&%�'('*)
+-,/.�,

For a set of jobs � , there exists a schedule % with 0�*,+.-1�%���0#�
only if �����1���2�3�.������ ���"�405�6��������� for every �"�7� .

Before we formulate and analyze our algorithm, we will show how to use the
notions of Cap and OnlyFor to analyze the already mentioned algorithm that keeps
the load under ��� if load � is possible off-line. We first reformulate it to make it
more similar to the new algorithm which will be presented later. Machine / has
capacity 8 4 �9� � 4 equal to the amount of work it can perform under � load, and
the safety margin ! 4 to assure that we will be able to accomodate the jobs in an
on-line fashion. In this algorithm the capacity and the safety margin are given the
same value, in the new one they will be different.

(* initialize *)
for /�: � to � do

! 4 :;8 4 :<� � 4
&=: T
(* online processing *)
repeat

read(�)
&=: & F �

4 BERMAN, CHARIKAR AND KARPINSKI

%�P&���: =��PM �D/�� 8 4 FI! 4 ! �&�
8 6 7 8�9 :;8 6�7 8�9 � �

forever

Note that ! 4 remains fixed while 8 4 could decrease during the execution of the
algorithm. In fact, 8 4 could become negative; however the value of 8 4 is always at
least �G! 4 .

This algorithm shares the following property with the new one: the jobs are
offered first to machine 1 (the slowest), then to machine 2 etc., so each time the
slowest possible machine accepts the new job. Given a stream of jobs � , we can
define ��4 as the stream of jobs that are passed over by machine / or that reach
machine /"F � (for � 0 /�� � these two conditions are equivalent, for / � T
only the latter and for / � � only the former applies). The correctness of the
algorithm is equivalent to the fact that the stream � is empty—it consists of the
jobs passed over by all the machines. From the correctness the load guarantee
follows easily, because the sum of sizes of jobs assigned to machine / is less than
the initial capacity plus the safety margin, i.e. � � 4 F � � 4 , and so the load is less
than ��� � 4 ��� 4 � � � .

For the inductive reasoning we define � 4 � �,T���� 4 ������������ �� and ���� 4 ���� to be
the sum of speeds from � 4 that exceed � .

$&%�'('*)
+-, +-,
If there exists a schedule %,B with 0�*,+.-1�%�B�� �9� , then for every

/"�S������������� F � and every � � �.4
�������������.���� � � � 4�� ���(0 �=���� 4 ���� �

Proof. By induction on / . For / ��� the claim is equivalent to Lemma 2.1. For
the inductive step, after assuming the claim for / , we have to show that

�����1���2�3�.������ ��� 4 �(05�6���� 4	� � �����
�����6� � 4�� �,�
For ���� T , the inequality follows from the inductive hypothesis directly: the
left hand side can only become smaller (because � 4 is a subsequence of � 4� �),
while the right hand side remains unchanged. Thus it suffices to show that
�������������.#T���� � ��4;�(0
�=���� 4�� � #T�� .

We consider the following two cases according to the final value of 8�4 in the
execution of the algorithm.
Case 1: 8 4 ! T .
In this case machine / accepted all jobs with size at most !@4 � � ��4 from the
stream � 4�� � , hence �����1���2�3�.�T���� ��� 4 � , which is the sum of job sizes in � 4 , is at
most �����1���2�3�2#� 4 � � � � 4�� � � , which in turn is less or equal to �=���� 4 �� 4 � . Since
���� 4 #� 4 �(0�� 8�: 4�� � � 8 � ���� 4�� � #T�� , the claim follows.

ON-LINE LOAD BALANCING FOR RELATED MACHINES 5

Case 2: 8 4 0 T .
In this case, the total size of the jobs accepted by machine / is at least � � 4 , the
initial value of 8 4 , hence � � ���������.�T�� � ��� 4 �40 �����1���2�3�.�T���� ��� 4�� � � � � � 4 , while

���� 4	� � �T�� � 5���������
	 � �
� 5������� �� ��� 4 ������ 4 #T�� � � 4 �

By the inductive hypothesis, � � ���������.�T�� � ��� 4� � �(0 �6���� 4 #T�� . Hence, the claim
follows.

Lemma 2.2 allows us to conclude that if a schedule with load � exists, then
�������������.#T���� � �� 2� 0 �=���� � � #T�� � T . Thus the stream �� of unscheduled jobs
is empty, which means that the algorithm is correct.

2.2. The New Algorithm
The next algorithm is similar, but it proceeds in phases, each phase having a

different value of � . Note that the algorithm presented in the previous section
has to be combined with a doubling procedure to guess the optimum load � ; thus
it can be viewed as a single phase in the complete algorithm for load balancing.
The new algorithm we describe incorporates the guessing of the optimal load � as
an integral part of the algorithm. Unlike the previous algorithm, it is a complete
algorithm and not just a single phase. Instead of losing a safety margin for each
phase, the safety margin is shared among all phases, thus ensuring a better usage
of the available space.

The algorithm uses a parameter � . While it is correct for any value of the
parameter � ! � , we will later find the optimum values for � (the values are
different in the deterministic and randomized versions). The algorithm maintains
a guess � of the optimum load as well as variables 8 4 and !K4 for the capacity and
safety margin of machine / (as in the previous algorithm). Each time a new job
is received, the algorithm checks if its guess � needs to be updated. The guess
� is too low if �������������.���� � � � � ! �6���� #��� for some � � � . (Here � is the
sequence of jobs received so far). In such a case, � is multiplied by � and the
values of 8 4 and ! 4 are updated. ! 4 is set to � � 4 and 8 4 is incremented by ! 4 .
The complete algorithm is as follows.

(* initialize *)
�#: something very small
for /�: � to � do

! 4 :;8 4 : T
&=: T , � : empty string
(* online processing *)
repeat

read(�)
&=: & F � , � 8 : � , append � with � 8

6 BERMAN, CHARIKAR AND KARPINSKI

(* start a new phase if needed *)
while � � ���������.���� � ���"�4!
�=�����#��� for some �6� � do

� :;� � � ! 4 :<� � 4 � 8 4 : 8 4 F ! 4
(* schedule � 8 *)
%�P&���: =��PM �D/�� 8 4 FI! 4 ! � 8 �
8 6 7 8�9 :;8 6�7 8�9 � � 8

forever

We will say that executing “ %�'&(� : = �PM �D/�� 8 4 F ! 4 ! � 8 � ” schedules � 8 (even
though, for the sake of argument, we admit the case that the set of machines with
sufficient capacity is empty). We need to prove that the algorithm is correct, i.e.
that we never apply min to an empty set; in other words, for every job we can find
a machine with sufficient remaining capacity.

Let ��� be the value of � when the first job was scheduled. We view the
execution as consisting of phases numbered from 0 to

�
, where the) -th phase

schedules jobs with � = ��� = ��� � � . Let � � be the stream of jobs scheduled in
phase) . Using the same convention as in the analysis of the previous algorithm,
we define � �4 to be the stream of jobs that in phase) machine / F � received or
machine / passed over. Now the correctness will mean that the stream � � is empty
for every phase) .

Because the initial estimate for � may be too low, machines may receive more
work than in the previous algorithm. This is due to the fact that in the initial
phases the slower machines needlessly refuse to pick jobs that they would gladly
accept later, thus increasing the load on the faster machines. Nevertheless, as we
shall show, this increase is limited.

As a preliminary, we need to analyze the consequences of the test that triggers
a new phase as soon as � is not appropriate for the stream of jobs received so far.
First of all, the test implies that every � � is appropriate for the stream � ������� � � ,
and in particular, for the substream � � . Therefore

� � ���������.���� � � � � � �(0 � � �����#����
� �
	��	 ��������?���	O) ?(M���	��	 ���K�6� � � ��K�
This allows us to prove the following lemma by induction:

$&%�'('*)
+-,��-,
For every /"� T��������C��� and every phase)

�5 � : � �����1���2�3���T�� � � � � �4 � 0
� �5 � : � � � �

�� 5
8�: 4�� �

� 8 �! �

ON-LINE LOAD BALANCING FOR RELATED MACHINES 7

Proof. For /"�>T this follows simply from the fact that for every phase �(0)

�����1���2�3�2#T���� � ��� �� ��� �����1���2�3�.�T���� � � � � �(0 � � �����#T�� �#� � �� 5
8�: �

� 8 �! �

For)G� T this follows from Lemma 2.2, as the phase 0 is identical to the first
algorithm with � � � � .

Therefore we may assume that the claim is true for #/ �C)�� ��� and �/��I���C)�� . We
will prove the claim for #/ �C)�� . We consider two cases, according to the value of 8�4
at the end of phase) .
Case 1: 8 4 ! T .
Subtract formally from both sides of the claim for / and) the respective sides of
the claim for / and) � � . This way we see that it suffices to show that

�������������.�T�� � � ��� �4 � 0 � � �� 5
8�: 4�� �

� 8��!
Because the final value of 8 4 is positive, in phase) machine / accepted all jobs from
the stream � �4� � that had size bounded by ������4 , and therefore the stream � �4 consists
only of the jobs that must be executed on machines faster than � 4 . Thus the sum of
sizes of all jobs in this stream, �������������.#T���� � � � �4 � , is at most �������������.#� 4 ��� � � � � � ,
which by (#) is at most � � �����#� 4 � . Lastly, ���� �� 4 � 0 � 8�: 4�� � � 8 .
Case 2: 8 4 0 T .
Suppose the final value of 8 4 in phase) equals some 860 T . This time subtract
from both sides of the claim for / and) the respective sides of the claim for /1� �
and) . By the inductive hypothesis, the claim is true for / � � and) . Thus,�5 � : � �������������.�T�� � � ��� �4�� � � 0

� �5 � : � � � �
�� 5
8�: 4

� 8 �! �

Subtracting this from the claim for / and) , we get�5 � : � �������������.�T�� � � ��� �4 � � �����1���2�3�.�T���� � � � �4�� � �C� 0 �
� �5 � : � � � � � 4 �

It suffices to show that the above inequality holds, as adding this to the statement
of the claim for / � � and) (which we know to be true), we will get the statement
of the claim for / and) . Equivalently, we need to prove that�5 � : � ������1���2�3�2#T���� � � � �4�� � � �9� � ���������.�T�� � � � � �4 �C��� � �5 � : � � � � � 4 � � �K�

8 BERMAN, CHARIKAR AND KARPINSKI

On the left hand side this inequality has the difference between the sum of jobs
sizes that reach machine / and the sum of the job sizes that are passed over by
machine / to the subsequent machines (during the phases from 0 to)). In other
words, this is the sum of sizes of the jobs accepted by machine / during these
phases. This sum, say % , is related in the following manner to 8 :

T � 8O�
� �5 � : � � � � 4 � � % � � ��� � �P= ��L � 	�� % � � �5 � : � � � � � 4�� �� �K� �

Lemma 2.3 implies that

�5 � : � �����1���2�3�.�T���� � � � � � 0 T

This means that, for every phase �(0 �
,

�����1���2�3�2#T���� � � � � ��� T

Observe that � � ����������#T���� � � � � � is simply the sum of the sizes of all jobs in � � .
Thus � � is empty for every phase � , implying the correctness of the algorithm.

To analyze the competitive ratio, we may assume that 0�*,+.-1�%(B��3� � . Then the
penultimate value of � must be smaller than 1 and the final one smaller than � .
Consider a machine with speed 1. The work accepted by a machine is smaller than
the sum of all � ’s up to that time (additions to the capacity) plus the last � given
for the safety margin. Together it is � F �"F � � � F ����� ��F � = �. ���� � � � � � ��F ���
= �.��3� � ��� �� � � ��� . To find the best value of � , we find zeros of the derivative
of this expression, namely of ��3� � � R � F ���C�� � � ��� � , and solve the resulting
quadratic equation. The solution is � � � F � ����� and the resulting competitive
ratio is E FIH 	 J
���	���	(R .

One can observe that the worst case occurs when our penultimate value of � is
very close to 1 (i.e. to the perfect load factor). We will choose the initial value of
� to be of the form � �
	 ��� where is a suitably large integer and � is chosen,
uniformly at random, from some interval � ������� ��� ! (we shifted the interval
� T���� ! to compensate for the scaling that made 0�*,+.-1�%,B�� � �). Therefore we
can replace the factor � with the average value of the last � . For negative � this
value is � � � � , for positive it is � � . The average is

� �
�
� �

� ��� -�� F
� � �
�� � � -�� �

� �
� �
� �

� -�� F
� � �
�� � � -��K�

� �� � � -��K� � � �
LNM � �

ON-LINE LOAD BALANCING FOR RELATED MACHINES 9

Therefore the expected competitive ratio is

� � �
LPM��

��� � �
� � � � ��� � �

LPM � �

The equation for the minimum value of this expression does not have a closed
form solution, but nevertheless we can approximate it numerically. The minimum
is achieved for � close to 2.155, and approximately equals 4.311.

3. LOWER BOUNDS

In this section, we will prove deterministic and randomized lower bounds for
load balancing on related machines.

As with the algorithm in the previous section, we will use very similar con-
structions for the deterministic and the randomized case. The set of machines and
the sequences of jobs being considered are defined in terms of a parameter � ! � .
Different values of the parameter will be used in the deterministic and randomized
cases.

We will consider a set of machines �DT������������ ����� , where / -th machine has speed

� 4 �
� � �14 �
 / � ��� � � � � �
 /"� � (1)

Note that �� � ���4 : � ��4 , consequently � 4 : � � 4 � ���4 : � � ��4 . In the deter-
ministic case the only requirement on � will be that � 0 ��� ��� �	� . In the
randomized case we will consider � ��
 . In both settings, a lower bound for some
particular value of � implies the same result for all higher values.

The sequences of job sizes that we will consider will have the form ��4 =
P&���������� � & 4 � , where & � ��� � . These sequences have two salient properties. Since
all of them are prefixes of the same infinite sequence, after processing

�
initial

jobs, all sequences of length at least
�

remain equally possible. Moreover, & 4 , the
size of the last job of � 4 , is also the optimum load: on one hand, the last job alone
requires load & 4 , as the largest speed equals 1; on the other, we can achieve this
load by assigning & � to machine =��NM1�/ � � ��� � .

3.1. Deterministic Lower Bound
The idea of the deterministic lower bound is to formulate a necessary condition

for the existence of a scheduling algorithm that has a competitive ratio below � � ;
finally arriving at a condition that can be effectively tested by a computer program.
Then to show a lower bound of � � it will be sufficient to check that � fails this
test. We start from the following lemma.$&%�'('*) �-,/.�,

Suppose that a scheduling algorithm � achieves a competitive
ratio lower than � � . Then for every sequence of job sizes of the form � 4 all jobs
are scheduled on machines 0, 1, and 2.

10 BERMAN, CHARIKAR AND KARPINSKI

Proof. Suppose an algorithm � schedules the / th job on machine ! ! �
for some / . Then for the sequence � 4 the algorithm will lead on machine ! to
the load & 4 ����$ � & 4 � � � � ��� � & 4 (remember that �D$ 0 � �	�). On the other
hand the optimum load for � 4 is & 4 , hence the competitive ratio is at least � � , a
contradiction.

The second step in developing our necessary condition is forming a representa-
tion of the configuration achieved by an algorithm after processing a sequence ��4 .
Obviously, we can represent this configuration by recording for each machine the
sum of sizes of jobs scheduled on this machine. By Lemma 3.1, we may assume
that jobs are scheduled only on machines 0, 1, and 2, and so it suffices to record the
sums for these machines only, say that they form a vector

� 4 � � 4� � � 4� � � 4� � . By
dividing the coefficients of this vector by the optimum load we obtain the vector of
relative loads � 4 ��� �14 � 4 . This way the necessary condition for the competitive
ratio to be below � � is that � 4���� for every / ! T . Here the upper bound vector� is � � � � � � � � and � �	� means that for every coordinate the entry in � is
lower than the entry in � .

Let
 � � ����T���T�� ,
 � � �T�������T�� and
 � � �T���T������ . Suppose that the
�/,F ��� st job is scheduled on machine ! . Then � 4�� � ��� � � � 4 F�
 $. Obviously,
� � � �T���T���T�� . Consider the following infinite graph ��� : the set of vertices is V
= ��� �� � ��� ��� � and the edges are of the form � � � � � � F�
 $ � . Then if
there exists a deterministic scheduling algorithm with competitive ratio below � � ,
we have an infinite path in the graph � � that starts at the node #T���T���T�� .

To reduce the graph to a finite size we discretize the relative load vector.
Intuitively, for some small � , we want to map every vertex � in the infinite graph
(� is a vector in �), to the vector obtained by replacing every coordinate of �
by the smallest multiple of � that does not exceed it. More precisely, we perform
discretization as follows. Consider the operation � defined on vectors, such that
��� is a vector obtained from � by replacing each coordinate � with � ��� . Let
� ! T be a parameter of discretization (the value of � in the previous discussion
is �����). We define a new graph � � with the set of nodes ���� ��� and edges of the
form � �� � � � �IF ��
 $ � � � . Obviously, if there exists an infinite path starting at
�T���T���T�� in � � , we also have such a path in � � . Moreover, the set of nodes of
� � consist of vectors with integer coordinates that satisfy �T���T���T�� � � � � � .
Therefore, this set is finite, and if there exists an infinite path starting at (0,0,0) in
��� , then there exists a cycle in � � .

To simplify the problem further, we define �K �O��� � to be a subgraph of � �
consisting of nodes reachable from (0,0,0). Now we can phrase our necessary
condition: for every �
! T the graph �K � ��� � contains a cycle. Consequently,
to show a lower bound of � � it suffices to compute �K �O��� � for some � ! T and
check that it is acyclic.

We have verified exactly that for � � ����E(R2
�� and � � ����
�T , thus obtaining a
lower bound of � � ! ��� R.E�	�T .

ON-LINE LOAD BALANCING FOR RELATED MACHINES 11

We mention that it is possible to give a purely analytic proof of a weaker lower
bound of ������
 . The idea is to fix � ������
 and consider a similar setting as before,
except that we will prove that one cannot have a better competitive ratio than
� � � ������
 . By reasoning similarly as in Lemma 4, one can show that if we
achieve a better ratio, then all jobs are scheduled on machines 0 and 1. As before
we define vectors of relative loads, which must satisfy �T���T�� � � � #������
�������
�� .
When we schedule a job on machine 0, the vector of relative loads changes from �
to
�� �KF ����T�� , and if we schedule this job on machine 1, � changes to

�� �KF �T������ .
Now observe that we can never schedule two jobs in a row on machine 1,

because this would change the (relative) load vector to � � � F �T�� �� � and
�� ! � � .

Suppose now that � ���������� � � and we can schedule two jobs in a row on machine
0. Then the load vector changes to � � � F �� ��T�� , hence � �2� ��F �� 0 �

�
, which implies

� � 0 � ���� . Consequently, ��� F � � 0 � ���� F � � � E�C� � ���� � . On the other hand, after
scheduling of the first

�
jobs, � � F ��� � E�C� �� �� � � � . Thus, once we schedule the

first seven jobs, we cannot ever schedule two jobs in a row at machine 0.
According to our last two observations, once we schedule the first seven jobs,

we must strictly alternate between scheduling on machine 0 and on machine 1.
However, if we schedule a job on machine 1 three times in such a way, the resulting
relative load will be at least ��F��� F ���� � � � � �� � ! � � , a contradiction.

A more careful argument will succeed if � � � � � � � � F � � ��� T , which
allows to increase � from 1.5 to 1.5128, and the proven ratio from 2.25 to 2.288.
One can apply a similar technique to improve our better lower bound, namely
2.438, but the gain is much smaller.

3.2. Randomized Lower Bound
Fix a constant ! . We consider the distribution over the ! job sequences

��������������$ where the sequence � 4 , �	0 / 0 ! is given with probability �$. In
other words, we give the job sequence � $ and stop the job sequence after / jobs
where / is chosen uniformly and at random from the set �.�������������;! � . As noted
before, the optimal load for �24 is � 4 , hence the expected value of the optimal load
is �$ � � $4 : � � 4 .

Consider the schedule produced by a deterministic algorithm for the job se-
quence � $. Note that any schedule for � $ induces a schedule for ��4 , � 0 / 0 ! .
From this, we can compute the expected load incurred by the algorithm for the
chosen distribution of job sequences.

We compute all possible schedules for �.$ and for each schedule, compute
the expected load for the distribution of job sequences. From this, we obtain
the minimum expected load for any deterministic algorithm. By Yao’s principle
(cf. [14]), the ratio of the minimum expected load to the expected value of the
optimal load gives us a lower bound for randomized algorithms versus oblivious
adversaries.

A computer program tested all possible schedules for � �
 , ! � � R and
� �<���
 and computed a lower bound of ����	�E�U�� . Note that this implies a

12 BERMAN, CHARIKAR AND KARPINSKI

randomized lower bound of ����	�E�U�� for any � �
 machines. For �9!
 , we
consider � machines with speeds � 4 chosen as before. For the purpose of analysis,
we group the slowest � ��
 machines into a single machine, i.e. pretend that any
job scheduled on the � �
 slowest machines is scheduled on a single machine
of speed � � �4 : � � 4 � �� � � � ���� . The load on this single machine is also a lower
bound for the maximum load on the slowest � �
 machines. Observe that this
gives us
 machines whose speeds are the same as the speeds of the machines we
use for the case � �
 . Hence the analysis for � �
 applies and so does the
lower bound of ����	�E�U�� .

4. CONCLUSIONS

We have designed new on–line algorithms for scheduling permanent jobs on
related machines achieving the best to date deterministic and randomized compet-
itive ratios of 5.828 and 4.311, respectively. We have also proved lower bounds
of 2.4380 and 1.8372 for the corresponding competitive ratios. A challenging
problem remains to close huge gaps between upper and lower bounds. Can some
variants of our methods still lead to the improvements on the competitive ratios?
It seems that some new proof techniques are needed for improving our lower
bounds, especially for a randomized case.

5. ACKNOWLEDGEMENTS

We would like to thank Yossi Azar, Amos Fiat, Piotr Indyk and Rajeev Motwani
for valuable discussions and encouragement, and Susanne Albers for letting us
read her paper before its publication.

REFERENCES
1. S. Albers, Better bounds for online scheduling, Proc. 29th ACM STOC (1997), pp. 130-139.

2. J. Aspnes, Y. Azar, A. Fiat, S. Plotkin and O. Waarts, On-line load balancing with applications
to machine scheduling and virtual circuit routing, Proc. 25th ACM STOC(1993), pp. 623-631,
see also: On-line routing of virtual circuits with applications to load balancing and machine
scheduling, J. ACM, 44:486-504, 1997.

3. Y. Azar, A. Broder, A. Karlin, On-line load balancing, Proc. 33rd IEEE FOCS (1992), pp. 218-225.

4. Y. Azar, J. Naor, R. Rom,The competitiveness of on-line assignment, Proc. 3rd ACM-SIAM SODA
(1992), pp. 203-210.

5. A. Beck and D. Newman, Yet more on the linear search problem, Israel Journal of Math., 8:419–429,
1970.

6. S. Chakrabarti, C. Phillips, A. Schulz, D.B. Shmoys, C. Stein, and J. Wein, Improved scheduling
algorithms for minsum criteria, Proc. 23rd ICALP, Springer, 1996.

7. B. Chen, A. van Vliet and G. J. Woeginger, A lower bound for randomized on-line scheduling
algorithms, Information Processing Letters, vol.51, no.5, pp. 219-22, 1994.

8. P. Indyk, personal communication.

ON-LINE LOAD BALANCING FOR RELATED MACHINES 13

9. S. Gal, Search Games, Academic Press, 1980.

10. M. Goemans and J. Kleinberg, An improvedapproximationratio for the minimum latency problem,
Proc. 7th ACM-SIAM SODA, (1996), pp. 152–157.

11. R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Technical Journal 45
(1966), pp. 1563-1581.

12. R. Motwani, S. Phillips and E. Torng, Non-clairvoyant scheduling, Proc. 4th ACM-SIAM SODA
(1993), pp. 422–431, see also: Theoretical Computer Science, 130 (1994), pp. 17–47.

13. J. Sgall, A lower bound for randomizedon-line multiprocessorscheduling, Information Processing
Letters, vol.63, no.1, pp. 51–5, 1997.

14. A.C. Yao, Probabilistic computations: Towards a unified measure of complexity, Proc. 17th IEEE
FOCS (1977), pp. 222–227.

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

