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Abstract

This paper shows that the largest possible contrast Cy, ,, in a k-out-of-n secret sharing scheme
is approximately 4-(*~1). More precisely, we show that 4~ (*~1 < ¢}, < 4= ¢=Dpk/(n(n —
1)---(n — (k —1))). This implies that the largest possible contrast equals 4~*=1) in the limit
when n approaches infinity. For large n, the above bounds leave almost no gap. For values of
n that come close to k, we will present alternative bounds (being tight for n = k). The proofs
of our results proceed by revealing a central relation between the largest possible contrast in
a secret sharing scheme and the smallest possible approximation error in problems occuring in
Approximation Theory.

1 Introduction

Visual cryptography and k-out-of-n secret sharing schemes are notions introduced by Naor and
Shamir in [NS1]. A sender wishing to transmit a secret message distributes n transparencies
among n recipients, where the transparencies contain seemingly random pictures. A k-out-of-n
scheme achieves the following situation: If any k& recipients stack their transparencies together,
then a secret message is revealed visually. On the other hand, if only & — 1 recipients stack their
transparencies, or analyze them by any other means, they are not able to obtain any information
about the secret message. The reader interested in more background information about secret
sharing schemes is referred to [NS1].

An important measures of a scheme is its contrast, i.e., the clarity with which the message
becomes visible. This parameter lies in interval [0, 1], where contrast 1 means “perfect clarity” and
contrast 0 means “invisibility”. Naor and Shamir constructed k-out-of-k secret sharing schemes
with contrast 2=%*~1) and were also able to prove optimality. However, they did not determine the
largest possible contrast Cy, , for arbitrary k-out-of-n secret sharing schemes.

In the following, there were made several attempts to find accurate estimations for the optimal
contrast and the optimal tradeoff between contrast and subpixel expansion for arbitrary k-out-
of-n secret sharing schemes [D],[HKS],[ABDS],[BDS], [BDDS]. For £ = 2 and arbitrary n this
problem was completely solved by Hofmeister, Krause, and Simon in [HKS|. But the underlying
methods, which are based on the theory of linear codes, do not work for k& > 3. Strengthening
the approach of Droste [D], the first step in the direction of determining Cj, for some values
k and n, where k > 3, was taken in [HKS]. They presented a simple linear program LP(k,n)
whose optimal solution represents a contrast-optimal k-out-of-n secret sharing scheme. The profit
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achieved by this solution equals C} . Although, Cy, was computable in poly(n) steps this way,
and even elemantary formulas were given for k = 3,4, there was still no general formula for C ,
(or for good bounds). Based on computations of Cy,,, for specific choices of k,n, it was conjectured
in [HKS] that Gy, > 4~ *~1 with equality in the limit when n approaches infinity. In [BDS] and
[BDDS], some of the results from [HKS] concerning k£ = 3,4 and arbitrary n could be improved.
Furthermore, in [BDDS], Blundo, D’Arco, DeSantis and Stinson determine the optimal contrast of
k-out-of-n secret sharing schemes for arbitrary n and £k =n — 1.

In this paper, we confirm the above conjecture of [HKS] by showing the following bounds on

Cin:
k

—(k-1) < < 4= (k=) y '

This implies that the largest possible contrast equals 4~(%~1) in the limit when n approaches infinity.

For large n, the above bounds leave almost no gap. For values of n that come close to k, we will
present alternative bounds (being tight for n = k). The proofs of our results proceed by revealing
a central relation between the largest possible contrast in a secret sharing scheme and the smallest
possible approximation error in problems occuring in Approximation Theory. A similar relation
was used in the paper [LN2] of Linial and Nisan about Approximate Inclusion-Exclusion (although
there are also some differences and paper [LN2] ends-up with problems in Approximation Theory
that are different from ours).

2 Definitions and Notations

For the sake of completeness, we recall the definition of visual secret sharing schemes given in [NS1].
In the sequel, we simply refer to them under the notion scheme. For a 0-1-vector v, let H(v) denote
the Hamming weight of v, i.e., the number of ones in v.

Definition 2.1 A k-out-of-n scheme C = (Cy,C1) with m subpizels, contrast « = «(C) and
threshold d consists of two collections of Boolean n x m matrices Co = [Co1,...,Coyr] and C =
[Ci1,...,C14], such that the following properties are valid:

1. For any matriz S € Cy, the OR v of any k out of the n rows of S satisfies H(v) < d — am.
2. For any matriz S € C1, the OR v of any k out of the n rows of S satisfies H(v) > d.

3. For any q < k and any g-element subset {i1,...,iq} C {1,...,n}, the two collections of g xm

matrices Dy and D1 obtained by restricting each n x m matriz in Cy and C1 to rows i1,...,144
are indistinguishable in the sense that they contain the same matrices with the same relative
frequencies.

k-out-of-n schemes are used in the following way to achieve the situation described in the
introduction. The sender translates every pixel of the secret image into n sets of subpixels, in the
following way: If the sender wishes to transmit a white pixel, then she chooses one of the matrices
from Cy according to the uniform distribution. In the case of a black pixel, one of the matrices
from C; is chosen. For all 1 < ¢ < n, recipient % obtains the ¢-th row of the chosen matrix as an
array of subpixels, where a 1 in the row corresponds to a black subpixel and a 0 corresponds to a
white subpixel. The subpixels are arranged in a fixed pattern, e.g. a rectangle. (Note that in this
model, stacking transparencies corresponds to “computing” the OR of the subpixel arrays.)



The third condition in Definition 2.1 is often referred to as the “security property” which
guarantees that any k—1 of the recipients cannot obtain any information out of their transparencies.
The “contrast property”, represented by the first two conditions in Definition 2.1, guarantees that
k recipients are able to recognize black pixels visually since any array of subpixels representing a
black pixel contains a “significant” amount of black subpixels more than any array representing a
white pixel.!

In [HKS], it was shown that the largest possible contrast Cj , in an k-out-of-n scheme coincides
with the maximal profit in the following linear program (with variables &g, ..., &, and ng,...,N,):

Linear Program LP(k,n)

max Y7_F ("2%)(7) (¢ — n;) subject to

1. For j =0,...,n:& >0,n; > 0.

3. For 1 =0,...,k—1: DI (BN ()7 —my) =0

The following sections only use this linear program (and do not explicitly refer to Definition 2.1).
We make the following conventions concerning matrices and vectors. For matrix A, A’ denotes

its transpose (resulting from A by exchanging rows and columns). A vector which is denoted by &

is regarded as a column vector. Thus, its transpose ¢ is a row vector. The all-zeros (column) vector

is denoted as 0. For matrix A, A; denotes its j-th row vector. A;- denotes the j-th row vector of

its transpose (as opposed to the transpose of the j’th row vector).

3 Approximation Error and Contrast

In Subsection 3.1, we relate the problem of finding the best k-out-of-n secret sharing scheme to
approximation problems of type BAV and BAP. Problem BAV (Best Approximating Vector) asks
for the “best approximation” of a given vector ¢ within a vector space V. Problem BAP (Best
Approximating Polynomial) asks for the “best approximation” of a given polynomial p of degree k
within the set of polynomials of degree k — 1 or less. It turns out that, choosing ¢, V, p properly, the
largest possible contrast is twice the smallest possible approximation error. In Subsection 3.2, we
use this relationship to determine lower and upper bounds. Moreover, the largest possible contrast
is determined exactly in the limit (when n approaches infinity). In Subsection 3.3, we derive a
criterion that helps to determine those pairs (k,n) for which Cj , coincides with its theoretical
upper bound from Subsection 3.2.

3.1 Secret Sharing Schemes and Approximation Problems

As explained in Section 2, the largest possible contrast in an k-out-of-n secret sharing scheme is
the maximal profit in linear program LP(k,n). The special form exhibited by LP(k,n) is captured

!The basic notion of a secret sharing scheme, as given in Definition 2.1, has been generalized in several ways. The
generalized schemes in [ABDS], for instance, intend to achieve a situation where certain subsets of recipients can
work successfully together, whereas other subsets will gain no information. If the two classes of subsets are the sets
of at least k recipients and the sets of at most k — 1 recipients, respectively, we obtain (as a special case) the schemes
considered in this paper. Another model for 2-out-of-2 schemes involving three colors is presented in [NS2].



by the more abstract definitions of a linear program of type BAV (Best Approximating Vector) or
of type BAP (Best Approximating Polynomial).

We start with the discussion of type BAV. We say that a linear program LP is of type BAV
if there exists a matrix A € R¥*(1+7) and a vector @ € R"*! such that LP (with variables £ =
(&oy---,&n) and 7= (no,...,Mp)) can be written in the following form:

The primal linear program LP (A, ¢) of type BAV
max 57(5— 7j) subject to
(LP1) £>0,7>0
(LP2) Z?:o § = E?:o n =1
(LP3) AG— i) =0

Condition (LP2) implies that

n

> (& —mni) =0.

=0
Thus, we could add the all-ones row vector (1,...,1) to matrix A in (LP3) without changing the

set of legal solutions. For this reason, we assume in the sequel that the following condition holds
in addition to (LP1), (LP2), (LP3):

(LP4) The vector space V4 spanned by the row vectors of A contains the all-ones vector.

We aim to show that linear program LP(A,¢) can be reformulated as the problem of finding
the “best” approximation of ¢ in V4. To this end, we pass to the dual problem? (with variables s, ¢
and @ = (UO, cee ,uk_l)):

The dual linear program DLP(A, ¢) of type BAV
min s+t subject to
(DLP1) A'd+ (s,...,s) >¢
(DLP2) A'i— (t,...,t)' <¢
Conditions (DLP1) and (DLP2) are obviously equivalent to

! = ! =
s> max (¢; — Ajd) and t > max (A4 — ¢j),
7=0,...,n 7=0,...,n

and an optimal solution certainly satisfies

_ ) ! — _ /o .
s = ji%?.’.).(,n(cj — Aji) and t = jg(l)?.).(,n(Aju —¢j).

Note that vector A'il is a linear combination of the row vectors of A. Thus, Vi = {A'd| i@ € RF}.

DLP(A, ) can therefore be rewritten as follows:

min | max (¢; —v;)+ max (v; —c¢;
TEVA ':0,...,n( J i) j:o,___,n( i~ <)

2The rules, describing how the dual linear program is obtained from a given primal, can be looked up in any
standard text about linear programming (like [PS], for instance).



Consider a vector ¥ € V4 and let

Jj—(0) = argji%?..)in(cj —wv;) and j(7) = argj;%?_)in(vj —¢j).

Term S(¥) := ¢;_(y) — vj_(v) Tepresents the penalty for v;_(,) being smaller than c;_(,). Symmet-
rically, L(¥) := vj, () — ¢;_ () Tepresents the penalty for v;, () being larger than ¢;_ (,). Note that
the total penalty S(¥) + L(7¥) does not change if we translate ¥ by a scalar multiple of the all-ones
vector (1,...,1)". According to (LP4), any translation of this form can be performed within V4.
Choosing the translation of ¥ appropriately, we can achieve S(7) = L(7), that is, a perfect balance
between the two penalty terms. Consequently, the total penalty for ¥ is twice the distance between
¢ and ¥ measured by the metric induced by the maximum-norm. We thus arrive at the following

result.

Theorem 3.1 Given linear program LP(A,¢) of type BAV, the mazimal profit C in LP(A,¢) sat-
isfies

C =2 min max [¢; —vjl.
€V, j=0,...,n

Thus, the problem of finding an optimal solution to LP(A4, ¢) boils down to the problem of finding
a best approximation of ¢ in V4 w.r.t. the maximum-norm.

We now pass to the discussion of linear programs of type BAP. We call d € R evaluation-
vector of polynomial p € R[X] if d; = p(j) for j = 0,...,n. We say that a linear program LP(A4, )
of type BAV is of type BAP if, in addition to Conditions (LP1),..,(LP4), the following holds:

(LP5) ¢ is the evaluation vector of a polynomial, say p, of degree k.
(LP6) Matrix A € ®*(47) has rank k, i.e., its row vectors are linearly independent.

(LP7) Forl=0,...,k—1, row vector A; is the evaluation vector of a polynomial, say ¢;, of degree
at most k£ — 1.

Let P, denote the set of polynomials of degree at most m. Conditions (LP6) and (LP7) imply that
V4 is the vector space of evaluation vectors of polynomials from P, ;. Theorem 3.1 implies that
the maximal profit C' in a linear program of type BAP satisfies

C: 2. min ma N A
q€Pr—1 j:0,._)in |p(-7) Q(])|

Let X denote the leading coeffient of p. Thus p can be be written as sum of AX* and a polynomial

in P;_;. Obviously, p is as hard to approximate within P;_; as |\|X*. We obtain the following
result:

Corollary 3.2 Given linear program LP(A, <) of type BAP, let p denote the polynomial of degree k
with evaluation vector ¢, and X the leading coefficient of p. Then the mazimal profit C in LP(A,?)
satisfies
—9. . ks '
C=2- min max |\)\|J Q(J)‘

We introduce the notation
nk=nn—-1)-- - (n—(k—1))

for so-called “falling powers” and proceed with the following result:



Lemma 3.3 The linear program LP(k,n) is of type BAP. The leading coefficient of the polynomial
p with evaluation vector € is (—1)k /nk.

The proof of this lemma is obtained by a close inspection of LP(k,n) and a (more or less) straight-
forward calculation.

Corollary 3.4 Let Cy,, denote the largest possible contrast in an k-out-of-n secret sharing scheme.
Then:
Crn=2- min max |j*/nE—q(j)|.
kn Sain max [j7/n® = q(7)]

Thus, the largest possible contrast in an k-out-of-n secret sharing scheme is identical to twice
the smallest “distance” between polynomial X*/n% and a polynomial in P;_;, where the “distance”
between two polynomials is measured as the maximum absolute difference of their evaluations on
points 0,1...,n.

3.2 Lower and Upper Bounds

Finding the “best approximating polynomial” of X* within P,_; is a classical problem in Approx-
imation Theory. Most of the classical results are stated for polynomials defined on interval [—1, 1].
In order to recall these results and to apply them to our problem at hand, the definition of the
following metric will be useful:

doo(f,9) = max |[f(z) — g(z)| (1)

z€[—1,1]

This definition makes sense for functions that are continuous on [—1,1] (in particular for polyno-
mials). The metric implicitly used in Corollaries 3.2 and 3.4 is different because distance between
polynomials is measured on a finite set of points rather than on a continuous interval. For this
reason, we consider sequence

i
zj=—1+%forj:0,...,n. 2)

It forms a regular subdivision of interval [—1,1] of step width 2/n. The following metric is a
“discrete version” of d:

dn(f,g) = max |[f(z;) — g(z))l- (3)

7=0,...,n

Let Up(X) = X* and Up o the best approximation of Uy within Py_1 w.r.t. de. Analogously,
U,:,n denotes the best approximation of U within P, w.r.t. dy.

Dk,oo = dOO(Uka Ul::k,oo) and Dk,n = dn(Uka Ul:;k,n) (4-)
are the corresponding approximation errors. It is well known from Approximation Theory? that
Uf oo (X) = X* — 27 UT3(X) (5)

where T} denotes the Chebyshev polynomial of degree k (defined and visualized in Figure 1). It
is well known that Ty = cos(k#) is a polynomial of degree k in X = cos(f) € [—1,1] with leading
coefficient 25=1. Thus, Up o is indeed from Py_1. Since max_1<gz<1 Tx(z) = 1, we get

Dj oo = 2771, (6)

3See Chapter 1.2 in [R], for instance.



Unfortunately, there is no such simple formula for Dy, (the quantity we are interested in). It is
however easy to see that the following inequalities are valid:

2
<1 - %) 2 ) < Dy < Do =2 D @
Inequality Dy, ,, < Dy, o is obvious because d,(f,g) < dxo(f,g) for all f,g. The first inequality can
be derived from the fact that the first derivation of T}, is bounded by k2 on [—1, 1] (applying some
standard tricks). We will improve on this inequality later and present a proof for the improved
statement.

Quantities Dy, and C} , are already indirectly related by Corollary 3.4. In order to get the
precise relation, we have to apply linear transformation X — (X +1), because the values attained
by a function f(X) on X =0,...,n coincide with the values attained by function f (%(X + 1)) on
X = 2p,...,2,. This transformation, applied to a polynomial of degree k with leading coefficient A,
leads to a polynomial of the same degree with leading coefficient A (%)IC The results corresponding
to Corollaries 3.2 and 3.4 now read as follows:

Corollary 3.5 Given a linear program LP(A,¢) of type BAP, let p denote the polynomial of degree
k with evaluation vector ¢, and X the leading coefficient of p. Then the mazimal profit C in LP(A,?)
satisfies

k
n
¢=2-N(3) D

Plugging in (—1)*/nE for )\, we obtain

Corollary 3.6 The largest possible contrast in an k-out-of-n secret sharing scheme satisfies

n® o—(k-1)
Ck!n - EQ Dk,n.

Since Dy, o, = 2=(k=1) " we get the following result:

Corollary 3.7 The limit of the largest possible contrast in an k-out-of-n secret sharing scheme,
when n approaches infinity, satisfies

Ckoo = lim G, = 4771

The derivation of Cj, , from Dy, o, profited from the classical Equation (6) from Approximation
Theory. For n = k, we can go the other way and derive Dy from the fact (see [NS1]) that the

largest possible contrast in an k-out-of-k secret sharing scheme is 2~ (¢—1)
Chypp =2 ¢ (8)
Applying Corollary 3.6, we obtain
Dy = ]]j—,l (9)

According to Stirling’s formula, this quantity is asymptotically equal to v/2rke *. Equation (9)
presents the precise value for the smallest possible approximation error when X* is approximated
by a polynomial of degree k—1 or less, and the distance between polynomials is measured by metric
dy.



Sequence C}, , monotonically decreases with n because the secret sharing scheme becomes harder
to design when more people are going to share the secret (and threshold k is fixed). Thus, the
unknown value for Cj , must be somewhere between Cj, o, = 4=(k=1) and Crk = 2=(k=1) We don’t
expect the sequence Dy, to be perfectly monotonous. However, we know that Dy, < Dy . If
n is a multiple of &, the regular subdivision of [—1, 1] with step width 2/n is a refinement of the
regular subdivision of [—1, 1] with step width 2/k. This implies Dy, > Dy j.

Figure 2 presents an overview over the results obtained so far. An edge from a to b with label s
should be interpreted as b = s - a. For instance, the edges with labels 7, ,,, r;c,n, s}c,n, Sk,n represent
the equations

Cim = Tkn - Chroo Withry, > 1,

Crp = r;c,n + Ckn with r;c,n >1,

Dpp = S;c,n * Dy, with s, > 1 if n is a multiple of £,
Dy = Sk Diy with s, > 1,

respectively. The edges between C}, ,, and Dy, ,, explain how Dy, ,, is derived from C}, ,, and vice versa,
i.e., these edges represent Corollary 3.6. Figure 2 can be used to obtain approximations for the
unknown parameters 7 n, ), ., Sk » Sk Lhe simple path from Cy o = 4=(k=1) ¢ Dj oo = 2~ (k1)
corresponds to equation ’ ’ \
nk

g~(h=1) — 5, .9k~ .
n

Tkn 4~ (k=)

Using ri n > 1, s, > 1 and performing some cancellation, we arrive at

nk

Thp* Skn = E (10)

A similar computation associated with the simple path from Dy j to Cj x leads to

kknk KN (n
Thm " Sk = T = (ﬁ) (k) (11)

The following bounds on C},, and Dy, ,, are now evident from Figure 2 and (10):

k
40 < Oy =rpat D < a6 (12)
k 9—(k—1)
%2—@—1) < P Dy < 9—(k—1) (13)
n

In both cases, the upper bound exceeds the lower bound by factor n*/nk only (approaching 1 when
n approaches infinity).* An elementary computation® shows that 1 — k2/n < n£/n* < 1 holds for
all 1 < k <n. Thus, (13) improves on the classical Inequality (7) from Approximation Theory.

Although bounds (12) and (13) are excellent for large n, they are quite poor when n comes
close to k. In this case however, we obtain from Figure 2 and (11))

(n/k)* o1 —(k—-1
/2 ( )SCk,n§2 (k-1)
(k)
“Because of (10), the two gaps cannot be maximal simultaneously. For instance, at least one of the upper bounds

exceeds the corresponding lower bound at most by factor y/n*/nk.
“making use of e7?* < 1—z < e~ %, where the first inequality holds for all z € [0,1/2] and the second for all z € ®

; (14)




(15)

where the first inequality in (15) is only guaranteed if n is a multiple of k. These bounds are tight
for n = k.

3.3 Discussion of the M AX-Condition

Paper [HKS] presented some explicit formulas for Cj, ,,, but only for small values of k. For instance,
it was shown that Cj, = 4= (k1) pk /n% holds for the following specific choices of k, n:

e k=2and n is even

e k=3 and n is a multiple of 4

Note that, for these choices of k,n, the value of C} , coincides with the value of the theoretical
upper bound 4~ (=1 pk / nk from (12). However, the following table supports the conjecture that
there is no such coincidence for most other choices of k,n. The entry in row k£ and column n is
Ck,n on top of its upper bound:

(k\nf 2 [ 8 | 4] 5 [ 6 | 7 [ 8 [---] 100 [--] |
2 [[1/2] 1/3 [1/3] 3/10 | 3/10 2/7 2/7 25/99 1/4
1/2 | 3/8 | 1/3| 5/16 | 3/10 | 7/24 2/7 25,99 1/4

3 1/4 [1/6 | 1/8 1/10 | 1/10 | 2/21 625/9702 1/16
9/32 | 1/6 | 25/192 | 9/80 | 49/480 | 2/21 625,/9702 1/16

1 1/8 | 1/15 | 1/18 | 3/70 | 3/80 42525608 1/64
1/6 | 125/1536 | 9/160 | 343/7680 | 4/105 15625,/941094 1/64

The goal of this subsection is to provide a simple explanation for this phenomenon by exploiting
the duality between Cj, and Dy ,. We start with a general observation, which is evident from
Figure 2 and (10).

Corollary 3.8 The following statements are equivalent:
1. Chp =41 . nk/nk,

2. Thpy = nk /nk.
3. Sk, = 1.
4. Dk,n = 27(k71) = Dk,oo-

We say that (k,n) satisfies the MAX-Condition if these statements are valid for &k, n (or equivalently,
one of them is valid). With these notations, the aforementioned results in [HKS] read as follows:
(k,n) satisfies the MAX-Condition for k¥ = 2 and even n, and for £k = 3 and n a multiple of 4.

In order to provide a simple proof for these and some supplementary results, we bring two
classical theorems from Approximation Theory into play. Let f : [-1,1] — R be a continuous
function and p € P;_; a polynomial of degree at most & — 1. A sequence

—1<zry<ri<---<z1<1
is called an alternating sequence of length I for error function f — p if

‘f(xZ)_p(sz = doo(f;p) fOT’iZO,l,...,l—l (16)
f(zi) —p(zi) = —(f(zit1) —p(zit1)) fori=0,1,...,1 -2 (17)

The following result is well-known in Approximation Theory:



Theorem 3.9 [Theorem 1.7 in [R]]
Let f : [-1,1] — R be continuous and p* € Py_1. f — p* has an alternating sequence of length
k+ 1, iff p* is the (unique) best approxzimating polynomial for f w.r.t. deo.

Example 3.10 Let f(X) = Up(X) = X* and p*(X) = Up o(X) = Xk — 2-(-DT(X), where
Tx(X) is the Chebyshev polynomial of degree k (defined and visualized in Figure 1). Note that
2=(k=1)T, is the corresponding error function, which clearly has the same alternating sequences as
Ty. It is obvious that

a:i:cos(@) fori=0,1,...,k (18)

1s an alternating sequence for Ty, of length k + 1. Thus, Theorem 3.9 implies that U,;‘,oo is the best
approximating polynomial for Uy w.r.t. de.

Ekz{cos(@)H:O,...,k} (19)

denote the set of points in [—1, 1], where T} attains its k + 1 extremal values +1. Note that values
+1 alternate. It follows that the sequence of points in Ej, ordered from left to right, is the only
alternating sequence for T}, of length k + 1.

Let Z be a finite subset of [—1,1]. A sequence

In the sequel, let

—1<zxy<ri<---<z1<1

is called an alternating sequence for error function f —p of length l w.r.t. Z if xg,z1,..., 21 1 € Z
and

|[f(zi) = p(z:)] = max|f(z) —p(z)| fori=0,1,...,1 -1, (20)

f@i) =plzi) = —(f(@i1) — p(ziv1)) fori=0,1,...,0—-2. (21)

An important special case is Z = Z,,, where
2
Zn:{zo,...,zn}:{—1+—|z=0,...,n}. (22)
n

The following result is well-known in Approximation Theory:

Theorem 3.11 [Theorem 1.11 in [R]]

Let f : [-1,1] — R be continuous, p* € Px_1, and Z a finite subset of [—1,1]. f — p* has an
alternating sequence of length k + 1 w.r.t. Z iff p* is the (unique) best approzimating polynomial
for f on Z, i.c., iff

max |f(2) —p*(Z)] = min max|f(z) —p(Z)|

Note that the best approximating polynomial on Z,, is the best approximating polynomial w.r.t. met-

ric d,. We now obtain the following

Corollary 3.12 (k,n) satisfies the MAX-Condition iff Ex, C Z,.

Proof Assume that Ey C Z,. Then the points zg,z1,..., T, € Ej are also an alternating sequence
for Ty, w.r.t. Z,. Thus, U;ck,oo = Uy, and Di o0 = Dj pn, implying the MAX-Condition.

Assume conversely that Ey € Z,. Let —1 <yp <1 < ... <yr <1 be an alternating sequence
for Uy — Uy ,, of length k + 1 w.r.t. Z,. Let My = {yo,v1,...,yx}. We distinguish two cases.



Case 1 Uy, = Uy .
For the sake of brevity, let kK = 2= =1 The definition of alternating sequences and the
fact that kT}, = Uy — U} = Uy — Uy, implies that k|Ty(z)| = Di o for all z € Ej, and
K|T(y)| = Dy for all y € My, Since Ey € Zy, and My, C Zy, there must exist a point y € My,
not belonging to Ej. Note that |Tj;(y)| < 1 (by definition of Ej). Pick an arbitrary point z
from Ey. |Ty(z)| = 1 (again by definition of Ej). Thus, Dy, = &|Tk(y)| < &|Tk(z)| = Di,cc-

Case 2 Ug,, # Uy .
Since the best approximating polynomial for Uy on Z, is unique, it follows that Dy, =
dn(Uka U];kyn) < dn(Uka Ul:,oo) < dOO(Uk:7 UI:,oo) = Dk,oo-

In both cases, the MAX-Condition is violated. °

The next examples demonstrate that the results from [HKS], mentioned in the beginning of
this subsection (along with some supplementary results), are extremely easy to prove by means of
Corollary 3.12.

Example 3.13 Ey; = {cos(n),cos(w/2),cos(0)} = {—1,0,1}. For even n, Ey C Z,. However,
Ey & Z,, for odd n (because 0 & Z,, in this case). This shows that the MAX-Condition is satisfied
for k =2 and even n, but not for k =2 and odd n.

Example 3.14 E3 = {cos(7),cos(27/3),cos(n/3),cos(0)} = {—1,—-1/2,1/2,1}. If n is a multiple
of 4, then E3 C Z,,. However, E3 € Z, if n is not a multiple of 4 (because —1/2,1/2 & Z,, in this
case). This shows that the MAX-Condition is satisfied for k = 3 and n a multiple of 4, but not for
k =3 and n not a multiple of 4.

Example 3.15 If cos(w/k) is irrational, then obviously Ey € Up>kZy,. Thus, for eachn >k, (k,n)
does not satisfy the MAX-Condition. This situation occurs already for k = 4 because cos(mw/4) =

V2/2.

We conclude the paper with a final remark and an open problem. Based on the results of this
paper, Kuhlmann and Simon [KS| were able to design arbitrary k-out-of-n secret sharing schemes
with asymptotically optimal contrast. More precisely, the contrast achieved by their schemes is
optimal up to a factor of at most 1 — k%/n. For moderate values of k£ and n, these schemes are
satisfactory. For large values of n, they use too many subpixels. It is an open problem to determine
(as precise as possible) the tradeoff between the contrast (which should be large) and the number
of subpixels (which should be small).
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Figure 1: The Chebyshev polynomial T} of degree k for k = 1,2,3. Ty(X) = cos(k@), where
0 <6< mand X = cos(0).
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Figure 2: Sequence C}, ,, sequence Dy, and relations between them.
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