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Abstract

We study the complexity of proving the Pigeon Hole Principle (PHP) in a mono-
tone variant of the Gentzen Calculus, also known as Geometric Logic. We show that
the standard encoding of the PHP as a monotone sequent admits quasipolynomial-size
proofs in this system. This result is a consequence of deriving the basic properties
of certain quasipolynomial-size monotone formulas computing the boolean threshold
functions. Since it is known that the shortest proofs of the PHP in systems such as
Resolution or Bounded Depth Frege are exponentially long, it follows from our result
that these systems are exponentially separated from the monotone Gentzen Calculus.
We also consider the monotone sequent (CLIQUE) expressing the cligue-coclique prin-
ciple defined by Bonet, Pitassi and Raz (1997). We show that monotone proofs for this
sequent can be easily reduced to monotone proofs of the one-to-one and onto PHP,
and so CLIQUE also has quasipolynomial-size monotone proofs. As a consequence,
Cutting Planes with polynomially bounded coefficients is also exponentially separated
from the monotone Gentzen Calculus. Finally, a simple simulation argument implies
that these results extend to the Intuitionistic Gentzen Calculus. Our results partially
answer some questions left open by P. Pudlik.
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1 Introduction

One of the main approaches to attack the NP # co-NP question is that of studying the
length of proofs in propositional calculi. In a well-known result, Cook and Reckhow [16]
proved that if all propositional proof systems are not polynomially bounded, that is, if they
have families of tautologies whose shortest proofs are superpolynomial in the size of the
formulas, then NP # co-NP. In spite of the simplicity of propositional proof systems such
as the Hilbert Calculus (Frege system) or the Gentzen sequent Calculus, we are admitedly
far at present from proving that these systems are not polynomially bounded. Surprisingly,
one of the main difficulties is the lack of families of tautologies candidate to be hard for these
systems.

Nevertheless several important results have been obtained for less powerful but not trivial
proof systems. Strong lower bounds are actually known for systems such as Resolution
[18, 13, 5, 31, 14], Bounded Depth Frege [1, 4] and Polynomial Calculus [28]. The common
point among these results is the family of formulas that is considered to give the exponential
lower bounds. These formulas encode a basic combinatorial principle known as the Pigeon
Hole Principle (PHP}'), saying that there is no one-to-one mapping from a set of m elements
to a set of n elements, provided m > n. Resolution was the first proof system for which

an exponential lower bound was proved for the size of refutations of the PHP'*', a well-

)
known result due to Haken [18]. This result was generalized to PHP?', for m linear in n,
by Buss and Turan [13]. The same formula, PHP?™! was later used by Ajtai [1] to give a
superpolynomial size lower bound for a system that subsumes Resolution: Bounded Depth
Frege. This result was simplified and improved up to an exponential lower bound by Beame
et al. [4]. The complexity of the PHP!" is also well-studied in algebraic-style propositional
proof systems. Recently, Razborov [28] (see also [19]) showed that PHP.*! is also hard for
the Polynomial Calculus. Actually one of the most interesting problems is to know the exact
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complexity of Resolution refutations of PHP]' when m > 2 [6, 12, 29]. Thus, in spite

n Togn

of its simple combinatorial nature, PHP”*! is one of the most commonly used principles to
give proof complexity lower bounds. For this reason, in studying the complexity of a new
proof system, it is important to consider the complexity of proving PHP"*! as a first step.
After Haken’s lower bound, it was conjectured that PHP"*! would also be hard to prove for
more powerful proof systems, such as Frege. The conjecture was refuted by Buss [9], who
exhibited polynomial-size proofs in Frege, or equivalently, in the Gentzen Calculus. It is also
known that PHP?*! has polynomial-size proofs in Cutting Planes [17], and that the slightly
weaker form PHP?" has quasipolynomial-size proofs in Bounded Depth Frege [23, 22].

Monotone proof systems, that is, proof systems restricted to propositional formulas over
the monotone basis {A, V}, were considered by Pudlak and Buss [26], and more recently, by
Pudldk [24], and Clote and Setzer [15]. There are several alternative definitions of monotone
proof systems. Here we consider the Monotone Gentzen Calculus, called Geometric Logic
in [24]. Although the only monotone tautological formula is the true constant 1, Pudlak
suggests the study of tautological sequents of the form A — B, where A and B are boolean
formulas built over the monotone basis {A, V}. Several interesting combinatorial principles
can be put in this form; for example, PHP?*!,

The correpondence between circuit complexity classes and proof systems inspires new



techniques to obtain both upper and lower bounds for proofs. Examples are the lower bound
of Beame et. al. [4] for Bounded Depth Frege (also known as ACy Frege), in which they used
an adaptation of Hastad’s Switching Lemma, and the polynomial upper bound of Buss ([10])
for PHP? in Frege (or NC;-Frege) using an NC; circuit for addition. While strong lower
bounds for monotone circuits were given more than ten years ago (see [27, 3]), non-trivial
lower bound for monotone proof systems are not known yet. Hence, one of the basic questions
is whether PHP”*' can be used to obtain exponential lower bounds for these systems. This
question is also important since the (non-monotone) Frege proofs of PHP.T! given by Buss
[9] formalize a counting argument, and it is not clear how to formalize counting arguments
into short monotone proofs. See the paper by Pudlak [24] for a further discussion on this
topic (see also [15]).

In this work we exhibit quasipolynomial-size proofs of PHP?*! in the Monotone Gentzen
Calculus. To obtain this result, we consider quasipolynomial-size monotone formulas to com-
pute the boolean threshold functions. While polynomial-size monotone formulas are known
for these functions [32, 2], Pudldk remarks that it is not clear whether their basic properties
have short monotone proofs. First, Valiant’s construction [32] is probabilistic, and therefore,
it does not provide any explicit formula to work with. Second, the sorting network of Ajtai,
Komlo$, and Szemeredi [2] makes use of expanders graphs, and there is little hope that their
basic properties will have short monotone proofs. Here we address the difficulty raised by
Pudldk by considering explicit quasipolynomial-size monotone formulas thy(zq,...,z,) to
compute threshold functions. We show that the basic properties of thy(xy,...,z,) admit
quasipolynomial-size monotone proofs. In particular, we prove that for any permutation m
the sequent thy (z1,...,2n) b thi(2rq), ..., Trx)) has quasipolynomial-size monotone proofs.

We remark that our proofs can be made tree-like, but details are omitted in this ver-
sion. For non-monotone Gentzen Calculi, J. Krajicek [20] proved that tree-like proofs are as
powerful as the unrestricted ones. But it is not known at present whether this holds for the
monotone case, as the same technique does not apply.

We also consider the formula CLIQUE] expressing the (n, k)-Clique-Coclique Principle,
used by Bonet, Pitassi and Raz, and for which an exponentialy lower bound in Cutting Planes
with polynomially bounded coeflicients (poly-CP) was proved [8] (notice the difference with
the Clique Principle with common variables introduced by J. Krajicek in [21], and used
by Pudldk in [25] to obtain exponential lower bounds for Cutting Planes with unrestricted
coefficients. The latter is not a monotone tautology of the form A — B). We show that
monotone proofs for the monotone sequent obtained from the formula CLIQUE] can be
reduced to monotone proofs of the onto version of PHP:_I, which in turn can be easy
reduced to the standard PHP;_I. This way, we obtain quasipolynomial-size monotone proofs
of CLIQUE}.

Our results imply that Resolution, Bounded-depth Frege, and poly-CP are exponentially
separated from the (tree-like) Monotone Gentzen Calculus. Finally, as remarked in [24], a
simple simulation argument shows that every proof in the Monotone Gentzen Calculus, is
also a proof in the Intuitionistic Gentzen Calculus. Hence, all our results also hold for this
systein.

The paper is organized in the following way. In Section 2 we define the Monotone
Gentzen Calculus, and the quasipolynomial-size monotone formulas to compute the threshold



functions. In Section 3 we give monotone proofs for the basic properties of the threshold
formulas. In Setion 4 we build the quasipolynomial-size monotone proofs of PHP?*!. In
Section 5 we show the result for CLIQUE}, and we discuss the consequences of extending
our result to different encodings of this principle.

2 Preliminaries

A monotone formula is inductively defined as follows: a propositional constant or variable is
a monotone formula; if A and B are monotone formulas, then AA B and AV B are monotone
formulas; nothing else is a monotone formula. The Monotone Gentzen Calculus (MLK), also
called Geometric Logic [24], is obtained from the standard Gentzen Calculus when only
monotone formulas are considered, and the negation rules are ignored. For completeness, we
present the rules and axioms of MLK. For monotone formulas A and B, and sequences of
monotone formulas ', IV, A, and A"

Axioms:

AFA 0FA AFR1
Left Structural Rules
VAJAART A, B AFT | R
LAARTY IB,AAFT" ATFETIY

Right Structural Rules

I"FT,A A/ A T'FT,A,B,A T'FT
T"FT,AA T'FT,B,AA T'FT,A

Cut Rule
'-EAA AT EFA

T.T'F A, A

Left Logical Rules

AB,TFA  ATFA BTI'FA
(AAB),TFA (AVB),I,T'F AN

Right Logical Rules

TFAAB TFAA T'FAB
TFA,(AVB) T,I'FA,A,(AAB)

As usual, a proof in MLK is a sequence of sequents, or lines, of the form I' - A each of
which is either an initial axiom, or has been obtained by a rule of MLK from two previous
lines in the sequence. The sequence constitutes a proof of the last sequent. When we restrict
the proofs in such a way that each derived sequent can be used only once as premise in a
rule, we say that the system is tree-like.

The overall number of symbols used in a proof is the size of the proof. Let A and
B,,..., B, be formulas, and let z,,...,z, be propositional variables that may or may not
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occur in A. We let A(z1/By,...,2,/B,) denote the formula that results from A when
all occurrences of z; (if any) are replaced by B; (replacements are made simultaneously).
Observe that if A and B are monotone formulas, then A(z/B) is also monotone. The non-
monotone version of the following Lemma appears in [7].

Lemma 1 For every monotone formula A, the sequents

(i) A,z A(z/1);
(i) AF z, A(z/0);
(iit) A(z/1), 2+ A;
(iv) A(z/0)F z, A;
(v) A(z/0) F A(z/1);

have MLK-proofs of size quadratic in the size of A.

Proof: All five sequents have straightforward proofs built by induction on the structure of
A. Since the number of subformulas of A is at most quadratic in the size of A, the result
follows. Observe that the monotonicity of A is only needed in part (v). O

For every n and k € {0,...,n}, let TH} : {0,1}" — {0,1} be the boolean function
such that for every (ay,...,a,) € {0,1}", we have that TH}(ay,...,a,) = 1 if and only if
¥ La; > k. Each TH} is called a threshold function. Valiant [32] proved that every thresh-
old function TH} is computable by a monotone formula of size polynomial in n. The proof
being probabilistic, the construction is not explicit. In the same paper, Valiant mentioned
that a divide and conquer strategy leads to explicit quasipolynomial-size monotone formulas
for all threshold functions. The same construction appears in the book by Wegener [34], and
in the more recent book by Vollmer [33]. Here we revisit that construction with a minor
modification. We define monotone formulas

thy(z) := 1, thy(z) := =,
and for every n > 1 and k € {0,...,n}, define the formula

2 (r, ) =\ (2 (21, ) AR (200 ),
(ig)eny

where I = {(1,7) : 0<i <n/2,0< j<n-—n/2, 1+ 75>k} and n/2 is an abbreviation

for [n/2]. It is straightforward to prove that thy(zy,...,z,) computes the boolean function
TH;. On the other hand, it is easy to check that the maximum number of connectives of
thi(z1,...,2,), say S(n), satisfies the following recurrence:

S(n) < n*-S(n/2).

Since S(1) < 1, it follows at once that the size of the formula thi(z,...,z,) is bounded by
nclog:(") for some constant ¢ > 0; that is, the size of thi(z1,...,z,) is quasipolynomial in n.



3 Basic properties of threshold formulas

We establish a number of lemmas stating that the elementary properties of the threshold
formulas admit short MLK-proofs. Here, short means size polynomial in the size of the
formula thy (z4,...,z,), and therefore, size quasipolynomial in n.

Lemma 2 For every n,m,k € IN with m < n/2, and k <n —n/2, and for every h,s € IN
with n > h > s, the sequents

(i) b thy(ze, ... 2,);

(it) thy(z1,...,2,) F N\;2i;
(i6) th/2 (1, . ye) AR (pgags ooy ) B AR (2, 20);
(iv) thy(z1, ..., z0) Fthi (21, ..., 20);

have MLK-proofs of size quasipolynomial in n.

Proof: Recall that th(l)(xl) is 1, and F 1; property (i) follows easily by induction on n.
Similarly, recall that th(x;) is z1; property (ii) follows again easily by induction on n. For
property (iii), the left-hand side is a disjunct of the right-hand side, and the sequent follows
by an application of the axiom A F A, right weakening, and right V-introduction. For
property (iv), reason as follows. When s = 0, the sequent is trivial by property (i) and left
weakening. When s > 0, every disjunct of thy, (zy, ..., z,) is also a disjunct of thf (z,..., z,),
so that the sequent follows easily as before. O

In the next lemmas we give MLK-proofs of the basic properties relative to the symmetry
of the threshold formulas (Theorem 1 below).

Lemma 3 For every n,m,k,l € IN, with 0 < m < n, 0 < k <n, and 0 <[ < n, the
sequents

(i) thy (21, . 2/1, . 0 2n) Fthy (2., 20/0,. .. 2,)
(it) thy _ (z1,...,21/0,...,2,) F thy (2, ..., 2/1, ... 2,)

m—1

have MLK-proofs of size quasipolynomial in n.

Proof: We first show (i). We use induction on n, where the base case is thj(1) - thg(0).
Assume without loss of generality that [ < n/2, that is, z; is in the first half of the variables.
Recall the definition of thy  (zy,...,2/1,... zy):

Vo O (@21 wgs) AT (e, 2)).
(1a)ELy,,
Fix (z,7) € If,,. Ifi = 0, then j > k+1 and th;f—n/2(xn/2+1, ce ) thz_n/2(:r:n/2+1, Cey Ty)

by part (iv) of Lemma 2. Since + thg/2($1, ooy 21/0,...,x,/9) by part (i) of Lemma 2, right

A-introduction gives

th?_n/z(:vn/ﬂl, cey ) thg/2($1, oo a)0, .. ,LCn/2> A thz_n/2(;vn/2+1, ey Th),
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and a cut with part (iii) of Lemma 2 gives th?_n/Q(;vn/Hl, coy ) Fthi (a2 /0,0 xy).
Left weakening and left A-introduction gives then

th?/z(;cl, cos a1 Tay) A th?_n/z(.fn/2+17 coy ) Fthp (@, 20 /0,0 )

as desired. If 7 > 0, then th?/z(;vl, s xfl ) B th?_/f(;vl, vy xf0, 0 yga) by
induction hypothesis on n. Easy manipulation using part (iii) of Lemma 2 as before gives

th?ﬂ(:ﬂl, ozl ) A th?_"ﬂ(:vn/z_l_l, cooyn) EthI (w2 /0, 2,

Finally, since : — 1 4+ k > k, a cut with part (iv) of Lemma 2 gives the result. The proof of
(ii) is very similar. O

Lemma 4 For every m,n, k.l € IN with 1 <k <l <mn, and m < n, the sequents
(i) thy (z1,...,xe/1, . 0 20/0, 0 xn) b othy (2, .o 2k /0,0 a1, 2)
(it) thy (z1,...,26/0, .. /1, . xn) b thy (21, .. 2k /1, 20, 2y)

have MLK-proofs of size quasipolynomial in n.

Proof: Both proofs are identical. It is enough to prove (i) when k& < n/2 < [, that is,
when z; falls in the first half of the variables and z; falls in the second half of the variables.
The complete proof of (i) would then be a simple induction on the recursive definition of
thy (z1,...,2x/1,...,21/0,...,2,) whose base case is k < n/2 < [. So assume k < n/2 <
and recall the definition of th), (z1,...,zx/1,...,21/0,..., 2,):

V (th?ﬂ(ml, Y T Ry th?_n/2(fl/'n/2+17 coxf0, . 1)),
(1.0)€L7,

Fix (1,7) € I. If ¢ > 0 and j < n — n/2, then Lemma 3 shows that

th?ﬂ(xl, Y . th?_/f(xl, oo xkf0, . Tny2)

th?_n/2<$n/2+1, .. .,ZUI/O, P ,:cn> l_ th;_:{]/2<$n/2+1, . .,LUI/]_, e ,:cn),

from which the result follows easily. Consider next the case in which either 1 = 0 or j =
n—n/2. If j = n—n/2, then thn_n/z(;cn/2+1, .., 21/0,. .., ,) is just provably false by part (ii)

n—n/2
of Lemma 2, and the result follows easily. If 7+ = 0, then th?ﬂ(xl, o2 0,0, 2yyy) is just
provably true by part (i) of Lemma 2. On the other hand, th?_"/2 (Tnjagrs- - 21f0, ., xn)

th?_n/z(xn/z_l_l, cooa/l, ... xy,) follows by part (v) of Lemma 1, and the result follows too.
O

Lemma 5 For every m,n,1,7 € IN, with m <n and 1 <1 < j < n, the sequent
th (z1,... @iy, x,) Ethy (20, 2y, o, 2y)

has MLK-proofs of size quasipolynomial in n.
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Proof: We split the property according to the four possible truth values of z; and z;. Namely,
we will give proofs of the following four sequents from which the lemma is immediately
obtained by the cut rule.

(1) thy (21, . @iy oy Ty ey @), @iy B thy (2,0 2y Ty X)),
(i) thy (z1, ..oy @y @y ey @), oy thy (T, xy, o Ty 2),
(ii1) thy (@1, .oy @iy ey @y ooy Tn) @y b oy thy (@, o @y Ty T,
(iv) thl (z1,. . @iy Ty ey ) by th (21, o @y Ty oo Ty,

We ounly show (ii), the rest are similar. Two applications of Theorem 1 with the formula
th! (z1,..., @iy .., Tj,...,2,) and a cut give

thi (z1, .. @iy ey Ty ey @)y @i oy, thy (g, 000, 1,000, 0,000 ). (1)

A cut with part (i) of Lemma 4 gives

thi (z1, ..y @iy ey Ty ooy @)y @i oy, thy (g, 000, 0,000,100 @), (2)
Two more applications of Theorem 1 on th) (x1,...,xj,..., %, ..., 2,) and a cut give
thh (z1,...,0,..., 1, o @), @i b oay thh (e, oo @, Ty @) (3)

Finally, a cut between 2 and 3 gives (ii). The size of the proof is quasipolynomial since we
are applying Theorem 1 on th’, () whose size is quasipolynomial in n. O

Since every permutation on {1,...,n} can be obtained as the composition of (polynomi-
ally many) permutations in which only two elements are permuted (transpositions), Lemma
5 easily 1implies the following theorem.

Theorem 1 For every m,n € IN, with m < n, and for every permutation © over {1,... n}
the sequent

thy (z1,...,2n) F thy (220), -+ Tr(n))

has MLK-proofs of size quasipolynomial in n.

The last two properties state that the smallest threshold formulas are equivalent to their
usual formulas:

Lemma 6 For every n € IN, the sequents

(i) Vixi b thi(zq, ..., 20);

(it) thi(z1,...,2,) F V2
(i41) Vigzj(xi A xj) Fthy (..., 20);
(i) thy(zy,...,2n) b Vig(zi A xj);

have MLK-proofs of size polynomial in n.



Proof: All proofs are by induction on n. For (i), reason as follows. Clearly, z; th}(ml)
so that the base case holds. Assume then n > 1, and that the claim holds for smaller n.
Since thg_n/2($n/2+1, ..., x,) by part (i) of Lemma 2, right A-introduction on the induction

hypothesis for th?ﬂ(;vl, oy Tnz) gives

n/2 ) )
V z; F thT/Z(xl, ey CL'n/Q) A thg_n/z(xn/%l, ey T
i=1
Similarly,
¢ n/2 n—n/2
V xz'_tho (‘rly-"yxn/2>/\th1 (‘rn/2+17"'7$n)'
i=n/241
In both cases, a cut with part (iii) of Lemma 2 gives th(zy,...,z,). Left V-introduction

gives then (i). The proof of (ii) is also by induction on n. In fact, we prove the slightly
stronger statement: th(zq,...,2z,) F V;z; for every s € {1,...,n}. Fix (1,j) € I}, so
that either 2+ > 1 or 5 > 1 for otherwise 2 + 5 = 0. Then, by induction hypothesis, either
th?ﬂ(;vl, ey Znya) F Vi or th?_"ﬁ(:pn/zﬂ, .y xy) F V2. In any case,

th!"* (a1, ... ,Tpg2) A th?_"/z(.rn/zﬂ, can) EV

by left weakening and left A-introduction. The proof of properties (iii) and (iv) are every
similar. O

The next lemma states that threshold functions split by cases:

Lemma 7 For every m,n € IN with m even, m < n, and n an exact power of two, the
sequents

. n n/f2 n/2
(i) 0y (s o) B0 (o )t (g, - ),
(id) th2 (zy, o) B AR () 0 (),

have MLK-proofs of size quastpolynomial in n.

Proof: We first prove (i). Fix 7,7 < n/2 such that ¢ + 5 > m + 1. Since m is even, either
i>m/2+1or j>m/2+1 for otherwise ¢ + j < m. In the former case we get

th?/z({lil, ey 'Ln/2) l_ th:tn//zz_}_l(.'ﬂl, e ,.'L'n/2>, th:n//22+1<l.”/2+1’ ey .Ln)
by part (iv) of Lemma 2 and the rule of right weakening. In the latter case we get
th‘?/2<$n/2+1, ey $n> l_ th:n//QZ-I-l(;vl’ ey xn/2>’ th?n/72+1($n/2+1, . ,:cn),

and so the rule of left A-introduction puts these together in a single sequent. Since this
happens for every pair 7,7 < n/2 such that + + 5 > m + 1, we get th},  (z1,...,2,) F



th:!/22+1($1’ ey Tn/2)s thfn//22+1(:cn/2+1, ..., xy,) as required. The proof of (ii) is extremely sim-
ilar. Given 4,7 < n/2 such that ¢ +j > m, either : > m/2+ 1 or i < m/2 + 1. In the former

case, as before using part (iv) of Lemma 2, we have

th?/z(;cl, .. .,xn/z) F thzl//zﬂ_l(xl, .. .,xn/2>7thzl//22($n/2+17 ey T

In the latter case we have that j > m/2 because i + j > m, and we can proceed as before to
get / / /
n/2 n/2 n/2
thj (xn/2+17 ey .'I?n) F thm/2+1($17 e ,xn/2>7 thrn/2(‘r”/2+17 ey .'I?n),

Manipulation as in part (i) gives property (ii). O

4 Monotone proofs of PHP

The Pigeon Hole Principle states that if n + 1 pigeons go into n holes, then there is some
hole with more than one pigeon sitting in it. It is encoded by the following (non-monotone)
formula

n+l n n n+l

PHP* = A Vo=V V (oir Apsk).
i=1 j=1 k=1 z','];;
i#j

Observe that the Pigeon Hole Principle can be obtained as a monotone sequent simply
replacing the symbol — above by the symbol . From now on we refer to the left part of
the sequent as LPHP,,, and to the right part of the sequent as RPHP,,. The sequent itself is
denoted PHP,,.

We first establish that PHP,, can be reduced to the case in which n is an exact power of
two.

Lemma 8 There exists a polynomial p(n) such that, for every m,S € IN, if the sequent
PHP,, has a MLK-proof of size at most S, then, for every n < m, the sequent PHP,, has a
MLK-proof of size at most S + p(n).

Proof: Suppose that there is a monotone proof ¥, ¥,, ..., PHP,, of size at most S, where
each U, is a monotone sequent ¥; - I';, We get a proof of PHP,, from the proof of PHP,,
by replacing some variables by constants as follows. Define a partial truth assignment o
as indicated next. Let o(pgi1x) = 1 for every & € {n + 1,...,m}. Similarly, for every
Ee{n+2,....m+1}andi € {1,...,k—2}, let o(pg,;) = 0; and for every ¢ € {n+1,...,m}
and k € {1,...,1¢}, let o(pr;) = 0. Any other variable remains undefined by o. Given a
sequent ¥ F T, let [¥ F T|[c] be the result of replacing each occurrence of the variable
z € Dom(c) in ¥ or ' by o(z). The sequence [2; F I'i][o], [E2 F Ty][o],...,[PHP,][o] is a
valid proof of [PHP,,]|[c]. To see this, observe that the initial axioms of the form p; ; F p; ;
become 0 = 0, 1 = 1, or stay p; ; = p;j, which are all true sequents. Moreover, it is not
difficult to give a proof of

n+l n m+1 m
A Vet A Vopi|lo]
=1 j=1 =1 7=1
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and

m m+l n n+l

V V GieApie) BV (i Apix) | [o]
k=1 z‘,j;l k=1 i,_j;_l
JF? JF2

from the axioms 0 F and F 1. For example, [F VL, pniaj][o] is derivable since o(payoni1) =
1. Two cuts give a proof of PHP,, of size at most S 4 p(n) for some polynomial p(n), as
desired. O

Theorem 2 The sequents PHP,, have MLK-proofs of size quasipolynomial in n.

Proof: We first outline the idea of the proof. From the antecedent of PHP, we 1m-
mediately derive that for each pigeon ¢ there is at least one variable p;; that is true
(th?™ (pin, ..., Pin)). In turn, we deduce that among all variables grouped by pigeons,
at least n + 1 are true (th:g?l-l_l)(pl,l, ey Py s Pntils - Pntin))- The symmetry of the
threshold formulas will allow us to show that the same holds when the variables are grouped
by holes (thzg?l"_l)(pl,l, ey Prtids---sPlns---sPnt1n)). Finally, from this we get that there
is at least one hole with two pigeons (thi*'(pi;,...,pns1,) for somes € {1,...,n}), and this
implies RPHP,,.

According to Lemma 8§, it 1s enough to give quasipolynomial size proofs of PHP,, when
n—+1 1s a power of two, since there always 1s a power of two between n and 2n. So let us assumne
n = 2" — 1 for some r € IN. For technical reasons in the proof we will consider a squared
form (instead of rectangular form) of PHP,, where we assume the existence of an (n + 1)-st
hole in which no pigeon can go. So, we introduce n 4 1 new symbols py ny1,. .., Pnt1,n+1 that
will stand for the constant 0. For every ¢ € {1,...,n+ 1}, let p; = (pi1,-- - Pint1), and let
¢ = (p1,iy- -y Pnt1,i) (hence goy1 = (0,...,0) is the sequence of n + 1 zeros). Counsider the
following four sequents.

LPHP, = AMMhi (pr) (4)
A thT (pi) thmjl)z(l?h ooy Pnt1) (5)
thgfll)z(pla ey Prg1) thgril)z (G1s s Qny1) (6)
thgr—ll)z(%, .-+, qny1) F RPHP, (7)

In the next lemmas we show how to prove these sequents with quasipolynomial size MLK-
proofs. A MLK-proof of LPHP,, - RPHP,, of size quasipolynomial in n will follow by four
applications of the cut rule. O

Lemma 9 Sequent 4 has MLK-proofs of size polynomial in n.
Proof: For each i € {1,...,n + 1} derive the sequents \/7_, (p; ;) F Vj—, pi; V 0 using right

weakening and right V-introduction. Then, n right A-introductions and n left A-introductions

give LPHP,, - A th](p;) by the definition of LPHP,, and a cut on part (i) of Lemma 6.

The size of the whole proof is quadratic in n. O

Lemma 10 Sequent 5 has MLK-proofs of size quasipolynomial in n.
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Proof: Recall that n +1 = 2". Let N = (n + 1)%. The idea of this proof is to succesively
pack the conjuncts of the antecedent into a unique threshold formula, following a complete
binary tree structure of height log,(n + 1) = r. For every w € {0,1}", let p* = pg, where w
is the position of w in the lexicographical order on {0,1}". Thus, p°" = p; and p'" = p,q1.
For every w € {0,1}<", let p* = (p*°,p*'). Observe that p* = (p1,...,pns1). For each
te{l,...,r}, we exhibit a MLK-proof of

N/2 w N/2t1 w
ANCEVRITS L (N AT (®)
we{0,1}¢ we{0,1}t-1
of size quasipolynomial in n. Observe that for ¢ = r, we are proving the sequent

ni1 (n41)/2 1
A thn+1 pz) l_ A th ”+ )<p2z 1ap21>
i=1

=1

while for ¢ = 1, we are proving the sequent

thE:ii;/é2(p1’ . 7p(n+1)/2) A thEn-}-l;/é ( (n+1)/2-|—17 . ,pn+1) l_ thg:.]l) (pl’ ... 7pn+1)'

Once we have all these proofs, we only have to cut sequentially to obtain the lemma. It
remains to show how to obtain sequent 8. For a fixed t € {1,...,r} and a fixed w € {0,1}"7",
an application of part (iii) of Lemma 2 gives

N/2t w N/2¢t N/2 w
th(n/+1)/zv(10 ) A th(n/+1)/zt( i th(n/-l-l) 2-1(P")-

We put all these formulas in a unique conjunction using left and right A-introduction to get
sequent 8. The size of the proof is clearly quasipolynomial in n. O

Lemma 11 Sequent 6 has MLK-proofs of size quasipolynomial in n.
Proof: Immediate from Theorem 1 because ¢, ..., ¢ne1 1s a permutation of py,...,pyy1. O
Lemma 12 Sequent 7 has MLK-proofs of size quasipolynomial in n.

Proof: The idea of this proof is to unfold the threshold formula in the antecedent into
disjunctions of threshold formulas computing the number of pigeons going into each hole.
The unpacking process follows the structure of a complete binary tree of height log,(n+1) = r
in reverse order of that of Lemma 10. We use properties (ii) and (iii) of Lemma 7 to perform
this process.

Recall that n+1 =2". Let N = (n + 1)2. The first step of the unfolding process is given
by property (iii) of Lemma 7:

thizv+1((h7 T (]n+1) - th(n/+1)/2+1(ql7 e aQ(n+1)/2) th(n/-|-1)/2( A(n+1) /2415 - - - 7(]n+1)-

For the general case, define ¢ = gz for every w € {0,1}", where w is deﬁned as 1n the proof of
Lemma 10. For every w € {0,1}<", define ¢* = (¢"°, “’1) Observe that ¢* = (q1, ..., Gnt1).
For every t € {0,...,r — 1} and w € {0,1}, properties (iii) and (ii) of Lemma 7 give

N/2t N/2t+1 N/2t+1 w
thy,! )/2f( Y) F th / /2f+1+1( ) thy/ /2f+1(q 1)

(n+1 (n+1) (n+1)
N/2 N/2tt N/2t+1 w
th(n/+1)/zr+1( Y)F th(n/+1)/2t+1+1( °)s th(n/+1)/2t+1+1(q b).

12



Appropriate cuts and the definition of ¢* for w € {0,1}" show then that
thy' (¢%) F th ™ (o), th ™ (@), s th5*" (ga), t0T ! (g )-

Since ¢uy1 = (0,...,0), we immediately have that th?™(g,.1) F 0 by part (ii) of Lemma 6,
so that the result follows by a cut on 0 -, successive cuts on part (iv) of Lemma 6, and right
V-introduction. The size of the proof is again quasipolynomial in n. O

5 Separation Results

A graph G i1s k-clique if there is a set of k nodes of GG such that any two distinct nodes of the
set are connected by an edge, and no other edge 1s present in G. A graph G 1s a k-coclique
if there 1s a partition of the nodes of G into k disjoint sets in such a way that any two nodes
that belong to different sets are connected by an edge, and no other edges are present in G.
The (n, k)-clique-coclique principle of [8] says that, given a set V' of n nodes, if G is a
k-clique over V and H is a (k — 1)-coclique over V, then there is an edge in G that is not
present in H. This principle may be stated as a monotone sequent CLIQUE] as follows. For
every | € {1,...,k} and ¢« € {1,...,n}, let ;, be a propositional variable whose intended
meaning is that ¢ is the [-th largest node of the fully connected set which forms a fixed
k-clique over {1,...,n}. Similarly, for every [ € {1,....k—1} and 1 € {1,...,n}, let y;; be
a propositional variable whose intended meaning is that the i-th node is in the /-th disjoint
set of a fixed (k — 1)-coclique over {1,...,n}. The principle is then expressed as follows

k n n k n
/\V /\V Yui |‘V V V i Nevg Ay Ayeg) VoV (i A zey).
I=1:=1 =1

t=1 1,1/=1 i,j=1 =1 1=1
121 A l#l'

Strictly speaking, this sequent expresses a principle slightly stronger than the principle above
since the variables y;; are not restricted to encode a one-to-one function. Let LCLIQUE; be

the left-hand side of this sequent and let RCLIQUE] be its right-hand side.

We show how to reduce CLIQUE] to PHPj_; in the monotone sequent calculus. The
reduction was first given in [8]; here we provide proofs of correctness for completeness. The
strategy will be to show that the sequents

LCLIQUE} + LPHP, _, (9)
RPHP,_, - RCLIQUE} (10)
have MLK-proofs of size polynomial in n, where LPHP}_, and RPHP,_, are obtained from

LPHP,_; and RPHP,_; respectively by replacmg the Varlable pup by the formula V7, (2, A
yp;) for every l € {1,...,k}and I" € {1,...,k —1}.

Lemma 13 Sequent 9 has MLK-proofs of size polynomial in n.

Proof: Consider the following sequence of sequents with easy MLK-proofs (the notation
Al B C stands for the sequence A+ B, B+ C):

k n

AV A A k\;/ i F /\ (\/ i h AV ) . Z\l\z/l (Il,mk\'j yl,’i) ]

I=1:=1 =11 =1 \z=1 i=11'=1 I'=1
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k-1 k-1

k n
V zi Ayri) BN V (@1 Ay

I=101'=11=1

||<:

AV

The first derivation follows by left weakening, left A-introduction, and commutativity; for
the second derivation use distributivity and the derivable sequent A A B F A; for the third
derivation use distributivity; and for the last derivation use commutativity. Finally observe

that the first formula is LCLIQUE} and the last formula is LPHP} _, (recall the substitution
of pry by Vii (21 A yri)). O

Lemma 14 Sequent 10 has MLK-proofs of size polynomial in n.

Proof: Let us write down the full expression for RPHP},_,

k-1 &k n n k-1 &k n
V V v 171 P A yt : V (:L'll’]' A ytJ) F v v v .TL'[ P A Yt A Ty g N yt,]) F
t=1 [l'=1 |i=1 J=1 t=1 [l'=1 i,5=1

140 1£U

n n

- V V V -rlz/\ytz/\xl’,]/\ythﬂ \ V V V.’L’ll/\ytl/\'ﬂll /\ytz> F

t=1 [l'=1 2,5=1 t=1 [ l'=1 =1
l;él’ i#] ] L l;él’

k-1 k n k n
oV V V @i Ay Azei Ay) | V|V V (@i A)

t=1[10'=1 ¢,5=1 LI'=1 =1
1A i 1£1'

The first derivation follows by distributivity, the second derivation follows by commutativity,
and the third one follows by straightforward manipulation and the use of AAB F A. Observe
that the last formula is simply RCLIQUEY, and the proof is complete. O

Corollary 1 The sequents CLIQUE} with k < n have MLK-proofs of size quasipolynomial
mn.

Putting together our upper bounds for PHP?*' and for CLIQUE} with the exponential
lower bounds in Resolution [18] and in poly-CP [8], we obtain the following separations
result:

Theorem 3 Resolution, Bounded-Depth Frege and poly-CP are exponentially separated from
the Monotone Gentzen Calculus.

The Intuitionistic Gentzen Calculus forbids sequents with more than one formula in their
consequent (see [30] for a precise definition). As observed by Pudlak [24], there is a simple
simulation of the Monotone Gentzen Calculus by the Intuitionistic Gentzen Calculus. The
simulation consists in replacing consequents with more than one formula by the disjunction
of these formulas. This simple simulation implies that all our results also hold for the
Intuitionistic Gentzen Calculus.

14



In [24], Pudldk proves that the Intuitionistic Gentzen Calculus enjoys a feasible inter-
polation property. It is also asked in [24] whether the feasible interpolation can be made
monotone. While we have been able to provide a quasipolynomial upper bound for the size
of intuitionisitic proofs of an encoding of the Clique Principle, it is not clear whether the
encoding of the Clique Principle on which to apply the interpolation property (the one with
common variables as in [21]) enjoys the same upper bound. The reason is that the resulting
sequent is not monotone anymore, and our reduction method does not apply. On the other
hand, a positive answer would imply that the disjointness property for the Intuitionistic
Gentzen Calculus would belong to P/poly — mP/poly. In fact, the disjointness property
would be computable by a (uniform) polynomial-size circuit (see [11] for a proof of this fact),
but would not be computable by a monotone polynomial-size circuit, since otherwise, the
Intuitionistc Gentzen Calculus would admit the monotone feasible interpolation property.
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