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Abstract

The problem of Scheduling n Independent Jobs on m Unrelated Parallel Machines, when the
number of machines m is fixed, is considered. The standard problem of minimizing the makespan
of the schedule (SUM) and the bicriteria problem of scheduling with bounded makespan and
cost (SUMC) are addressed, and randomized fully linear time approximation schemes are shown
for both of them. While matching the approximation guarantee and the complexity of the
best known sequential results of Jansen and Porkolab ([12]), the proposed algorithms exhibit
a significantly simpler and more general rounding scheme, especially for the bicriteria SUMC
problem, and admit simple optimal work parallelizations' of O(logn)-time complexity. The
core of the algorithms, which also draw techniques from other related works ([12], [11], [1]), is
an interesting new randomized rounding procedure, the Filtered Randomized Rounding (FRR).
In the settings of the problems considered, FRR boosts the deviation bounds of the rounded
linear packing constraints to any given constant ratio.

Finally, the notion of poly—bottleneck combinatorial optimization problems is defined and used
to build O(nlogn loglogn) time approximation schemes for two natural optimization versions of
SUMC, that is minimizing the makespan when the cost of the schedule is bounded (SUMCoptT)
and minimizing the cost when the makespan is bounded (SUMCoptC). These algorithms too,
admit simple optimal work parallelizations.
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1 Introduction

Scheduling n independent jobs on m Unrelated Parallel Machines raises the problem of assigning
n jobs j = {1,...,n} to m machines i = {1,...,m} in the way that each job is processed without
interruption on one of the machines, and at any time, every machine processes at most one job.
The processing time for job j on machine 4 is p;;. For each schedule, the maximum load on any
machine is the makespan of the schedule. The objective of the common scheduling problem SUM
is to find a schedule of minimum makespan. In the bicriteria problem SUMC, the assignment of
each job j to a machine ¢ has, besides the processing time p;;, a cost c¢;;, and the objective is to
find a schedule of bounded cost and makespan.

Due to its theoretical and practical importance, the problem of scheduling n independent jobs on
m unrelated parallel machines has been widely studied. It is known to be NP-hard when the number
of jobs n and the number of machines m are free parameters of the problem, and interestingly, it
remains NP-hard even when the number of machines is defined to be m = 2. For the general
problem, where both parameters m and n are specified as part of the problem instance, the best
known results are due to Lenstra, Shmoys and Tardos. They showed in [15] a polynomial time
2-approximation algorithm for the general problem and in the same work they also proved that,
unless P=NP, no approximation ratio better than 3/2 is possible. This inapproximability result
raises the natural question whether better approximation results can be obtained for the case where
the number m of machines is a constant.

The focus of this work are approximation algorithms for SUM and SUMC when the number
of machines is fixed, and henceforth the number of machines is always assumed to be a constant.
Horowitz and Sahni showed in ([11]) how to obtain for SUM a polynomial on n and 1/e, (1 + €)-
approximation algorithm for any fixed € > 0. Such a family of algorithms is called a fully polynomial
time approzimation scheme (FPTAS). A polynomial on n (1 + €)—approximation algorithm for any
fixed e > 0 where given in [15]. Such an algorithm is called a polynomial time approzimation
scheme (PTAS) since its running time depends exponentially on 1/e. Even though in this aspect
the algorithm of [15] is inferior to the one of [11], it achieves a significantly smaller space complexity
than the former algorithm. Kopidakis, Fayard and Zisimopoulos presented in [14] a linear time
PTAS for SUMB, a restricted version of SUM where all processing times are within a constant
factor of each other.

Recently, Jansen and Porkolab showed in [12] linear time approximation algorithms for SUM
and SUMC. More precisely, they presented a linear time approximation scheme for SUM and an
e-relaxed decision procedure (RDP) for SUMC. A RDP is an algorithm that given a minimization
problem, a constant € > 0, and a value d,

e either decides that there is no solution of objective value at most d.
e or returns a solution of objective value at most (1 + €)d

The RDP for SUMC in [12] accepts as input an instance of SUMC and values T for makespan and C
for cost, and either finds a schedule of makespan and cost at most (1+¢€)7" and (14¢)C respective, or
decides that there is no schedule of makespan and cost at most T and C respectively. A randomized
RDP (RRDP), is a randomized algorithm that given a minimization problem, constants ¢ > 0 and



p: 0< p<1, and a value d, with probability of success at least p > %, either decides that there is
no solution of objective value at most d, or returns a solution of objective value at most (1 + €)d.

Due to the fact that SUMC has two objectives, i.e. the makespan T and the cost C' of the
schedule, several optimization versions of SUMC are possible. Two natural problems are obtained
by specifying an upper bound on the one objective and then optimizing the second objective under
this condition. In this way, let SUMCoptT be the problem of finding for a given instance of SUMC
and a specified cost value C, the schedule of minimum makespan for cost at most C'. Similarly let
SUMCoptC be the problem of finding for given SUMC and makespan T a schedule of minimum
cost C' and makespan at most 7. A third option is the problem SUMCoptTC that optimizes a
linear function of the makespan and the cost. The RDP for SUM of [12] is used in the same work
for a linear time FPTAS for SUMCoptTC.

In the field of parallel algorithms for SUM and SUMC we are aware of the work of Serna and
Xhafa, who claim in [22] a randomized (2 + €)—approximation algorithm for SUM and a random-
ized a (2 + €¢)-makespan 2—-cost approximation algorithm for SUMCoptC. Both algorithms run in
polylog(N) time on O(N) processors, where N is the instance size. Another related work is [4],
where the authors propose a framework that achieves parallel polylog(n) time approximation algo-
rithms for SUM and SUMC. However the results in [4] are not directly comparable with the current
work since they work for any number m of machines and achieve a logarithmic performance bound.

A randomized PTAS (RPTAS) is a randomized algorithm that accepts as input a problem
instance and a constant € > 0, runs in time polynomial on the size N of the instance, and produces
as output a (1 + e)—approximate solution with probability p > %.2 If additionally the running time
depends at most polynomially on 1/e then it is a randomized FPTAS (RFPTAS).

We first show algorithm A-SUMJp, a simple linear time (RFPTAS) for the restricted SUMS
problem. Algorithm A-SUMS is based on approximate linear programming and standard random-
ized rounding, and it is meant to be a smooth introduction to the techniques used in the more
involved algorithms of this work. However, algorithm A-SUMQ is itself an interesting result, due
to its simplicity and since it matches the complexity and the performance guarantee of the best
known specific algorithm for SUMS of [14].

We then address the standard SUM problem and the bicriteria SUMC problem and present ef-
ficient randomized approximation algorithms for both problems. The core of our algorithms, which
also draw techniques from the related works ([12], [11], [1]), is an interesting new randomized round-
ing procedure, the Filtered Randomized Rounding (FRR) technique. The striking feature of FRR
is that, while rounding fractional schedules, it boosts, in the settings of the problems considered,
the deviation bounds of the rounded linear packing constraints to any given constant ratio. FRR
appears to be a general technique of independent interest that uses randomized rounding, Chernoff
bounds and combinatorial arguments from [12], [11], and [1], and it should find more applications
in rounding procedures for other integer linear programs. The algorithms based on FRR are very
simple, once the general FRR technique has been understood.

We show algorithm A-SUM a linear time RRDP for SUM and use it to build a linear time
RFPTAS for SUM. Similarly, we show algorithm A-SUMC a linear time RRDP for SUMC. These

2The success probability p > % can be boosted to any constant probability in [p,1) by repeating the experiment
a constant number of times.



results for SUM and SUMC, while matching in performance guarantee and complexity the best
known sequential results of Jansen and Porkolab ([12]), exhibit, due to the FRR rounding technique,
a significantly simpler and more general rounding scheme. This becomes especially evident on the
approximation algorithm for the bicriteria SUMC problem.

Finally, we define the notion of poly—bottleneck combinatorial optimization problems and use it
to build O(nlognloglogn) time approximation schemes for two natural optimization versions of
SUMC, that is minimizing the makespan when the cost of the schedule is bounded (SUMCoptT)
and minimizing the cost when the makespan is bounded (SUMCoptC). For the combined objective
problem SUMCoptTC, a linear time RFPTAS can be obtained by using algorithm A-SUMC within
the technique of [12, Theorem 3.2].

All algorithms admit simple optimal work parallelizations which run either in O(logn) or in
O(lognloglogn) time and clearly outperform the best claimed parallel algorithms for SUM and
SUMCoptC ([22]), both in the performance ratio (e vs. 2 + €) and in the running time ((O(logn)
or O(lognloglogn)) vs. polylog(n)). The parallel running times are valid for the EREW PRAM,
the most realistic of the PRAM models. Furthermore, since the algorithms are executed in a
constant O(1) or at most a very small number (O(lognloglogn)) of iterations, these algorithms
imply efficient parallel algorithms on more practical parallel computation models, like the BSP
([24]) or the LogP ([2].

The algorithms of this work follow the common paradigm of calculating a fractional schedule
with Linear Programming techniques and then rounding it to a near-optimal integer schedule. The
linear programs that occur in our algorithms have a block-angular structure and are approximated
very efficiently, sequentially or in parallel with the logarithmic-potential based price-directive de-
composition method (PDD) of Grigoriadis and Khachiyan ([6]).

When we say that an event holds ”with high probability (whp)” we will mean that its probability
is at least 1 — 1/nf for some large enough f. The abbreviation ”wlog” stands for the expression
"without lost of generality”. E[Xj;;] represents the mean value of the random variable X;;. N will
always represent the size of a problem instance. The set {1,2,...,n} will be represented as [n].
Section C of the Appendix provides an easy access to the important definitions and notations used
in this work. The rest of this work is organized as follows. First a simple RFPTAS for the restricted
problem SUMf is shown in Sec. 2. Then the FRR technique is applied in Sec.3 for a RFPTAS
for SUM and in Sec.4 for a RRDP for the bicriteria problem SUMC. The optimization versions of
SUMC are treated in Sec.5.

2 The SUMp Problem

SUMp is the standard SUM problem with the additional constraint that the processing times do
not differ with each other more than a constant factor 4. More precisely, there is a constant § such
that for every instance P of SUMp,

; 1
pmm Z - (1)

where pp,i, = min; j p;; and e, = max; ; p;;. Even though SUMJ is a restricted subcase of SUM,
is has an autonomous presence in the literature and several specific approximation algorithms are



known for it. The best specific sequential result is the linear time FPTAS of [14]. In [22] the
authors claim a randomized polylog(n) time parallel algorithm for SUMg with approximation ratio
(2 4+ €). In what follows we will show a simple linear time RFPTAS for SUMp. The algorithm
admits a simple optimal work (O(logn))-time parallelization on a % processor EREW PRAM.
The algorithm SUMf uses only a subset of the techniques that are presented in this work, and
can serve as a smooth introduction to the main algorithms A-SUM and A-SUMC defined in the
following Sections. Note that algorithm A-SUM of Sec. 3 for the SUM problem can also solve the
SUMp problem. However A-SUMJf is simpler than A-SUM algorithm and achieves on SUMfG a

faster, within a constant factor, running time.

2.1 Algorithm A-SUMp

Algorithm A-SUMP has a very simple structure. A fractional schedule is found with a linear
programming technique, and then it is rounded to an approximate integer schedule with a standard
randomized rounding technique. This approach can satisfy any given constant approximate ratio,
if the number of jobs n larger than an appropriate constant n, which depends on m, p, and €. For
instances with number of jobs n less than ngy the optimal schedule can be found in constant time
with a brute force method.

Input: An instance of SUMS and constants € > 0 and 0 < p < %

Output: Produce a schedule, that with probability at least (1 — p) is an (1 + €)-approximate
schedule.

Step 0: Initializations. Let €2 = ¢4 = 5. Set p = %{ﬂ and ng=m- B u.

Step 1: Small number of jobs. IF (n < ng) THEN the number of jobs n is less than a constant
and hence the optimal schedule can be found in O(1)-time with a brute force method.

Step 2: Integer program formulation. The number of jobs n is n > ng. Formulate SUMS as an
integer linear program and relax it to a linear program.

Step 3: Approximate LP solution. Find a (14 €2)—approximate solution to the LP with algorithm
PDD.

Step 4: Rounding. Round the approximate fractional solution to an approximate integer schedule
with randomized rounding. END

2.2 Analysis of algorithm A-SUMg

Normalization. The problem is scaled with 1/pmez. The normalization is done only to simplify
the analysis of the algorithm and it is not used in the algorithm. Now:

V‘i,j: Spijgl. (2)
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Let g =€y = § = O(€), p = (6—2)5—. Let x4 be the marginal mean value for the processing load

on each machine and ng = m - 8- u be a threshold value for the number n of jobs. Note that u and
ng are constants.

Small number of jobs. If n < ng then there are at most m™ possible assignments of the jobs
to the machines, and hence the optimal schedule one can be found in constant time with a brute
force assignment. This constant time can be further reduced to a smaller fully polynomial constant
time with techniques 77 and 73 of Sec. 3.3 for finding only a (1 + €) approximate schedule, which
is adequate for the algorithm.

Fractional Schedule. The number of jobs n is assumed to be n > ng. It will be shown that under
this condition the makespan of the optimal schedule is large enough to guarantee with positive
probability very tight randomized rounding. The integer program formulation of SUMb is:

min T
s.t.
E]n-':lpij.’liij <T (Z = 1,...,m)
ie1 Tij =1 (G=1...,n)
zi; € {0,1} (t=1,...,m; j=1,...,n)

For each pair (7,7) the binary variable z;; is 1 if job j is assigned to machine ¢ and 0 otherwise.
Relaxing the integrality constraints on z;; to x;; > 0 gives the linear program LP-SUMJf that can
be solved optimally or approximately with any of several known polynomial time algorithms for
linear programming (see Sec. B of the Appendix). However LP-SUMJ has specific properties that
can be used to achieve very efficient approximate solutions. The problem variables of LP-SUMp
are grouped into n independent m-dimensional simplices (blocks) and there is a constant number
of positive packing constraints. These properties are exploited by the logarithmic-potential based
PDD algorithm PDD of Grigoriadis and Khanchiyan ([6]), to approximate LP-SUMS within (1+¢1).
This is formally stated in the following Claim which will be used throughout this work. The proof
is placed in Sec. B of the Appendix.

Claim 2.1 The linear program LP-SUMf can be approzimated within any constant ratio € in
(O(n))-sequential time and in O(logn)—time on a O(n/logn)—processor EREW PRAM.

Let 7* be the optimal objective value of LP-SUMp and let 7y be the approximate objective value
produced by the PDD algorithm for a given error ratio €. Then:

Yiipizig <7 (i=1,...,m)

zi; >0 (t=1,....m;5=1,....,n)
The linear program LP-SUMJ is the relaxation of the integer program formulation of SUMB. If
the optimal objective for the integer schedule problem is OPT then the optimal value 7* of the

relaxed problem LP-SUMp cannot be larger than OPT. Furthermore the approximation ratio of
algorithm PDD guarantees that 71 < 7* - (1 4 €2). Hence:

T <n < (1+e)< OPT-(1+e) . 3)



Let d; be the minimum processing time of job j, and let D be the sum of all d;:

V job 7, d; = miinpij and D = Zdj . (4)
j

The definition of D implies that the optimal amount of work for processing all jobs is exactly D.
Simply assigning assigning every job j to the machine ¢ that achieves the minimum processing time
d; for the job j, would give a feasible schedule of makespan at most D, even if in the worst case
all jobs j would have their minimum processing time on the same machine ¢. Since, on the other
hand, the total work of the machines is at least D, even if this work would be optimally distributed
to all machines, the makespan could still not be less than D /m. Hence:

D - orr<p. (5)
m

The lower bound % on the makespan is valid even if fractional schedules are admitted. This
fact together with equation 3 provides a lower bound on the approximate fractional makespan 7;:

D
— <7< . (6)
m

Note that Equ. 5 and 6 are valid also for the SUM problem (the condition of Equ. 2 on the
sizes of the p;; has not been used for showing the equations) and they will be used in Sec. 3. The
combination of Equ. 5 and Equ. 2 gives % > 3, and hence:

D n _mBu_ _3s(3)
> > > > = ) 7
nE = Bm = Bm = H (€4)? @
Equations 4, 7 and 3 give:
3log (2
(6 §2p) ST1SOPT'(1+62) . (8)
4

Rounding. The approximate fractional solution to the scheduling problem will be rounded to
an approximate integer solution, with a standard randomized rounding ([20]) technique. More
precisely, the appropriate rounding procedure that will be called ” Exclusive” Randomized Rounding
(XRR) is similar to Raghavan and Thompson’s randomized rounding technique of Sec. 2 in [20],
but generalized to the case of weighted sums of Bernulli trials. For each job j independently, exactly
one of the z;; is set to 1 and the rest is set to 0. Setting the variable z;; to 1, represents the fact
that job j is assigned to the machines ¢. The rounding is done in such a way, that the probability
for variable z;; to get the value 1 is equal to its fractional value z;;. Let 72 be the makespan of the
rounded schedule.

For each machine 4, let S; = >, p;jzi; be its processing load in the fractional schedule. The
rounding procedure essentially replaces in each constraint the fractional variable z;; with a Bernulli
trial X;; such that E[X;;] = z;;. If ¥; is the processing load of each machine ¢ in the rounded
schedule, then ¥; is the random variable ¥; = 3, p;; X;;. Since the Bernulli trials X;; of the same



constraint are independent with each other, the random variables ¥; are equal to the Weighted
Sums of independent Bernulli Trials. By linearity of expectation, for each machine ¢, the mean
value of its rounded load ¥; is equal to its load S; in the fractional schedule:

Vi : E[\I/Z] = E[Zpinij] = ZpijE[Xij] = Zpij37ij = Sz . (9)

This shows that the mean values of the U; satisfy the packing constraints of the fractional solution.
However the random variables ¥; might deviate above their mean value (and beyond of course)
and hence the makespan of the rounded schedule might be larger than the fractional makespan.
The following bounds are a generalization of Raghavan and Spencer’s Chernoff-like bounds on the
tail of the distribution of the Weighted Sum of Bernulli Trials ([19], [18]). The proof is placed in
Sec. A of the Appendix.

Theorem 2.1 Let A > 0 be a positive real number and let a1, 2, ...,a, be reals in (0,1]. Let
X1, Xa,..., X, be independent Bernulli trials with E[X;] = p;. Let W = X+ 37 a;X;. Then
E[U]=X+35_1ajpj=5. Let 4> 0, and T > S = E[¥] > 0. Then

_ (ea)?T

(%) (%) _ ()
Probl¥ > (1+e)T) <e\ 37/ and fores <1 : e\ 37/ <e : : (10)

Note 2.1 Note that the tightness of the Chernoff bounds depends on the relative size of the maz-
imum coefficient a; and the mean value S of the sum of the random wvariables. Equation 10 can
bound with positive probability, the deviation above the value T > S, by any given constant ratio,
if the ratio of m has a large enough value. This fact becomes more evident in the simplified
bound for €4 < 1 of the same Equation.

Theorem 2.2 For ey € (0,1) and p € (0,1), the makespan of the rounded schedule is, with proba-
bility at least (1 — p), not larger than 71 (1 + €4).

Proof: The probability that the makespan of the schedule is not more than 71(1 + ¢4) is equal
to the probability that no machine load ¥; in the rounded schedule is larger than 71(1 + €4). By

Equ. 10:
) )’ p
Vi: P,=Prob{¥; >7m(l+e)pu} <e 3 < —
m

(11)

A sufficient bound on the probability that at least one machine in the rounded schedule has load
more than 71 (1 + €4) is the sum of the probabilities P;.

Prob{r; > (1+€4) 1) =Prob{Fi : ¥; > - (1+e)} <Y P <p. (12)
i

If o < 7(1+€) THEN 79 < OPT(1 4 €)(1 + €4) < (1 4+ €¢)OPT. Hence given an instance
of SUMgG with n jobs and constants ¢ > 0 and 0 < p < 1, algorithm A-SUMJ produces with



probability at least (1 — p), a schedule of makespan not larger than (1 4+ €) OPT. The complexity

of the PDD algorithm is O (n (%)QIn (%)) on 1 processor and O (log(n) (%)QIn(%)) on oo
processors. The XRR procedure needs O(mn) time on 1 processor or O(mlogn) time on Togm

processors. In the case of a small number of jobs n < ng a (1 + €)-approximate schedule can be

41
found in O ([M]m ) time with the brute force enumeration technique 7; of Sec. 3.3.

€

Putting all these complexities together gives the main Theorem of this Section:

Theorem 2.3 Algorithm A-SUMS is a REPTASfor the SUMf problem. A-SUMS runs in O(n))
sequential time and in (O(logn))—parallel time on a fogn Processor EREW PRAM.

3 The SUM problem

In this section, we present a linear time RFPTAS for the problem SUM of scheduling n independent
jobs on m unrelated parallel machines, when the number m of machines is fixed. We first show
algorithm Agyar, a RRDP for the decision version of SUM, and then use it to build a simple linear
time RFPTAS for the optimization version of SUM.

3.1 Algorithm A-SUM

Algorithm A-SUM is based on the same paradigm used in algorithm A-SUMPE of finding a fractional
schedule and then rounding it to an approximate integer schedule. However the standard XRR
is extended to the Filtered Randomized Rounding technique FRR, since standard randomized
rounding cannot satisfy the tight approximation guarantee needed for the approximation scheme.
The algorithm first selects a constant number of large jobs and tries every possible assignment of
them on the machines. For each possible assignment ¢ of the large jobs, a corresponding fractional
schedule of all the jobs is found with the PDD algorithm. Among all fractional schedules the one
of minimum makespan is selected, and then it is rounded with XRR to an integer schedule. Every
job j in the rounded schedule, that is not a large job (j ¢ Sy) and that has that has been randomly
assigned to a machine i such that p;; > 1 is called an "unlucky” job and is removed from the rounded
schedule. The result is a filtered rounded schedule that satisfies a very tight approximation ratio.
All the unlucky jobs are scheduled independently, each on the machine where its processing time
is minimized. A simple combinatorial argument shows that the total processing time for the final
assignment of the unlucky jobs is at most a given constant fraction of the optimal makespan. The
final schedule is with probability at least (1 — p), a (1 + €)-approximate schedule.

Input: An instance of SUM, the constants ¢ : 0 < ¢ < 1, and p: 0 < p < 1, and a feasible
makespan value T'.

Output: A schedule of makespan at most (1 + €)7 or the problem is infeasible for T'.

Step 0: Initializations. ,
Let e = e = €3 = €4 = €5 = €¢ = 7 = O(¢). Vj, dj = mini{p;;}, D =3, dj, p = %?;i,
£:eQ+ln(27m), and k = [{um%-l



Step 1: Simple Filtering.
Vi, 7 : IFpij >T THENJ?U =0

Step 2: Large jobs.
Let J; = {j|d; belongs to the k largest d;} be the set of large jobs and let ® be the set of all
possible assignments of the large jobs to the machines. Let ®sbe an appropriate subset of ®.

Step 3: Best Fractional Schedule x;;.
V assignment ¢ € ®; do

1. Formulate the corresponding scheduling problem as an integer program ILP-SUM(¢p).
2. Relax ILP-SUM(¢p) to the linear program LP-SUM(y).
3. Find the approximate fractional schedule with algorithm PDD.

Among all fractional schedules select the one of minimum makespan.
Step 4: Filtered Randomized Rounding.

1. Round the fractional schedule with XRR.

2. Filter : If a job j has been randomly assigned to a p;; > 1 THEN job j is called " unlucky”
and is removed from the schedule.

3. V unlucky jobs j, assign job j to machine i = argmin;{p;;}

3.2 Analysis of algorithm A-SUM

In this section, it will be shown that algorithm A-SUM is a RRDP for SUM, that is, given an
instance of the SUM problem and a makespan 7', with probability of success at least (1 — p) it
either produces a schedule of makespan at most (1 4+ €)T" or decides that there is no schedule of
makespan at most T. To prove this, it is sufficient to show that if T is a feasible value then
algorithm A-SUM returns with probability at least (1 —p) a schedule of makespan at most (1+¢€)7.
The input is an instance of SUM, the constants € > 0, and p: 0 < p < 1, and a feasible makespan
value T'.

2m

Initializations. Let y = (:4—)5 be a marginal mean value for the weighted sums of Bernulli Trials.
As in Sec. 2 let d; = min; p;; be the minimum processing time for job j and D = }°;d; be the
minimum total processing time for all jobs.

Normalization. To simplify the analysis, the problem is scaled by the factor 4 so that the given
makespan becomes T" = p. As in the Sec. 2 the scaling is done only simplify the analysis of the
algorithm and it can be avoided in the real algorithm. The value of T = u, has been chosen so
that if all coefficients p;; would be p;; < 1, then given a fractional schedule, the XRR rounding
procedure would return an integer schedule that satisfies the required approximation guarantee of
the approximation algorithm. At this point, it would be possible to proceed as in Sec. 2, that is
to find an approximate fractional with the PDD algorithm and then XRR to round it an integer
solution for SUM. However due to the potential existence of arbitrarily large coefficients p;; > 1, the



Chernoff-bound would not guarantee good bounds on the deviations. The next steps deal exactly
with this problem, the existence of large coefficients p;;.

Simple Filtering. The first step is a ”"simple filtering” procedure, that deactivates all z;; for
which the corresponding p;; is larger than T'. This action does not influence any integer schedule
of makespan at most 1" and hence T' remains a feasible makespan value for the problem. After
simple filtering, all active p;; are not larger than 7', but some of the p;; can still be larger than
1. Now, finding a fractional approximate solution with Claim 2.1 and then applying XRR, would
give approximate results but still far weaker performance guarantee than the required guarantee.
It will be shown that it is possible to obtain fractional schedules and to round them to approximate
integer schedules that with positive probability have makespan at most a factor (1 + €) larger than
the makespan of the fractional schedule, for any given constant € > 0. This is accomplished with a
new randomized rounding technique, called Filtered Randomized Rounding (FRR), that is based
on standard XRR and on certain combinatorial arguments, similar to combinatorial arguments
used in [12] and [14] to support different scheduling algorithms. Before finding an approximate
fractional schedule, it is necessary to treat a constant number of large jobs. The purpose of this
step will become evident in the sequel.

Large Jobs. Let k be the constant

b= |eum 2] (13)
€3

and let the k jobs with the largest’s d; (tights are resolved arbitrarily) be the ”large jobs”. Let J;
be the set of the k large jobs:

Jy = {j | d; belongs to the k largest d;} . (14)

Enumeration. Let ® denote the set of all possible assignments ¢ of the large jobs j € Jy to the m
machines. Since the number of machines m is a constant and the number & of large jobs is fixed,
the cardinality of ® is at most mF*, also a constant. Let ¢* be an assignment of the large jobs
to the machines that is identical to the placement of the large jobs in an optimal schedule to the
SUM problem. The algorithm needs to work on the assignment ¢*, and since ¢* is not known, the
algorithm is executed for each of the possible assignments ¢ € ®. The cardinality of & is

mo(mz lnime/p)) . (15)

Even though this number is a constant for constants m and e4, it is not appropriate for a fully
polynomial algorithm, since ¢4 appears in the exponent. In Sec. 3.3 it is shown how ® can be
replace by a smaller set, of cardinality

m log(m O(m) 2log(1/e
o(min{(M) , m%}) . (16)

€

at the cost of introducing at most an extra error ratio (1+e€5)-(1+¢g) to the final solution. The rest
of the analysis all approximation bounds are calculated with the assumption that the algorithm

10



examines all assignments of ®. This assumption is later relaxed (Equ. 33) by introducing the extra
ratio (1 + €5) - (1 + €g) to the final approximation guarantee.

Fractional Schedule. Given the assignment ¢* of the large jobs J; to the m machines, the
problem of assigning the remaining jobs in an optimal way (to minimize the makespan) can be
formulated as the following integer linear program ILP-SUM(p*). Let ¢; be the load on machine 4
due to the large jobs.

min T
s.t.
ei + 2jem)-J, Pij%i; <7 (i=1,...,m)
it @i =1 (4 € [n] = Jo)
Zij € {O, 1} (Z = 15 yM; J € [‘I’L] - Jg)

Let 7* be the optimal objective value of ILP-SUM(p*). Since the value T is assumed to be
feasible for the problem and ¢* is assumed to be the optimal assignment of the large jobs:

™*<T . (17)

Let LP-SUM(¢*) be the linear program relaxation of ILP-SUM(p*) obtained by relaxing the
integrality constraints on the variables z;; to Vi,j : xz;; > 0. The linear program ILP-SUM(y*)
has a block-angular structure and as in Claim 2.1 of Sec. 2 it can be approximated with PDD,
the logarithmic-potential based PDD algorithm of [6]. The complexity of ILP-SUM(y*) is slightly
lower than LP-SUMJS of Sec. 2 since a constant number of jobs is already assigned (by the a priori
assignment of the large jobs) and some z;; have been set to 0. This difference does not increase the
complexity and will be ignored in the analysis. Hence for given constant e, the PDD algorithm
will run in O(n) sequential time and in O(logn) parallel time on n/logn processors, and it will

produce a (1 + ez)-approximate fractional schedule. Let z;; and 71 be the output produced by
PDD. Then:

@i + 2 jem]—J, PijTi; <11 (i=1,...,m)
Yitimij =1 (4 € [n] — Jo)
zij 2 0 (i=1,...,m; j €[n]—Jp)
By the approximation guarantee of PDD and Equ. 17:
<7 (1+e)<opt-(1+e) . (18)

For each ¢ € ® the PDD algorithm finds an approximate fractional solution to LP-SUM(p). At
the end the algorithm selects among all fractional schedules the one with the smallest makespan
To. Let [z;] be a fractional solution with makespan 7o.

Ty = mi£{ T, | T, = €a — approximate solution to LP-SUM(y) found with PDD} . (19)
e

11



Hence:
T2§T1ST-(1—|—€2). (20)

Rounding. The fractional schedule [z;;] will be rounded to an approximate integer schedule for
SUM. Let J be set of all jobs j and Js the set of all jobs except the large jobs J; = J\Jy (set
difference). For each job j € J; independently, exactly one of the z;; is set to 1 and the rest is set to
0, that is each job j independently is assigned to exactly one of the machines i. The probability for
job j to be assigned by the rounding procedure to machine i is equal to the fractional value z;;. Let
73 be the makespan of the rounded schedule. The rounding procedure is equivalent with replacing
for j € J, all variables z;; with a corresponding Bernulli trial X;;, such that E[X;;] = z;;. Since
the rounding is done for each job j independently, the Bernulli trials X;; of each constraint 7, are
independent and hence the load ¥; of each machine 7 in the rounded schedule is equal to the sum of
a given positive value ¢; and the weighted sum of independent Bernulli trials ¥; = (Pi+Zje g1 Pij Xij.

Let £ =e?+1n (27'”) be an appropriate deviation ratio and let E; be the event:
&1 = { The makespan 73 of the rounded solution is 73 > & - 1o} . (21)
Proposition 3.1 The probability of event &1 is at most p/2.

Proof: The proof is a simple application of the Chernoff-like Bounds for Weighted Sums of
Bernulli Trials of Theorem 2.1 and it is similar to the proof of Lem. 2.2 of Sec. 2. Since for
each i : E[¥;] < 7o:

__&n )

Prob{¥; > ¢ -7y} < e( O 2L : (22)

-m

A sufficient bound on the probability of event £; is the sum of the probabilities P;:

p_p
Prob{&;} <Y Prob{¥;} < — < = 23
ro{l}—; TO{Z}_;2.m_2 ( )
|

Let J, be the set of unlucky jobs of the rounded schedule, that is J, is the set of all jobs j € J
that have been randomly assigned to a "bad” p;; > 1.

Note 3.1 Unlike the large jobs of J; that are statically defined for every instance of SUM, the
notion of unlucky jobs is dynamical: Given a rounded schedule, a job is "unlucky” and belongs to
Js only if its processing time in the given rounded schedule is larger than 1 (and it does not belong to
Jp). Any job that does not belong to J; and for which at least one coefficient p;; is larger than 1 can
possibly be a unlucky job in a rounded schedule. Since the rounded schedules are obtained randomly
from the fractional schedules, separate rounded schedules might have different sets of unlucky jobs.

Filtering In order to achieve very tight bounds on the deviation of the makespan of the rounded
schedule, all unlucky jobs are simply removed from the rounded schedule. The remaining schedule
is called the filtered rounded schedule. For each machine i, let the random variable ¥} be:

\I/; = ; + Z pinz'j . (24)
jeds ANDp;;<1
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! corresponds to the load of the machine i due to all the remaining jobs, if unlucky jobs are
excluded. Note that the random part of the random variables U} is a weighted sum of Bernulli
trials, where each weight is at most 1. Let 74 be the makespan of the filtered rounded schedule and
let E5 be the event:

& = { The makespan 74 of the filtered rounded schedule is 74 > (1 + €4) - 72}. (25)
Proposition 3.2 The probability of event & is at most p/2.

Proof: For each machine 4, its load in the filtered rounded schedule is the random variable U,
and the probability that ¥} exceeds 7 - (1 + €4) can be bounded by the Chernoff-like bounds of
Theorem 2.1.

Prob{¥; > 13- (1 + €4)} < B(72,€4) < ﬁ . (26)

The probability that at least one of the filtered loads \IJ{ exceeds 7o - (1 + €4) is not larger than the
sum of the individual bounds for each i:

N

Prob{rsy > 79:(14€4)} = Prob{3 i : U, > m9-(14€4)} < Z (Prob{¥} > 15+ (1 +e4)}) <= . (27)

The following simple combinatorial argument will be used to handle the unlucky jobs. Similar
arguments have been used in [1] and [12].

Lemma 3.1 Let dy,ds,...,d, be a sorted sequence of real numbers dy > do > ... > d,, > 0 and let
D= 2?21 d;. Let p be a non-negative integer, and €3 > 0 a constant. For k = L%-I, any set S of
reals S ={ d; | i >k } with | S |< p satisfies:

d di<es-D . (28)
d;eS

Proof: The number of jobs n is assumed to be larger than the constant &, or else a schedule can
be found by a brute force assignment. The real dj satisfies dj < %3 -D. SinceVd; € S : 1>k
and the reals are sorted in decreasing order Vd; € S : d; < dy < %D . Hence:

S di<p-2.D<e-D. (29)
;€S p
| |

Lemma 3.2 For any set J, of at most p=m & p jobs that do not belong to J; (J, N Jp = 0), the
sum of their minimum processing times d; is at most

Zdj§€3'72 . (30)
JA

13



Proof: Simple application of Lem. 3.1. [ |

Let £3 be the event that the sum of the minimum processing times d; of all unlucky jobs j € J;
is larger than €3 - 7o:

53={Zdj>63-7'2} . (31)

JEJ
Proposition 3.3 The probability of event £3 is at most &.

Proof: By Proposition 3.1 the probability that the non-filtered rounded schedule has makespan
larger than £ - 75 is at most 5. Hence the probability that the total load on all machines in the
rounded schedule exceeds m - £ - 4 is at most £. Since each unlucky job has processing time larger
than 1, the probability that the total number of unlucky jobs in the rounded schedule is larger than
m-& - is at most £. Lemma 3.2 proves, that for any set .J, of at most p = m - - u jobs such that
Jp N J¢ = 0, the sum of their minimum processing times d; is at most €3 - 75. Hence if each unlucky
job is assigned to the machine where its processing time is minimized, then even if in the worst
case all unlucky jobs end up on the same machine the makespan of the schedule does not increase
(additively) by more than €4 - 79. [ ]

Final Schedule. The final schedule is obtained from the filtered schedule, by simply assigning
every the unlucky job j € J, to a machine 4, where p;; = d;. Let 75 be the makespan of the final
schedule.

Proposition 3.4 Let &4 be the event: €4 = Ey|JE3. Then:
1. The probability of event E4 is at most p, and

2. IF event NOT(€,) THEN the makespan 15 of the final schedule is not larger than (1+¢€)-T.

Proof: 1. A sufficient bound on the probability of the event £, = & |J &3 that at least one of
&2,E3 is true, is the sum of their individual probabilities:

Prob{&, U83} < Prob{&2} + Prob{&;} < p . (32)

2. Ifevent & is NOT TRUE then both events & and £ are NOT TRUE and hence by Prop. 3.2
and 3.3 the makespan 75 of the final schedule is:

(3<mates 7)) -(1+e) - (14+e) = 5<(1+¢€) T . (33)

o] log(1/¢)
The set of assignments ®; has cardinality 7 = min ((M) ) ,m2 e ) and it can

€

m log(m/p) | O(™)

Algorithm PDD has to be executed once for each assignment ¢ € ®;. The complexity of the

be calculated in ( time with the brute force enumeration techniques of Sec. 3.3.
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PDD algorithm is O (n (%)2 In (%)) on 1 processor or O (log(n) (%)2 In (%)) On [ Processors.
The XRR procedure has to be executed only once in O(mn) time on 1 processor or in O(m logn)
time on % processors. We have proven that given an instance of SUM, constants ¢ > 0 and
p € (0,1), and a makespan value 7', A-SUM runs in fully O(n)-sequential time or in O(logn)—
time on O(n/logmn)-processors and with probability at least 1 — p, either produces a schedule of
makespan at most (1 + €)T or decides that T is not a feasible makespan value. Hence:

Theorem 3.1 Algorithm A-SUM is a O(n)-time RRDP for SUM. The parallel running time of

A-SUM is O(logn) on a O(&) processor EREW PRAM.

The algorithm A-SUM can be used within a binary search procedure (Fig. 1) to build an
approximation scheme for the optimization version of problem SUM.

Corollary 3.1 The binary search procedure of Fig. 1 is a O(n)-time RFPTAS for SUM. Iis
parallel running time is O(logn) on a O(2-) processor EREW PRAM.

logn

Proof: Let P be an instance of SUM and let T be its optimal makespan. Given the overall
approximation guarantee €, let for ¢; : ¢ =1,...,6 be appropriate values such that: H?Zl(l +e) <
(1+e€) and € = 17*~. Let L = [log(*)]. Given the bound on the probability of failure, let p' = 2.
An example of appropriate values is €; = €2 = €3 = €4 = €5 = € = § and € = g _:61. By Equation 5
the optimal makespan T* is always bounded by % <T* < D. Let ¢4 : 0 < €1 < € be the
precision of the binary search procedure and let ¢ = 114:61 be the error ratio for algorithm A-SUM.
The binary search procedure of Fig. 1 seeks for the minimum value 77 € [%, D] that satisfies €'
relaxed feasibility, that is when called with parameters T}, €/, and p’, algorithm A-SUM returns a
schedule of makespan at most (1+ ¢')T. Clearly T; < T™* since all feasible makespan values satisfy
relaxed feasibility. Then after L steps the value T, found by the binary search procedure satisfies
Ty < (1+€)-Th < (14+€)-T*. The makespan T of the schedule found by A-SUM with parameters
Ty, €, plisat most T < (1+¢€)-To < (1+¢€)-(1+e€)-T* < (1+e¢)-T*, with probability of
success at least 1 — p. [

Note 3.2 It is possible to modify algorithm A-SUM so that it approzimates directly the optimization
version of SUM and to avoid the binary search procedure. Instead of assuming a feasible makespan
value T the algorithm would simply filter out p;; such that p;; > D, since the optimal schedule has
makespan at most D. By using a slightly larger £ the algorithm would find an (1 + €)—approzimate
schedule in one execution. However the complexity of the single execution is larger than the overall
complexity of the A-SUM based algorithm.

3.3 Approximate enumeration

The cardinality of set ® of assignments of ”large jobs” to the machines depends exponentially on
1/e4. Hence, even though the size of ® is a constant, it is not polynomial on ¢, since € = O(e4). If
algorithm A-SUM processes each assignment ¢ € ® separately then the complexity of the algorithm
is not fully polynomial. It will be shown, that it is possible to consider only ®;, a substantially
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Binary Search

Input: D, m
Output: A (1 + €) approximate schedule
Pseudocode [1] L=2 U=D
[2] Loop
3 T = LU
[4] Run Algorithm Aggyas for T.
[5] Is T a feasible makespan value 7
[6] NO:L =T
[7] YES:U=T
[8] Repeat [log({2)] times
[9] End

Figure 1: Binary Search

smaller subset of ®, with size polynomial on €. Considering only the assignments in ®; will admit
algorithm A-SUM to be fully polynomial, at the cost of introducing an arbitrarily small constant
error factor to the approximation guarantee of the final solution. The set ®; is obtained from ®
by applying 71, a technique of Horowitz and Sahni ([11]) in the way it has been used in [12], and
T2, a geometric grouping technique.

Technique 7;. Instead of considering every individual of the possible assignments ¢ € ® of the
large jobs to the machines it is possible to define groups of similar assignments and to consider
only one of the assignments in each group. The cost is an extra constant error factor to the
approximation guarantee of the final solution. For every valid assignment ¢ the load ¢; on machine
iis: 0 < ¢; < D. The interval [0, D] is partitioned into N = T_: sub-intervals each of size at most
%. Given two assignments ¢ and x of @, if for each machine %, their respective loads ¢; and x;
on machine 7 are in the same sub-interval, then the assignments ¢ and x are considered to the in
the same group. From all assignments that belong to the same group, the algorithm considers only
one arbitrary of them. Let ®; be a set of the assignments that contains exactly one assignment of

0
each group. The cardinality of @, is (M) (m). The set ®; can be generated by a simple

algorithm with sequential running time (w)o(m). ([12, Section 2.1]).

At least one of the assignments @ € ® will correspond to an optimal schedule. Let ¢* be
one optimal assignment. Then there will be a corresponding assignment @* in ®;, such that
Vi, ¢of < ¢f-(1+e5). Hence enumerating the assignments in ®; instead of ® improves the
complexity of algorithm A-SUM to fully polynomial at the cost of an extra error ratio of at most
(1+ €5) to the final solution.

Technique 73. Technique 72 is a simple geometric grouping technique. The interval [0, D] is
partitioned into the geometrically increasing sub-intervals: [0, eD], (eD,e(1+€)D], (e(1+¢€)D,e(1+

€)2D],...,(e(1+ €)LD, D], where L = [llggg((llii?)]. Given two assignments ¢ and y of @, if for each
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machine ¢, their respective loads ¢; and x; on machine i are in the same sub-interval, then the
assignments ¢ and x are considered to the in the same group. From all assignments that belong to
the same group, the algorithm considers only one arbitrary of them. Technique 73 partitions the
assignments ¢ € ® into at most m” groups. Let ®5 be the set of all representative assignments of
D,.

Lemma 3.3 For every z € [0,1] : 1z < In(1 + z).

Proof: Let f(z) =In(1 + ) — 3z. We want to show that f(z) > 0 for z € [0,1]. Now f(0) =0
and f'(z) = -+ — 3. Since f'(z) > 0 for z € [0,1], f(z) > f(0) =0 for z € [0,1]. [ |

X
log(1/eq) 2log(1/eq)

The cardinality of ®; is O(m!) = O(m™s(+%)) = O(m~ < ). The last equality is due to
Lemma 3.3.

In algorithm A-SUM technique 75 is applied on top of technique 77, that is for all assignments
in ®; that belong to the same geometric group of technique 73 only one (arbitrary) of them is in
®;. For each assignment ¢ € ®; the algorithm proceeds to the main iteration only if no other
assignment of the same class for @, has been processed. The number of iterations of the main part
of the algorithm is now O(min(|®,|,|®2|). The cost is the extra factor (1 + €5) - (1 + €5) in the
approximation guarantee of the final solution.

Note 3.3 Due to technique T2 the number of assignments that are processed is polynomial on m.
However Ta depends on T1 since all assignments of ®o are generated from the assignments of ;.
Technique T1 depends exponentially on the number of machines m and it is the only component of
the whole approzimation scheme that is not polynomial on m. Hence a way to directly generate the
assignments of ®o would turn A-SUM into a polynomial time algorithm for any numbers n of jobs
and m of machines.

4 Makespan and Cost

The bicriteria problem SUMC generalizes the standard SUM problem, in that processing a job j on
machine ¢ incurs a cost of ¢;; and hence there are two optimization criteria in SUMC, the makespan
and the cost. As in the previous sections, the number of machines m is assumed to be a constant.
We show algorithm A-SUMC, a fully linear time RRDP for SUMC. Given an instance of SUMC
and values T' and C, an e-relaxed decision procedure for SUMC returns a schedule of cost at most
(1 + €)C and makespan at most (1 + €)7', or decides that there is no schedule of cost at most C
and makespan at most 7. The probability of failure is at most the given constant p.

4.1 Algorithm A-SUMC

The structure of Algorithm A-SUMC is almost identical to that of algorithm A-SUM, with a small
number of straightforward adaptations. The definition of the measures d; and D is extended to
cover the bicriteria nature of A-SUMC. A constant number of jobs, the large jobs, are selected.
For each possible assignment of the large jobs, a fractional schedule is calculated with algorithm
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PDD. The best fractional solution is rounded randomly to an integer schedule. All unlucky jobs
of the rounded schedule are removed and then assigned, each on the machine where its measure
d; is minimum. The result is a (1 + €)-approximate schedule, if the problem is feasible and if the
randomized algorithm did not fail.

Input: An instance of SUMC, the constants e : 0 < e <1,and p: 0 < p <1, and the values T for
makespan and C for cost.

Output: With probability of success at least (1 — p), a schedule of makespan at most (1+¢)7T" and
cost at most (1 + €)C or the problem is infeasible for makespan T' and cost C.

Step 0: Initializations.
Let ) =g =e3 = €4 = €5 = €g = 5 = O(€). Vj, dj = mini{p;; + ¢;j}, D =3, d;,

3In 2m+2

uzm'{,’—,f:(?—i—ln(w),andk: [{-u-(m—{—l)-m—"'l-l.

p €3

Step 1: Normalization. The processing times p;; are scaled by % and the costs c;; by % Now the
problem is to decide if there is a schedule of makespan and cost bounded by p.

Step 2: Simple Filtering.
Vi,j: IF (p,'j >T OR Cij > C) THEN:EZ'J' =0

Step 3: Large jobs.
Let J; = { j ;| d; belongs to the k largest d;} be the set of large jobs and let ® be the set of

all possible assignments of the large jobs to the machines. Let ®; be an appropriate subset
of .

Step 4: Best Fractional Schedule x;;.
V assignment ¢ € @ do

1. Formulate the corresponding scheduling problem as an integer program ILP-SUMC(yp).
2. Relax ILP-SUMC(y) to the linear program LP-SUMC(yp).
3. Find the approximate fractional schedule with algorithm PDD.

Among all fractional schedules select the one of minimum makespan and cost.
Step 5: Filtered Randomized Rounding.

1. Round the best fractional schedule with XRR.

2. Filter : If a job j has been randomly assigned to a p;; > 1 or a ¢;; > 1 THEN job j is
called ”unlucky” and it is removed from the schedule.

3. V unlucky jobs j, assign job j to machine i = argmin;{p;; + ¢;; }

18



4.2 Analysis of algorithm A-SUMC

The input to algorithm A-SUMC for SUMC, is an instance of SUMC, the values T for the makespan
and C for the cost, the constant approximation ratio € > 0 and the maximum probability of failure
p:0<p<l.

Normalization. Let y be the marginal mean value:

1n (2252)

h= )R (34)

By scaling the processing times p;; by % and the costs c;; by % the problem becomes to decide if
there is a schedule of makespan and cost bounded by .

Simple Filtering. As in Sec. 3, a simple filtering procedure sets for any pair (7,7) such that
Pij > p or ¢;j > pu the corresponding z;; = 0. Since p is assumed to be a feasible bound for the
problem, the simple filtering process does not modify its feasibility. Let

5:62+1n<2mp+2> : (35)
p=p-&-(m+1), and (36)
b= |eg-emen)- () (37)

The measure d; for each job j is now defined in a way to cover both the processing times p;;
and the costs c;;. The sum of all d; is defined as before to be D.

V job j, dj = min{p;; + c;;} and D = d; . (38)
2 )
J

Large Jobs. Let the £ jobs corresponding to the k largest d; be the set J; of the "large jobs”:
Jy = {j | d; belongs to the k largest d;} . (39)

Enumeration. Let ® denote the set of all possible assignments ¢ of the large jobs j € J; to the
machines. The cardinality of ® is gnk,z 2 cgnstant. The algorithm can examine separately each of
m+1)? log? (212
the assignments ¢ € ® in m© %M) steps.
Approximate Enumeration. As in Sec. 3 the set of assignments considered can be substantially
reduced from ® to ®; C ® with techniques of Sec. 3.3. The cost is an extra arbitrarily small error
factor (1 + €5) - (1 + ¢) to the approximation guarantee for the final solution. As in the analysis
of algorithm A-SUM, the rest of the analysis of A-SUMC is done with the assumption that all
possible assignments in ® are examined by the algorithm. This assumption is relaxed in the final
Equation 48, by introducing the extra factor (1 + €5) - (1 + €5) to the approximation guarantee.
Approximate Fractional Schedule Let ¢* be an assignment of the large jobs as they appear in
an optimal schedule. Given the assignment ¢*, the problem of assigning the remaining jobs in an
optimal way (to minimize the maximum of makespan and cost) can be formulated as the following
integer linear program ILP — SUMC(*):
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min T

s.t.
©; + Zje[n]—leij‘fij <7 (i=1,...,m)
Pz + 2 jeln)—Jyicm]) CiiTi ST
Yt mi =1 (J € [n]—Jo)
:L‘ZJE{O,l} (i=1,...,m; j €[n]—Jo)

Let 7* be the optimal objective value of ILP-SUMC(¢*). Since the value y is assumed to be a

feasible bound on the makespan:
r<pu=T=C . (40)

Let LP-SUMC(p*) be the linear program relaxation of ILP-SUMC(p*) obtained by relaxing the
integrality constraints on the variables z;; to Vi,j : x;; > 0. The linear program LP-SUMC(y*)
has a block-angular structure and can be approximated with the logarithmic-potential based PDD
algorithm of [6] as LP-SUM(t*) in Sec. 3. Given the constant ey, the PDD algorithm will produce
a (14 ez)-approximate fractional schedule. Let z;; and 1 be the output produced by PDD. Then:

G+ Xjeln)-1, PigTij <1 (i=1,...,m)

e + 2 jeln]—Jpicim)) CiiTii < T1

e Tij =1 (€ [n]—Jo)

zi; € [0,1] (t=1,...,m; j €[n]—Jp)

By the approximation guarantee of PDD and Equ. 40:
<t (I+e)<p (1+e) . (41)

For each assignment ¢ € @ the PDD algorithms finds an approximate fractional solution to
LP-SUMC(p). At the end the algorithm selects the among all fractional solutions the one with the
best objective value 5.

72 =mi g{ T, | T, = €2 — approximate solution to LP-SUMC(y) found with PDD} . (42)
7

Hence:
o< <p-(1+e) . (43)

Rounding. As in Sec. 3 the best fractional solution found is rounded to an approximate schedule,
with Filtered Randomized Rounding (FRR). First the fractional schedule is rounded to an integer
schedule with standard XRR. Let 73 be the maximum of the makespan and the cost of the rounded
schedule.

Let ¢ =e?+1n <%) Let &1 be the event:

&1 = { In the rounded solution 73 > £ - u}. . (44)

Proposition 4.1 The probability of event £; is at most p/2.
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Proof: Similar to Proposition 3.1. [ |

For each 4, j let the processing time p;; be called "bad” if p;; > 1 and the cost ¢;; be called "bad” if
cij- In the rounded schedule a job j is called unlucky, if it does not belong to the large jobs J; and
if it has been randomly assigned to a machine 4 such that p;; is bad or ¢;; is bad, that is z;; = 1
with p;; > 1 or ¢;; > 1. Let J, be the set of unlucky jobs in the rounded schedule. All the unlucky
jobs are removed from the rounded schedule. The remaining schedule is called the filtered rounded
schedule. In the filtered rounded schedule let 74 = max{makespan, cost}. Let £ be the event:

& = { In the filtered rounded schedule 74 > (1 + €4) - 2} (45)
Proposition 4.2 The probability of event & is at most p/2.
Proof: Similar to Proposition 3.2. [ |

Lemma 4.1 For any set of at most p jobs that do not belong to J;, the sum of their d; is at most
€3 - T2.

Proof: Simple application of Lem. 3.1. [

Let &3 be the following event concerning the sum of the d; of all unlucky jobs j € J,:

83:{Zdj>63-7'2}. (46)
Jj€Ju

Proposition 4.3 The probability of event &3 is at most &.
Proof: Similar to Prop. 3.3. [ |

Final Schedule. The final schedule is obtained from the filtered schedule, by simply assigning
every unlucky job j € J, to a machine i, where p;; = d;. Let 75 be the maximum of the makespan
and the cost of the final schedule.

Proposition 4.4 Let &4 be the event: €4 = E3UE3. Then:
1. The probability of event E4 is at most p, and
2. IF event NOT (€4) THEN in the final schedule 15 is not larger than (1 +¢€)-T.

Proof: 1. A sufficient bound on the probability of the event £, = & |J &3 that at least one of
&, &3 is true, is the sum of their individual probabilities:

Prob{&; | J&€3} < Prob{&;} + Prob{&3} < p . (47)

2. If event £ is NOT TRUE then both events & and £ are NOT TRUFE and then by Prop. 4.2
and 4.3 the value 75 of the final schedule is:

(5 <mat+es-m) - 1+e) - (1+e) = < (1+€)-u. (48)
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(m+1) log(2m-+2) /) )O(m) (m 4+ 1) 72 “)

€

The set of assignments @ ¢ has cardinality 7 = min ((

(m+1) log((2m+2) /p) | O™

and it can be calculated in ( . time with the brute force enumeration tech-
niques of Sec. 3.3. Algorithm PDD has to be executed once for each assignment ¢ € ®;. The

complexity of the PDD algorithm is O (n (™)?In (™)) on 1 processor or O (log(n) (™)?1In (™)) on
p y g ( ( € € p g € €

n

Togn ProCessors. The XRR procedure has to be executed only once in O(mn) time on 1 processor or
in O(mlogn) time on 102 — processors. We have proven that given an instance of SUMC;, constants
e>0and p € (0,1), and values values T" and C for makespan and cost respectively, A-SUMC runs
in fully O(n)-sequential time or in O(logn)—time on O(n/logn)-processors and, with probability
at least 1 — p, either produces a schedule of makespan at most (14 €)T" and cost (1+¢€)C, or decides
that there is no schedule of makespan at most 7" and cost at most C. Hence:

Theorem 4.1 Algorithm A-SUMC is a O(n)—time RRDP for SUMC. The parallel running time
of A-SUMC is O(logn) on a O(i=X-) processor EREW PRAM.

logn

5 Optimizations of SUMC

The SUMC problem has two separate objectives, the makespan and the cost, and this fact gives
rise to more than one optimization problems for SUMC. Two natural cases are SUMCoptT and
SUMCoptC, which are obtained by specifying an upper bound on the one objective and then
optimizing the second objective under this condition. In this way, SUMCoptT is the problem
of finding for a given instance of SUMC and a specified cost value C, the schedule of minimum
makespan for cost at most C. Similarly SUMCoptC is the problem of finding for given SUMC
and makespan T a schedule of minimum cost C' and makespan at most T. A third optimization
problem is SUMCoptTC, which optimizes a linear combination of both criteria, makespan and
cost, for example d - T + C, for d > 0. This problem is discussed in [23] for an unrestricted
number of machines. For a fixed number of machines, Jansen and Porkolab present in [12] a
simple approximation scheme for SUMCoptT(C based on a relaxed decision procedure for SUMC.
Algorithm A-SUMC can be used within the algorithm of [12].

In this section, we show how an erelaxed decision procedure for SUMC can be used to build
approximation schemes for the e-relaxed versions of SUMCoptT and SUM CoptC. Given an instance
of SUMCoptT and the bound on the cost C, the e-relaxed SUMCoptT problem is to find a schedule
of cost at most (1+¢)C and makespan at most (1+¢€)7T, if T is the optimal makespan of SUMCoptT
if the cost is restricted to be at most C. In the same way, given an instance of SUMCoptC and the
bound on the makespan T, the e-relaxed SUMCoptC problem is to find a schedule of makespan at
most (14 ¢€)T and cost at most (1+¢€)C, if C is the optimal cost of SUMCoptC when the makespan
is restricted to be at most T.

Proposition 5.1 For any feasible solution to SUMC, the two objectives of SUMC, makespan and
cost, have values that are always within a linear factor of one of the weights in the original descrip-
tion of the problem instance.
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Proof: Let pmnq, be the maximum processing time that appears in an optimal solution to SUMC.
Then the makespan of the optimal schedule is at least ppq; and at most n - ppq,. There are at
most m - n different possibilities for py,qz, since prq, has to be one of the specified p;;. In the same
way let ¢pqr be the maximum cost that appears in an optimal solution to SUMC. Then the cost
of the optimal schedule is at least ¢;,q; and at most n - ¢;,q;. There are at most m - n different
possibilities for ¢z, since cpq, has to be one of the specified c;;. [ ]

Definition 5.1 We say that a combinatorial optimization problem has the poly-bottleneck® prop-
erty, if its optimal objective value is always within a polynomial factor of one of its input elements
(weights). Unweighted problems are assumed to have elements of weight 1.

Fact 5.1 SUMC has the poly-bottleneck property.

The following Lemma uses algorithm A-SUMC and the poly-bottleneck property of SUMCoptT
to build an approximation algorithm for it (SUMCoptT). In the same way an approximation
algorithm for SUMCoptC can be build. Furthermore the technique can be generalized to any
problem that has the poly—bottleneck property, if a (relaxed) decision procedure is given for the
problem.

Lemma 5.1 Let P be an instance of the SUMCoptT problem for given cost C, approximation ratio
e>0andletp: 0< p <1 be the mazimum probability of failure. Let N be the size of the problem.
There is a simple two-level binary search procedure that with probability at least (1 — p) gives a
(1 + €) approzimate solution for P in O(log N) steps. The binary search procedure calls algorithm
A-SUMC once at each step.

Proof: The following 2-level binary search procedure achieves the result claimed in the Lemma.
The procedure seeks for the minimum makespan value 7', such algorithm A-SUMC returns a (1+¢€)—
approximate schedule of the corresponding problem SUMC with parameters T and C.

Step 1: Weights. Let W be the set of numbers that contains for each pair (i,j), the values p;;
and n - p;j. The cardinality of W is w = [W| < 2-m - n.

Step 2: Sorting. Sort the elements of W. Let the sorted list be wy > wo > ... > wy,.
Step 3: Indexed binary search.

1. LETI=1, u=w

2. ¢z = H'T“
3. IF SUMC is feasible for cost C' and makespan w,
4. THENuw = x ELSE [ = x;

3The term ”bottleneck” has been used by Hochbaum and Schmays in [8] for a class of graph optimization problems.
An important property of the bottleneck problems of [8], is that the value of the optimal solution is always one of
the (edge) weights in the original specification of the instance of the problem.
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5. Repeat from step 2 for at most [log(2mn)] times.
The output x is such that : wy; <T™* < wy41.
Step 4: Standard binary search.

. LETL = w,, U = wyyy
_ LU
-T=5"

THENU =T ELSEL =T;

1
2
3. IF SUMC is feasible for cost C' and makespan w,
4
5. Repeat from step 2 for at most [log(mn/e€)] times.

The sorting procedure of step 2 needs O(n logn) time. The binary search of steps 3 and 4 executes
O(log(n/e)) loops. The main cost of each loop is the execution of algorithm SUMC. Given that
the probability of failure of the whole procedure is bounded by p, each individual execution of
SUMC is done with probability of failure at most Tog@mn)] f”og(mn T Under this condition the
complexity of SUMC is O(nloglogn). Hence the complexity of the overall approximation scheme
for SUMCoptC is O(nlognloglogn). The asymptotic performance of the algorithm can slightly
be improved to O(nlogn) by using the deterministic RDP for SUMC of [12] instead of algorithm
A-SUMC. ]
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APPENDIX

Proof of Theorem 2.1

This section shows the proof of Theorem 2.1 for Chernoff-like bounds.

Theorem A.1 (Theorem 2.1). Let X\ > 0 be a positive real number and let a1, az, . .., oy be reals in
(0,1]. Let X1, Xo,...,X; be independent Bernulli trials with E[X;] =p;. Let ¥ = X+ 377 a;X;.
Then E[¥] =X+ 3% _ajpj=S. Let 6 >0, and T > S = E[¥] > 0. Then

_ @27

(-+55) (455) <. ()
Prob[¥ > (14+0)T] <e\ 3/ and for 6 <1 : e\ 78/ <e s . (49)

B



Theorem 2.1 is a simple generalization of the following Theorem of Raghavan and Spencer
on Chernoff-like bounds on the tail of the distribution of the Weighted Sum of Bernulli Trials

([19], [18]).

Theorem A.2 ([19, Theorem 1]). Let ai,as,...,q, be real numbers in (0,1]. Let X1, Xo,..., X,
be independent Bernulli trials with E[X;] = pj. Let ¥ =% a;X;. Then E[¥] =37"_, ajp; = S.
Let § >0, and S = E[¥] > 0. Then

Prob[¥ > (14 6)5] < TE

The following technical Lemma will used to replace the right hand side of Equ. 50 with an easier
to handle expression.

o(0) s
im0 | - (50)

Lemma A.1 ([7, Page 200, Lemma 2.4]). For all z > 0,

(1+z)In(1 4 z)— > 32%/(6 + 2z) . (51)
Proof: Let fi(z) = (6 4+ 8z + 22?)In(1 + ) — 6z — 522. We want to show that fi(z) > 0 for all
z] > 0. Now f1(0) =0, and f](z) = 4f2(z) where fo(z) = (2+z) In(1 + z) — 2z. Tt suffices to show
that fo(x) > 0 for all z > 0. Now f>(0) = 0, and f}(z) = (1+z)~! +In(1 +z) — 1. Now f(0) =0,
so it suffices to show that f4(0) > 0 for all z > 0. But f5(z) = z(1+x) 2 > 0, and so we are done.
|

The following Lemma, is obtained from Lemma A.1 and Theorem A.2:

Lemma A.2 For § >0and S>0

( s <_ ()25 > <_—(5>25 ) _®)?s
o )] <e 209 , and for 6 <1:e 204§) <e( s ) . (52)

(14 6)0+9

__@)?%s )
Proof: Let B(S,d) = e< 20+9) ) Let A > 0 be a positive real number and let a1, as,...,q;
be reals in (0,1]. Let Xi, Xs,..., X, be independent Bernulli trials with E[X;] = p;. Let ¥ =
A+3%1a;X;. Then E[¥] = A+ 3% a;pj =S. Let 6 >0, and T > S = E[¥] > 0.
Let ¥' = 3% ajp; and E[¥'] =377 ajp; = S'. Then
Prob{® > (1 4+ §)T} = Prob{\ + ¥’ > (1 + §)T} =

Prob{¥' > (1+§)T — A} < Prob{¥' >T —A+T:4} =

T-XA—8 T .

Prob{¥' > §'(1+ —a——+ 5 -0} < B, =5~ + 7.9 .
The last step is to show that
T-\=-§8 T
B(S', T+ )-8 < BT, ) , (53)
which can be done be using the definition of B(S,d) and the fact that S’ + A =S < T. ]
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B Approximating the Linear Programs with PDD

The linear programs that occur in algorithms A-SUMp, A-SUM and A-SUMC respectively, have
the block-angular structure of the following linear program L.

Linear Program £

min A

s.t.
Z?leija:ijS)\ (1=1,...,m)
Yy =1 (1=1,...,n)
Z>0,z5;>20 (e=1,...,m; j=1,...,n)

An important property of £ is that the problem variables are grouped into n independent m-
dimensional simplices (blocks) and that it has a constant number of positive packing constraints that
can be considered as the coupling constraints. The objective is to compute a block-feasible solution
that uses a scalar multiple of the given m vector of resources. Since L is a linear program it can be
optimally solved with any of the known polynomial time algorithms for linear programming ([13],
[21]). If however, an (1+ €)—-approximate solution is good enough for the application (and this is the
case for the applications of this work), then there are very fast algorithms for linear programs like
L ([5],[17],[6]). The most efficient for the needs of this work is the logarithmic-potential based PDD
algorithm of Grigoriadis and Khanchiyan, which approximates the LP relaxation of the problem
within (1 + €;) in O(n) time. Furthermore it admits a simple optimal work parallelization of
O(log n)-running time.

Claim B.1 (Claim 2.1). The linear program LP-SUMS can be approximated within any constant
ratio € in (O(n))-sequential time and in O(logn)-time on a O(n/logn)—processor EREW PRAM.

Proof: According to Theorem 3 of [6], the PDD algorithm will find a (1+¢; )-approximate solution
for LP-SUMb in O(m(e; 2 Ine; ! +Inm)) iterations. Each iteration requires O(m Inln(m/e;)) oper-
ations, or O(InmInln(m/e;)) operations in parallel on a m/Inm - processor EREW PRAM. Each
iteration also requires n parallel unrestricted block optimizations performed to a relative accuracy
of O(e1). At each iteration the algorithm calculates m sums of n numbers for estimating the current
load on each coupling constraint. The addition can be done in O(mn) time on 1 processor or in
O(mlogn) time on O(5;) processors. For the block problems in LP, there are simple block solvers
that find in O(m) time the optimal solution to the block problem, even though a €;-approximate
solution would be sufficient. Hence the algorithm runs in O(logn) time on O(n/logn) processors

and produces a (1 + €3) approximate solution to LP-SUMS. [

C Definitions and notation

This Section summarizes the terminology and the notation used in the paper.



C.1 Definitions

Definition C.1 Polynomial Time Approximation Scheme - PTAS: An algorithm that accepts as
input a problem instance and a constant € > 0, runs in time polynomial on the instance size N, and
produces as output a (1 + €)—approzimate solution.

Definition C.2 Fully Polynomial Time Approximation Scheme - FPTAS: A PTAS whose running
time s polynomial on both the instance size and the constant e > 0.

Definition C.3 Randomized PTAS - RPTAS: A randomized algorithm that accepts as input a
problem instance and a constant € > 0, runs in time polynomial on the size N of the instance, and
produces as output a (1 + €)—approzimate solution with probability p > %

Definition C.4 randomized FPTAS (RFPTAS). A RPTAS whose running time is polynomial on
both the instance size and the constant € > 0.

Definition C.5 (Relaxed Decision Procedure - RDP). A RDP is an algorithm that given a min-
1mization problem and and a value d, an e-relazed decision procedure

o cither decides that there is no solution of objective value at most d.

e or returns a solution of objective value at most (1 + €)d

Definition C.6 (Randomized Relaxed Decision Procedure - RRDP). A (RRDP), is a randomized
algorithm that given a minimization problem and and a value d, with probability of success at least
p> 3,

o cither decides that there is no solution of objective value at most d,

e or returns a solution of objective value at most (1 + €)d.

Definition C.7 The poly—bottleneck property. We say that a combinatorial optimization problem
has the poly—bottleneck property, if its optimal objective value is always within a polynomial factor
of one of its input elements (weights). Unweighted problems are assumed to have elements of weight
1.

C.2 Problem Definitions

Definition C.8 Problem SUM: There are n independent jobs and m unrelated parallel machines.
Each job j is to be assigned to one of the machines and at any time, a machine can process at most
one job. The processing time of job j on machine i is p;j. The objective is to find a schedule that
minimizes makespan.

Definition C.9 Problem SUMpB: The restriction of SUM where there is a constant 3, such that

for every instance of SUMC:
Ma%ijPij < g (54)
mini,j Dij -
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Definition C.10 Problem SUMC: There are n independent jobs and m wunrelated parallel ma-
chines. Each job j is to be assigned to one of the machines and at any time, a machine can process
at most one job. The processing time of job j on machine 1 is p;;. Assigning job j to machine 1
incurs a cost c;j. SUMC is a decision problem and the objective is to find a schedule with bounded
makespan and cost.

Definition C.11 Problem SUMCoptT: This problem, which is also known as the generalized as-
signment problem, is an optimization version of SUMC. For a given makespan value T', the objective
is to find a schedule of minimum cost C and makespan at most T'.

Definition C.12 Problem SUMCoptC: The symmetric problem of SUMCoptT. Given an instance
of SUMC and a value C' for the cost, the objective is to find a schedule of minimum makespan and
cost at most C.

Definition C.13 Problem SUMCoptTC: An optimization problem of SUMC where the objective
is to optimize a linear function of the makespan and the cost of the schedule.



Latin Letter Notation

A-SUMB
A-SUM
A-SUMC
BSP

EREWPRAM

FRR

ILP
ILP-SUM
ILP-SUMC
LP
LP-SUM
LP-SUMB

LP-SUMC
LogP
o

OPT
PDD

PRAM
Prob

T

T

T

of Fig. 1.
T*
Ti
Tz

XRR

algorithm A-SUMp for SUMS

algorithm A-SUM for SUM

algorithm A-SUMC for SUMC

The Bulk Synchronous Parallel computing model.
Exclusive Read Exclusive Write PRAM

The filtered randomized rounding procedure

integer linear program or integer linear programming
integer program formulation of LP-SUM

integer program formulation of LP-SUMC

linear program or linear programming

LP relaxation of the integer program formulation of LP-SUM
LP relaxation of the

integer program formulation of LP-SUMp

LP relaxation of the integer program formulation of LP-SUMC
The LogP model for parallel computation

The threshold value for the number of jobs

in algorithm SUMP

The optimal value of the scheduling problem

The logarithmic-potential based algorithm

for linear programs in block-angular form

The Parallel Random Access Machine

probability of an event

Makespan of a schedule

Minimum makespan that satisfies relaxed feasibility
Relaxed feasible makespan found by binary search
procedure

Makespan of optimal schedule

Technique to reduce ® to @;.

Geometric grouping technique to reduce ®

to (}2 or CI)l to @1 n(I)Q

The standard exclusive randomized rounding technique.



€
€1
€2
€3
€4
€5
€6
7

RS STIR SRS

Xi

Greek Letter Notation

Overall approximation ratio

Error Ratio for binary search

Error Ratio for PDD algorithm

Error Ratio for unlucky jobs

Error Ratio for randomized rounding

Error Ratio for technique 77

Error Ratio for technique 75

Marginal mean value for fractional packing
constraints

Deviation of the non-filtered rounded schedule
Upper bound on the probability of failure of
the randomized algorithms

Represents objective of fractional schedules
Objective value of optimal fractional schedules
Fractional schedule for optimal assignment of large jobs
Objective value of best fractional schedule found
Objective value of rounded schedule

Objective value of filtered rounded schedule
Objective value of final schedule

The set of all possible assignments of the

large jobs to the machines

A subset of ® of fully polynomial cardinality
A subset of @ of size polynomial on m

The intersection of sets ®; and ®s.

The set ®; contains the assignments for the
algorithm is executed. However all assignments
of ®; have to be considered.

An assignment in .

The load on machine 7 due to .

An assignment in ®.

An assignment in ®.

The load on machine ¢ due to x.
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