Electronic Colloguium on Computational Complexity, Report No. 6 (2000)

On operations of geometrical projection and
of monotone extension *

E. A. Okol'nishnikova
Sobolev Institute of Mathematics
Kontjuga, 4, Novosibirsk, 630090,

E-mail: okoln@math.nsc.ru

Abstract

Some operations over Boolean functions are considered. It is shown that the operation
of the geometrical projection and the operation of the monotone extension can increase the
complexity of Boolean functions for formulas in each finite basis, for switching networks,
for branching programs, and read-k-times branching programs, where k£ > 2.

It is established that if there exists a ”big” gap between the complexities of realization
of a function in the class of nondeterministic and in the class of deterministic branching
programs (read-k-times branching programs), then it is possible to construct a function
with a ”big” gap between the complexity of realization of this function and the complexity
of realization of its projection in the class of deterministic branching programs (read-k-
times branching programs).

It is shown that there is some relation between the operation of the geometrical projec-
tion and the operation of the monotone extension. Namely, it is shown that if there exists
a function with a ”big” gap between the complexities of realization of a function and its
monotone extension in a class of schemata, then it is possible to construct a function with
a ”big” gap between the complexity of realization of this function and the complexity of
realization of its projection in the same class of schemata.

It is shown that there exist a functions of polynomial complexity and such that their
monotone extension is a characteristic function of a NP-complete problem. The similar
fact is valid for the operation of the geometrical projection. Namely, it is shown that
there exist Boolean functions of polynomial complexity and such that their geometrical
projection with respect to some subset of variables (the cardinality of this subset is less
than the half of the cardinality of the set of variables) is the characteristic function of an
NP-complete problem.

1 Introduction

In the complexity theory it is of interest to define operations causing the complexities of
functions to increase. In the present paper the operation of the geometrical projection and the
operation of the monotone extension are considered. Besides, the operations of the negation

and of the projection [2, 3] are mentioned too.
ISSN 1433-8092
*This research was supported by the Russian Foundation for Basic Research (Grant 97-01-00848) and the

Federal Target program ”Integration” (Project 473).

The comparison between the complexities of Boolean functions and their geometrical pro-
jection is considered first. ! In the classic mathematics the qualitative possibility of objects to
become complicated under the operation of the projection and the complement of sets is well
known (e.g., consider A- and B-sets in the descriptive theory of sets). The complexity theory
makes it possible to estimate quantitatively similar complication.

The question about comparison of complexities between Boolean functions and their geomet-
rical projections was set up by A.K. Pulatov. In 1976 it was shown by E.A. Okol’nishnikova
that there exists a sequence of Boolean functions such that the complexity of the geomet-
rical projection of Boolean functions is C' times as great as the complexity of the Boolean
functions for switching networks (unpublished). In 1977 A.K. Pulatov in cooperation with
E.A. Okol'nishnikova showed that there exists a sequence of Boolean functions such that
the complexity of the geometrical projection of a Boolean function is Inn times as great as
the complexity of the Boolean functions for the formulas in the basis (&,V,—=) [9]. In 1977
E.A. Okol’nishnikova showed that there exists a sequence of Boolean functions such that the
complexity of the geometrical projection of the Boolean function is n/Inn times as great as the
complexity of the Boolean functions for the formulas in each finite basis, and is n/In*n times
as great as the complexity of Boolean function for switching networks [8].

In the present paper the similar result is obtained for branching programs. For syntactic
nondeterministic branching read-once-only programs there is no increase of complexity for
Boolean functions under the operation of the geometrical projection.

The sequence of Boolean functions that is less complicated then their geometrical projection
is the sequence considered in [8]. The projections of these functions have many subfunctions.
It is possible to apply Neciporuk’s method to these functions and to obtain non-linear bounds
on the complexity of these functions. The starting functions are comparatively simple.

The operation of the negation does not lead to the increase of complexities for many kinds
of schemata without restrictions. But this operation can increase the complexity of functions
for switching networks. It was shown [6, 1] that the negation of a Boolean function can be
C' times as great as the functions themselves for switching networks. There are many papers
where it 1s shown that the operation of the negation can bring the complexity for schemata
with restrictions to increase.

Another operation I would like to write about is the operation of the monotone extension.
(The strict definition of this operation will be given below.) It is well known that it may be that
this operation can bring the complexity to increase. Compare the complexity of the algorithm
of recognition of the fact that a graph on m vertices is the |m/2|-clique and the algorithm of
recognition of the fact that a graph contains the |m/2|-clique. But we have no good bounds
for schemata without restrictions for the characteristic functions for these properties of the
graph. Therefore, it is of interest to give examples of functions for which it is shown that their
monotone extension is more complicated than the functions themselves. It seems that these
examples can give a new view on the role of the negation in the complexity theory. In the
present paper it is shown that there exists a sequence of functions f(z1,...,z,) such that their
complexity is equal to Cn for formulas in the basis (&,V, =), and its monotone extension is
more complicated (nearly quadratic with respect to the number of variables of the functions)
for formulas in each finite basis, for switching networks, for branching programs, and for read-
k-times only branching programs, where & > 2.

In the number of papers [2, 3] the operation of the projection (not geometrical) was consid-

!This definition differs from the operation of the projection given in, i.e., [2, 3].

ered. Namely, a function f = (f,) is a projection of g = (¢,), [<,r0;9,

Jal@rse o 20) = Goy (Y1 - -+ Yp(m))

for some polynomial p(n) and y; € {z1,%1,...,%n, T,,0,1}. The number of j, where y; €
{z;,;}, is called the multiplicity of z;,. The projection is read-once projection, f<,,,g, if
the multiplicity of each x; is bounded by 1. In the case of schemata without restrictions the
considered operation does not cause the complexity to increase. But for some special schemata
with restrictions (OBDD, FODD, k-OBDD, k-IBDD) this operation can bring the complexity
to the exponential increase. It was also shown in [2] that if f<,,,g, and g has polynomial
OBDD (FODD, £-OBDD, k-IBDD) size s(n), then f has polynomial OBDD (FODD, k-OBDD,
E-IBDD) size s(p(n)), respectively.

2 Geometrical projection

Recall some definitions. A deterministic branching program on the variables {z,...,z,} is a
directed acyclic graph with one source and sinks labelled with the constants 0 and 1. Each
non-sink node is labelled with a variable x; and has exactly two outgoing edged labelled with
1 and 0, respectively.

Let a = (ay,...,a,) € {0,1}" be an input. A deterministic branching program computes a
Boolean function in the following manner. The computation starts at the source. If one reaches
a node labelled with z;, one proceeds to the successor by the edge labelled with 1 if ¢; = 1, and
by the edge labelled with 0 if and a; = 0. Finally, one reaches for the input a the exit f(a).
The size of a deterministic branching program P is the number of its nodes and is denoted by
|P|.

A deterministic branching program on the variables {z, ..., z,} becomes a nondeterministic
branching program if we allow unlabelled (nondeterministic) nodes with two outgoing unlabelled
edges (free edges).

A nondeterministic branching program P computes a Boolean function f: {0,1}" — {0, 1}
as follows. For any input tuple @ = (ay,...,a,), a; € {0,1} fori =1,2,... . n, weset f(a)=1if
and only if there exists at least one (oriented) path from the source to the output node labelled
with 1 (accepting path for @) such that all labels along this path don’t contradict to an input
tuple @ (i.e., if there is an edge labelled with d that outgoes from the node labelled with z; on
this path, then a; = d). The size of a nondeterministic branching program P is the number of
its labelled edges and is denoted by |P].

A branching program is called a read-k-times branching program if and only if for any 1,
1 <1 < n, the nodes labelled with x; occur at most & times in any computation path.

A switching network on the variables {z1,...,z,} is an indirected graph with one source
and one sink. All edges are labelled with variables or with the negation of the variables. For
any input tuple @ = (ai,...,a,), a; € {0,1} fori =1,2,...,n, we set f(a) = 1 if and only if
there exists at least one path from the source to the output node (accepting path for @) such
that all labels along this path don’t contradict to an input tuple @ (i.e., if there is an edge
labelled with z; = d on this path, then a; = d). The size of a switching network § is the number
of its edges and is denoted by |S].

For the Boolean function f denote by Lg(f) and Lpg,(f) the complexity of f in the class of
formulas in the basis B and By = (V, &, =), respectively; by S(f) the complexity of f in the
class of switching networks; by B(f) and BEk(f) the complexity of f in the class of determin-
istic branching programs and deterministic read-k-times branching programs, respectively; by

3

NB(f) and NBE(f) the complexity of f in the class of nondeterministic branching programs
and nondeterministic read-k-times branching programs, respectively.

Now we give the definition of geometrical projection. By Pf., . .. (i, ..y xj,_,) denote
the projection of the Boolean function f(x1,...,2,) with respect to variables x;,, ..., x;,, where
{91y gk} ={1,2,...,n}\ {71, ..., 15 }. Without loss of generality it can be assumed that ; = {
for [l = 1,..., k. By definition, put

Pfoyan(Thgty oy @) = \/ F(O1y ooy Oky Tty vy T,
1 ek
where o; € {0,1} for e =1, ..., k.
By Ay denote the set of tuples a = (o, ..., o), such that 2% o; = [k/2]. It is clear that
|Ax| = (Lk]/cﬂ)' Let a variable u, corresponds to a tuple a.
Let us consider the Boolean function F*™ of sets of variables U = {u,,a € A }, Y =
{y1,...,yr} and X; ={x11,..., 211}, 1 <1 < m. By definition, put

Fk’m(U, Y, X1,y Xin) = \/ Ug - Y7y (/\(:L‘m Vv ;r:lai) s (m vV x?z‘i)) .

OzEAk =1

The number of variables of this function is equal to

(b)) + K(m + 1). (1)

The projection of this function with respect to the variables Y = {y, ..., yz} is equal to the
function

PEE™U, Xy, s X)) =/ %-<AWMV$%%-~%waﬁ@)- 2)

a€AL =1

Explanation. Let & = 4, then the variable ugio; corresponds to the tuple o = (0101). In the
setting of the function F*™(U,Y, X1,..., X,,) the term woio1-y1Y203Y4 - T1,2°T1a*+ - Ty 2" Trn g
corresponds to the tuple o = (0101). Respectively, in the function PFé’m(U, Xi, ..., X)) the
term wugio1°%1,2° 14" . .* Ty 2° Ty g corresponds to the tuple above.

Lemma 1
The formula size in the basis (V,&,) for the Boolean function F*™(U,Y,Xy,...,X,,) is
less than 5(Lk];2j) + k(m +2).

Proof [8]. It is easy to see that the function F' can be represented as

Fk’m(U,Y,Xl,...,Xm): \/ Uo Y ey (111 T VY1) (YkT1 ke T g V). (3)
OzEAk

We need to estimate the formula size in the basis By = (V,&,—) of the function
Vaea, Ua - Y7 - ..-yp*. For the sake of simplicity we will estimate the complexity of the
function for the Il-circuits (series-parallel circuits). It is known that the formula size in the
basis By = (V, &,) is equal to the size of II-circuits for Boolean functions. Let T%(zy, ..., z,)
be a contact tree that realizes all conjunctions 27", ..., 277 such that 3-%_, o; = 1. The size of
the contact tree T"(zy,...,z,) denote by ¢'(p). The inductive construction of the contact tree
T%(z1,...,%,) is presented in Fig. 1. From this presentation it follows that

'(p) < M p—1)+d(p—1)+2 (4)

4

Fig.1. The contact tree T'(zy, ..., z,)

We prove by induction on ¢ that

s ("17) -2)

It is easy to verify that ¢°(p) = p, i.e. ¢°(p) = ‘1”) — 2 = p. Let the statement be valid for
all 2,1 < i9. We prove that it is valid for 7g. From (4) and the inductive conjunction it follows

that
() < 677 (p— 1) +6°(p >+2<(p+1) +(Zi)—2+2 (pi)—:z
¢W2J(k)g4< K) (6)

Lo
[k/2]
We add contacts u, to the ends of the tree, that correspond to the conjunctions yi" -....yp*,
a € Aj. We join ends of the obtained circuit. From (6) it follows that the size of the constructed
circuit is less that 5<Lklj2J)' From this construction and the representation (3) it follows that the
complexity of the function F*™(U,Y, X, ..., X,,,) does not exceed 5<Lk];2j) +k(m+2). Lemmal

is proved.
Let n, n > 2, be a natural number. Put

ko(n) = [logy n + 1/2log, log, n| (7)

The inequality (5) is proved.
It follows from (5) that

and
mo(n) = |(n = (o),) /ko(n)| — 1. (8)

From (1) we can obtain that the number of variables of the Boolean function Fkomo g less than
n and

(pef5,)) ~ Cony m o~ (1= Co)n/logy m, (9)

where Cy = /2/m.

In what follows we drop subscripts kg and mg in the notation of F*om0 and P [™o,

B. A. Subbotovskaja [12] showed that for each finite basis B there exists a constant Cg that
depends of the basis only and such that for each function f we have Lg(f) < Cg - Lp,.

It follows from this fact, Lemma 1, (9), that for the values of ky(n) and mg(n) given in (7)
and (8) we have

Corollary 1. LgF(U.Y, Xy, ..., X,,) < n.

Lemma 2. For the Boolean function PFy(U, X1, ..., X,,) we have
(a) Lg(PFy) = n?/logn for formulas in the finite basis B;

(b) S(PFy) = nz/log2 n for swilching networks;

(¢) B(PFy) = n*/log*n for deterministic branching programs;

(d) NB(PFy) = n%?/logn for nondeterministic branching programs.

Proof (see [8]). If we substitute constants 0 and 1 instead of variables u,, o € Aj, and

constants 1 instead of variables X, ¢ # j, we obtain 2(11“7’4) different functions depending on
variables X;, 1 < j < m. The proof follows immediately from the proof of Neciporuk [7] in
the case of switching networks and formulas. We can use the remark of P. Pudlak [9] (see also
Theorem 3 in the survey of A.A. Razborov [11]) in the case of branching programs. It allows
us to apply Neciporuk’s method to the function PFy. Lemma 2 is proved.

Theorem 1. For the Boolean functions PFy and F the following relations hold
(a) Le(PFy)/Lp(F) = n/logn for formulas in the finite basis B;
(b) S(PFy)/S(F) = n/log®n for swilching nelworks;
(c) B(PFy)/B(F) = n/log’n for deterministic branching programs;
(d) NB(PFy)/NB(F) = \/n/logn for nondeterministic branching programs;
For k > 2 we have
(e) BE(PFy)/BE(F) = n/logn for deterministic branching read-k-times programs;
(f) NBE(PFy)/NBE(F) = \/n/logn for nondeterministic branching read-k-limes programs.

Proof. From Corollary 1 and Lemma 2 it follows that the statement (a)—(d) are valid.

The representation (3) of the function F' in Lemma 1 corresponds to the representation of
the function F' in the class of read-2-times branching programs. Therefore the claims (e) u (f)
are also valid.

Theorem 1 is proved.

Theorem 2. For nondeterministic read-once-only branching program for the Boolean function
F(X,Y) we have
NBI(Py(f)) < NBI(f).

Proof. Let us consider a read-once-only program realizing f(X,Y). There are no null-chains
in read-once-only programs. Therefore, we can replace all labelled edges that go out from nodes
labelled with y; by free edges. The obtained branching program computes the projection of f
with respect to Y. Theorem 2 is proved.

The following theorem shows, in particular, that if for a Boolean function f(X) there exists

a "big” gap (more than quadratic with respect to NB(f)) between NB(f) and B(f) (NBE(f)

6

and Bk(f), respectively), then it is possible to give an example of the function g(X,Y) with
a "big” gap between the sizes of deterministic branching programs for g(X,Y’) and Py (X) (of
deterministic read-k-times branching program for g(X,Y’) and Py (X)).

And vice versa if for a Boolean function g(X,Y') there exists a "big” gap between the sizes of
deterministic read-once-only branching programs for a Boolean function and its projection then
we can construct an example of a function with a ”big” gap between the sizes of nondeterministic
and deterministic read-once-only branching programs.

Theorem 3. (la) For any Boolean function f(X) of n variables it is possible to construct a
Boolean function g(X,Y') that depends on not more than n+ (N B(f))?* variables and such that

B(Pyg(X,Y)) = B(g(X,Y)) = B(f(X)) = NB(f(X)) = 8(NB(f))".

or any Boolean funclion of n variables it s possible lo construct a Boolean
1b) Fi Bool] X ables it 1 bl Bool
function g(X,Y) that depends on not more than n + (N Bk(f))? variables and such that

BH(Prg(X,) — BR(g(X,Y)) > BR(F(X)) — NBR(f(X)) — S(NBK(/))".
(2) Let h(X,Y) be a Boolean function. Then

B1(Py(h)) — 1/2NBP1(Py(h)) > BP1(Py(h)) — BP1(h).

Proof. (la). The number of unlabelled nodes in the nondeterministic branching program does
not exceed (2N B(f))? (see, e.g., the proof of Theorem 1 in [4]). Let us enumerate all unlabelled
nodes from 1 to [and consider the j-th unlabelled node. We label this node with a new variable
y;, label one of free edges going out of this node with 1, label the second edge going out of
this node with 0. The obtained program is the deterministic branching program that realizes
a function g(X,Y’). The Boolean function g(X,Y’) depends on no more than n + (2N B1(f))?
variables. The complexity of this function does not exceed NB(f) + 4(NB(f))? in the class of
nondeterministic programs. The geometrical projection of the function g(X,Y’) with respect
to the variables Y is the function f(X). The first part of theorem 3 is proved for branching
programs.

The case (1b) for read-k-times branching programs can be considered similarly.

(2). Let us consider a deterministic read-once-only program computing g(X,Y’). There are
no null-chains in read-once-only programs . Therefore we can replace all nodes labelled with y;
by unlabelled nodes and replace edges outgoing from these nodes by free edges. The obtained
nondeterministic branching program computes the projection of the function ¢ with respect
to the variables Y. So, we have NBP1(Py(h)) < BP1(h). From this fact it follows that the
statement (2) of Theorem is also valid.

It is known that there exist Boolean functions with exponential gap between deterministic
and nondeterministic complexities in the class of read-once-only branching programs (see, e.g.
[5]). Therefore the following lemma follows from the first part of theorem 3.

Corollary 2 There exist Boolean functions with the exponential gap between the complexity
of the functions and their geomelrical projections in the class of deterministic read-once-only
branching programs.

Remark 1. For almost all Boolean functions the complexity of the projection is less than the
complexity of the function. It is valid for formulas, switching networks, branching programs,

7

schemata of functional elements and so on. Moreover, there exist 22"~ *1 — 1 functions of n
variables such that their projection with respect to each subset of variables is equal to 1. In
fact, let us consider a set of functions that are equal to 1 on the odd levels of the n-cube, and
accept arbitrary values at the vertices of the even levels. Similarly we can consider a set of
functions that are equal to 1 on even levels of the n-cube, and accept arbitrary values at the
vertices of odd levels. The union of these sets gives the estimate we need.

3 Monotone extension

A Boolean function g(xy, ..., zx) is said to be a monotone extension of the function f(z1,...,xy)
if g(B1,...,0k) = 1 iff there exists a tuple (ay,..., o), (o1,...,a5) < (B1,...,0k) such that
flar,...,a) = 1. (Here, as usual, (ay,...,0x) <X (B1,...,0k) denotes that oy < By,..., a5 <
B.)

Below we give an example of Boolean function that is less complicated than its monotone
extension.

Let us consider the Boolean function H®™ of sets of variables U = {u,,a € A} and
X, ={z11, .., 21}, [= 1, m. By definition, put

H (U, X1, ooy X)) =\ - (/\ ;c;j;-...-x;j;;). (10)
=1

ozEAk

The number of variables of this function is equal to () + mk. The monotone extension of

k
[%/2]
this function is the function PF;ﬁ’m considered in the section 2 (see (2)), i.e.,

MH™ (U, Xy, ..., X,n) = PFY™U, X4, ..., Xp).

Lemma 3. The formula size in the basis (V, &,) for the function H*™ (U, X1, ..., X,,) is less

than 5([1;/62]) + 2km.

Proof. It is easy to see that

HU, X1, ... Xn)= o il 2y
OzEAk

&(5171711’271 IR 7o | V jf171.§/’271 el Zi'mJ) et (ZL’L]CCL’QJC e Tk V f17k£f27k et Zi'mJg)

Therefore the complexity of this function does not exceed 5(Lk];2J) + 2km. The proof of this
fact 1s similar to the proof of Lemma 1. Lemma 3 is proved.

In what follows we shall consider functions H*™ and M H** "™ where the values of kq and
my are given in (7) and (8). We set H = H* ™0 and M H = M H*omo,

From Lemma 3, (9), and the result of B. A. Subbotovskaya it follows

Corollary 3. For cach finite basis we have LgH*™(U,Y, X1, ..., X,,) < n.

Theorem 4.
(a) Ls(MH)/Lgwy = n/logn for formulas in the finite basis B;
(6) S(MH)/L(H) = n/log®n for switching networks;
(8) BIMH)/B(H) = n/log?n for deterministic branching programs;
(r) NB(MH)/NB(H) = /n/logn for nondeterministic branching programs.
For k > 2 we have
(n) BE(MH)/Bk(H) = n/log’n for deterministic branching read-k-ltimes programs;
() NBE(MH)/NBK(H) = \/n/logn for nondeterministic read-k-times branching programs.

8

Proof of this theorem is similar to the proof of Theorem 1.

Theorem 5. For nondeterministic read-once-only branching programs we have

NBIM(f)) < NBI(f).

Proof. We can transform the nondeterministic read-once-only branching program for the
function f into the nondeterministic read-once-only branching program for the function M(f).
Let us consider a node, for example, ¢, labelled with x that has two edges going out of it: the

edge (c,b) labelled with 1 and the edge (c,a) labelled with 0 (see Fig. 2).

c c
0 1 0 1
—
d
a b a b
program for f program for M(f)
Puc. 2

Let d be a new unlabelled node with two unlabelled edges (d,a) and (d,b) that go out of
this node. In spite of the edge (c,b) labelled with 1 we consider an edge (¢, d) labelled with 1.
Theorem is proved.

Remark 2. For almost all Boolean functions the complexity of their monotone extension
does not exceed the complexity of the function. It is valid for formulas, switching networks,
branching programs, and so on. Moreover, there exist many functions of n variables (~ 22"71)
functions of n variables, namely functions that are equal to 1 at the vertex (0,...,0), and such
that their monotone extension is the function identically equaled to 1.

The following theorem shows that there is some relation between the operation of the
geometrical projection and the operation of the monotone extension.

Theorem 6. Let f(X) be a Boolean function of n variables. There exists a Boolean function
9(X,Y) of 2n variables that corresponds to f(X), and such thal

(a) the difference between the complexily of the function g(X,Y) and the complexity of
the function f(X) does not exceed Cn for a number of classes of schemata, in particular, for
schemata with functional elements, for formulas, branching programs and so on;

(b) the projection Pgy(X) of f with respect to variables Y coincides with the monotone
extension M f(X) of the function f.

Proof. It is easy to check that the Boolean function

g(va) = f(Y) : (l’lyl \ gl) et (mnyn \ gn)

satisfies the condition (a) of the Theorem.

Let g and A be Boolean functions that depend of the same set of variables. We say that
g < hif for each tuple @ the relation g(a) < h(a) holds. Without loss of generality we can
assume that for a conjunction K = zy,...,2,,Zp41...,7, the inequality £ < f holds. Then

K(zigi Vi) - oo (2ayn V yn) < 9(X,Y), L,
T1Y1s -y TpYps Yot -+ s Yo (Tqa1 Y1 V Yga1) -+ (Tnyn V Un) < g(X,Y).

Then zy,...,2, < Pgy(X,Y). It is clear that zy,...,2, < M f. It is easy to see that from this
fact follows that Pgy(X) = M f(X). The statement (b) of Theorem is also proved.

Remark 3. Let us consider Boolean function on the set of variables X,, = {;;}, where
1 << j<m. Let CLIQUE,, (CLIQUE — ONLY,,) be the characteristic property of the
graph on m vertices to contain an [m/2]-clique (to be exactly an |m/2|-clique, respectively).
The function CLIQUE,, is the monotone extension of the function (CLIQUE — ONLY,,). The
function CLIQUE,, has a polynomial complexity. The function (CLIQUE — ONLY) is a char-
acteristic function of NP-complete problem. Therefore, it is possible to suppose the possibility
of the existence of the exponential gap between Boolean functions and their monotone exten-
sions. It follows from Claim 4 that there exist Boolean functions of polynomial complexity and
such that their projection with respect to some subset of variables (the cardinality of this subset
is less than the half of the cardinality of the set of variables) is the characteristic function of
an NP-complete problem.

References

[1] Avgustinovich, S.V. (1980) On an approach to obtaining lower estimates of the complexity
for Boolean functions (in Russian) Metody Diskret. Anal. 35, 3-9.

[2] Bollig, B., and Wegener, 1. (1996) Read-once projections and formal circuit verification
with binary decision diagrams Proc. of the 13th Ann, Symp. on Theoretical Aspects of
Computer science (STACS’96), LNCS, 1996, 1046, 491-502, Springer-Verlag, Berlin/New
York

[3] Bollig, B., and Wegener, 1. (1998) Completeness and noncompleteness results with respect
to read-once projections Information and Computation, 143, No. 1, 24-33.

[4] A.B. Borodin, A. A. Razborov, and R. Smolensky (1993) On lower bounds for read-k-times
branching programs, Comput. Complexity 3, No. 1, 1-18.

[5] S. Jukna, A. Razborov, P. Savicky, and 1. Wegener (1997) On P versus NP co— NP for
decision trees and read-once branching programs Proc. of the 22nd Int. Symp. on MFCS,
LNCS, 1295, 319-326, Springer-Verlag, Berlin/New York.

[6] A.V. Kuznetsov (1958) On one property of functions realized with nonplanar schemata
without repetitions (in Russian) Trudy Mat. Inst. Steklov 51, 174-185.

[7] E.L. Ne¢iporuk (1966) On a Boolean function D.A.N. SSSR 169 No. 4, 765-766. (English
translation in Soviet Math. Dokl. 2, No. 4, 999-1000).

[8] E.A. Okol’nishnikova (1977) On the comparison of complexities of Boolean functions and
their projections (in Russian) Metody Diskret. Anal. 31, 76-80.

10

[9]

[10]

[11]

[12]

P. Pudlak (1987) The hierarchy of Boolean circuits. Comput. Artificial Intelligence 6, No. 5,
449-468.

A.K. Pulatov (1977) On the influence of zero-chains on the complexity of realization of
Boolean functions by contact schemes (in Russian) Metody Diskret. Anal. 30, pp. 30-37.

A. A. Razborov (1991) Lower bounds for deterministic and nondeterministic branching
programs, Fundamentals of Computation Theory (Gosen, 1991), Lecture Notes in Comput.
Sci. Vol. 529, Springer-Verlag, Berlin, pp. 47-60.

B.A. Subbotovskaya (1963) Comparison of bases in the realization by formulas of functions
of the algebra of logic D.A.N. SSSR 149 No. 4, 784-787. (English translation in Soviet
Math. Dokl. 2, No. 4, 478-481).

ECCC ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

11

