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Abstract

We give the first construction of a pseudo-random generator with optimal seed length that
uses (essentially) arbitrary hardness. It builds on the novel recursive use of the NW-generator
in [ISW99], which produced many optimal generators one of which was pseudo-random. This
is achieved in two stages - first significantly reducing the number of candidate generators, and
then efficiently combining them into one.

We also give the first construction of an extractor with optimal seed length, that can handle
sub-polynomial entropy levels. It builds on the fundamental connection between extractors and
pseudo-random generators discovered by Trevisan [Tre99], combined with construction above.
Moreover, using Kolmogorov Complexity rather than circuit size in the analysis gives super-
polynomial savings for our construction, and renders our extractors better than known for all
entropy levels.
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1 Introduction

A central question in Complexity Theory concerns the power of probabilistic algorithms. Such
algorithms are allowed to use a string of independent coin tosses in their computation. Two
different directions to this problem resulted in rich and elaborate theories.

The first direction (introduced by [BM84, Yao82]) tries to see if probabilistic algorithms can
function if given many fewer random bits than they want to use. The idea is to use a deterministic
procedure, called a pseudo-random generator, to stretch these few independent bits (the short
seed) into the appropriate length. The distribution produced should “look random” to all efficient
algorithms. The reader is referred to the excellent monograph [Gol98] devoted to this field and its
varied connections to complexity theory, cryptography and learning theory. But perhaps the most
important connection is that given such a generator, a simple nontrivial deterministic simulation
of the given probabilistic algorithm follows, which is exponential in the “seed” length. It is thus
crucial to reduce this parameter.

The second direction (introduced by [Blu84, SV84] asks if such algorithms can function when
their random input is not independent unbiased bits, but rather the output of some defective
random source. Such a source contains sufficient entropy, but otherwise can be arbitrary. The idea
is to use deterministic procedures, called extractors, to convert this “hidden” entropy and a small
number of additional random bits, (called the seed) into a (nearly) uniform distribution. The reader
is referred to the excellent survey papers [Nis96, NTS98] on the many varied uses of extractors in
complexity, combinatorics and network design. It can be shown that the need to use a seed of
additional randomness is inevitable. However, enumerating all possibilities for this “seed” enables
the extractor to use weak sources in probabilistic algorithms. Again, minimizing the length of this
“seed” is crucial for the efficiency of this conversion.

A major result in the first direction was discovered in [NW88]. They showed that every difficult
problem (in E) could be used to construct a pseudo-random generator. The quality of this NW-
generator (i.e. its seed length) was shown to relate to the difficulty of the given function. Their
work has been quantitatively improved and qualitatively extended ([BFNW93, Imp95, IW97, IW98,
STV99, ISW99, KvM99, CNS99]), but their construction remains central to work in this area. While
the best “hardness vs. randomness” trade-off to be expected from such a construction should yield
a seed whose size is 1inear in the input size of the given hard function, this was not achieved yet,
and the best construction so far [STV99] has seeds that can be nearly quadratic.

In another major result, Trevisan ([Tre99]) recently showed that the two directions above are
intimately linked. He proved that any variant of the NW-generator (converting arbitrary hard
functions into pseudo-random distributions) could be used to construct an extractor. Moreover,
the “seeds” in both constructions are the same length under this translation. [Tre99] (and then
[RRV99Db]) proceeded to use the NW-generator to give the best and simplest constructions of
extractors known. As above, even the best can sometimes require nearly quadratic seed size in the
“optimal” value (proved existentially by a counting argument matching the known lower bound).
Thus, improving the NW-generator will impact both directions.

In [ISW99], a new, more sophisticated way of using the NW-generator was proposed. The main
idea was to use a recursive application of the NW construction, to construct either a pseudo-random
generator with optimal seed, or a family of functions on much smaller inputs one of which had almost
the same hardness as the original, (and harder than the original function when measuring hardness
relative to input size). Thus, either an optimal seed pseudo-random generator is constructed, or
a harder function is obtained. Which of these events occurred, and, if the latter, which of the
“smaller” functions was hard, were unknown. Still, repeating this idea recursively was shown to
terminate, resulting in exponentially many optimal seed generators, one of which was guaranteed
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to be pseudo-random. For the purpose of deterministic simulation of probabilistic algorithms
[ISW99] showed that the above suffice, and gave nearly tight trade-offs for hardness vs. randomness.
However, the non-constructive element above did not yield one pseudo-random generator, and in
particular could not be used for constructing extractors.

In this paper, we overcome this difficulty. We construct both extractors and pseudo-random
generators that have optimal seed length using a recursive application of the NW-generator. It
yields the same hardness vs. randomness trade-offs as in [[SW99] directly, without resorting to the
“generators tournament” forced by the multitude of generators there. Furthermore, the extractors
we obtain from this construction are the first for sub-polynomial entropies to have optimal seed
lengths. They also give small improvements over other constructions for all entropy levels.

The main new ideas are:

1. [ISW99] show that if the NW generator fails, at least one of a family of restricted functions is
almost as hard as the original one. We show that this is true for a non-negligible fraction of
the family, and use this as the basis for a probabilistic construction of a single hard restricted
function. We recurse with this function alone, to obtain only very few generators one of
which is pseudo-random. These, being so few, we can afford to use them all with independent
seeds and xor the outputs. Finally, we show that the number of random bits used in the
probabilistic construction is small enough to be included in the seed.

2. The translation of the result above to the language of extractors gives constructions which
extract only sub-polynomial part of the entropy in the source. This happens because every
recursive call loses a polynomial fraction of the initial circuit complexity. This difficulty can
be avoided when constructing extractors. It turns out that for this purpose one can replace
the hardness measure, and use Kolmogorov complexity instead of circuit complexity. Doing
S0, every recursive call loses only a small amount of hardness, and as a result, we can extract
any polynomial fraction of the initial entropy and at the same time simplify the argument.

We use these ideas to prove:

Theorem 1 (Optimal seed generators) For every function k(l) with | < k(I) < 2, there is a
function m(l) = k(1)?(/198180) 5o that the following holds: Assume there is a function f = {f;}
that is computable in time 290 so that for all I, f; cannot be computed by circuits of size k(1).
Then there ezists a generator G : {0,1}°0) — {0,1}™0) that is computable in time 2°0) | and has
the property that every circuit of size m(l) is 1/m(l)-fooled' by the distribution induced by G.

This theorem is stated more precisely in theorem 5 and its proof is given in section 4. See table
1 for comparison with previous results.

Theorem 2 (Optimal seed extractors) For every m,k and e there exists an explicit (k, %)—
extractor
Ext : {0,1}" x {0,1}°0°8 %) 5 {0,1}™ where m = k'~ for arbitrary § > 0.

See table 2 for comparison with previous results. An interesting feature of our construction is
that it seems to favor sources with low entropy, (whereas the extractors of [Tre99, RRV99b]| are
more efficient when the entropy is large). An example is the following theorem which asserts that
we can get a large improvement in the number of extracted bits if the entropy is small.

'A distribution D on {0,1}™, e-fools a test A : {0,1}™ — {0, 1} if |Procp(0,13m [A(z) = 1]=Proe,, (013m[Az) =
1]| < e. In the above theorem we identify between the circuit size and the input size. Without loss of generality we
view all circuits of size m as circuits on m bits. If the circuit takes as input j < m bits, we assume that it takes m
bits and ignores the last m — j bits.



Table 1: Pseudo-random generators comparison

Reference seed size circuit size
[BENW93] d=0(@*1og®k) | m = kD
[Imp95] d=0(? log k) | m =g
[TW97]* d= 0(10 ) m = kS
[STV99] d= 0(101 m = kD)
Theorem 1 d=0(l) m = kﬂ(m)

| Ultimate goal | d = O(1) [ m = k20 [

All results assume the existence of a function f = {f;} which is computable in time 200 and
that circuits of size k(I) cannot compute.

* Impagliazzo and Wigderson state their result for k(1) = 22() and their result gives d = O(1),
(which implies BPP = P) for such an assumption.

Table 2: Extractors comparison

H reference ‘ min-entropy k ‘ output length m ‘ additional randomness d H
[Tre99] any k m = k79 d ol n logk =)
Theorem 2 any k m = k170 O(logn)
[RRV99b)] any k m=(1-9)k = O(log®n)
Theorem 3 any k m = Q(m) d = O(logn) + O(log? k)
Theorem 3 + [WZ93] | k < 2V/logn =(1-0)k d = O(logn - logloglogn)

H Ultimate goal ‘ any k ‘ m==k ‘ d = O(logn) H

The results are given for constant e.
¢ is an arbitrary small constant.

Theorem 3 For every n,k and e there ezists an explicit (k,1/m)-extractor
Ext : {0,137 x {0,1}0008 ¢ +log’ k) _y £0 1}™  for m = Q(k/ logloglogn).

1.1 Organization of the paper

In section 2, we define pseudo-random generators and extractors, state our exact results, and present
the necessary background definitions and results. In section 3, we present our main construction,
and prove that it “transforms hardness into pseudo-randomness”. In section 4, we show how to
deduce our results from the main construction.



2 Definitions and Ingredients

2.1 Pseudo-randomness

We want to say that the outputs of our pseudo-random generators and extractors look like random
strings as far as relevant tests are concerned. We formalize this below, with A standing for the test.
Let U,, be the uniform distribution on m bit strings, and let = €p {0,1}™ mean that z is selected
from all m bit strings according to probability distribution D. For a function G on d bits, we use
G to denote the distribution G(Uy)-

Definition 1 Let A be a boolean predicate on m bit strings. We say that a distribution D on m
bit strings e-fools A if |Probye,0,1ym[A(2)] — Probye, (0,13 [A(z)]| <e.

For a class A of such predicates, D is e-pseudo-random for A if D e-fools each A € A. We'll
be particularly interested in the following classes of predicates:

e The class of all predicates (on m bits): D is called e-uniform if it e-fools this class®.

e The class Sizen, of all predicates computable by circuits with m or fewer gates: D 1is called
(e,m)-pseudo-random if it e-fools this class. (We use the same parameter for the circuit size
and the number of inputs, as a circuit can always ignore some of it’s inputs.)

For functions k(1),d(l),m(l),e(l), a (k,€)-pseudo-random generator is a (family) of functions
Gy : {0,134 — {0,1}™D | that is computable in time 294 3 such that the distribution
G(Uqy) (of outputs of the generator) is (k(1),€(l))-pseudo-random.

2.2 Complexity measures for functions and strings

We identify between functions f : {0,1} — {0,1} and strings in {0, 1}”:21 in the obvious way
setting f; = f(¢). This identification is helpful since we use two complexity measures: circuit
complexity (which is defined for functions and is the measure we use for constructing pseudo-random
generators) and Kolmogorov complexity (which is defined for strings and is the measure we use
for constructing extractors). For both measures, we will argue that our construction transforms a
“hard” function/string into a “pseudo-random” distribution. The exact meaning of this statement
is that if a test A is not fooled by the “pseudo-random” distribution then A can be used as an
oracle to compute/describe the initial function/string. Thus, we define circuit complexity and
Kolmogorov complexity relative to a predicate A.

Definition 2 Let A be a predicate on m bit inputs.

o Define Sa(f) to be the size of the smallest circuit that computes f and is allowed to use A-
gates, (in addition to the standard boolean gates). Thus, S(f) denotes the circuit complexity
of f. We use the same convention in the next definitions.

o For 0 < 6 < 1/2, let Sas(f) be the minimum of Sa(f') over all strings f' with hamming
distance at most 6|f| from f.

*It is easy to verify that a distribution D is e-uniform if and only if the statistical (L1-norm) distance between D
and Uy, is bounded by €/2.

3Pseudo-random generators are allowed to run in exponential time. This is because when using them to deran-
domize a probabilistic algorithm they are run an exponential number of times for all their possible seeds.
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The last item in the above definition measures circuit complexity of functions on random inputs.
If Sa5(f) is large, then f is not only hard to compute, but also hard to compute on average. We
proceed and define these concepts for Kolmogorov complexity.

Definition 3 Let A be a predicate on m bit inputs.

o Define KA(f), the Kolmogorov complezity of f given A, as the length (in bits) of the smallest
description of f which is allowed to use a description of A for free, i.e., that of an oracle
Turing Machine which, using oracle A, outputs f.

o For 0 <é<1/2, let Kgs5(f) be the minimum of K(f') over all strings f' with hamming
distance at most 6| f| from f.

2.3 Hardness versus Randomness

The only known constructions of pseudo-random generators use unproven assumptions. The most
common assumption used is the existence of “hard functions”. Specifically one assumes that there
exists a function f = {f;} which is computable in time 200), yet every circuit of size k(I), (where k is
an integer function which measures the hardness of f), cannot compute f. Using this assumption a
large number of papers [BFNW93, Imp95, IW97, IW98, STV99, KvM99, CNS99] construct Pseudo-
random generators. Most of these results use the Nisan Wigderson generator exactly as stated in
[NW88], and improvements are gained by a “pre-processing stage of hardness amplification”.

In some sense, (which is made exact in [ISW99]) the best possible pseudo-random generator
expected by such a transformation is one which uses O(l) random bits to fool circuits of size &(I).

The best previously known construction is by [STV99].

Theorem 4 [STV99] If there exists a function f = {f;} which is computable in time 2°0) and for
all 1, S(f;) > k(l), then there exists a function m(l) = k(1)®D) and a (m(l), %)—pseudo—mndom

generator with seed length O(%).

In this paper we get the optimal seed length. A small gap from the optimal expected generator
is left since we are only able to fool slightly smaller circuits®.

Theorem 5 If there ezxists a function f = {f;} which is computable in time 200 and for all I,
1

S(fi) > k(l), then there ezists a function m(l) = k(l)Q(loslosl) and a (m(l), %)—pseudc—mndom

generator with seed length O(1).

This does not improve derandomization of probabilistic algorithm as such hardness vs. random-
ness tradeoffs were already achieved in [ISW99], without constructing a pseudo-random generator.

Remark 1 Trevisan [Tre99], observed that all hardness vs. randomness tradeoffs use no conse-
quences of the assumption that f is computable in time 2°0) but the trivial one: that the generator
can compute the function. Thus, all these constructions can be seen as taking two inputs: the
function f, (encoded as an n = 2' bits truth table), and the seed. We call such transformations
pseudo-random generator schemes.

“The following theorem rephrases theorem 1 with our notation



2.4 Extractors

Roughly speaking, an extractor is a function which uses a small amount of random bits to extract a
lot of (almost) truly random bits from a weak random source which contains sufficient randomness.
The following variant of the entropy function is used to quantify the amount of randomness which
a distribution contains.

Definition 4 A distribution P on {0,1}" is said to have min-entropy (at least) k, if for every
z € {0,1}", P(x) <27k,

Definition 5 A function Ext : {0,1}" x {0,1}¢ — {0,1}™ is called a (k,€)-extractor if for every
distribution P on {0,1}" which has min-entropy k, the distribution Ext(P,Uy) is e-uniform®. We
say that a family of extractors is explicit if it can be computed in polynomial time.

Our motivation in this paper is constructing extractors with small d, (for given n,k and €). A
lower bound of d = Q(log(n/e)) is given by [NZ96, RTS97].

Definition 6 Let Ext : {0,1}" x {0,1}¢ — {0,1}™ and let h € {0,1}". Then we define Ext" :
{0,1}¢ — {0,1}™ by Ext"(z) = Ext(h,), and call it the generator derived from Ext by h.

The following theorem, (which is the main observation of [Tre99]) asserts that pseudo-random
generator schemes can be used to construct extractors. Interestingly, for this transformation it is
more natural to measure hardness by Kolmogorov complexity than by circuit complexity.

Theorem 6 [Tre99] Let Ext : {0,1}" x {0,1}¢ — {0,1}™ be a function, Assume, for any predicate
A, and any h € {0,1}", if Ext" does not e-fool A, then K 4(h) < k. Then Ext is a (k+log(1/€), 2¢)-
extractor.

Proof: Let A be any test, and let P be a distribution with min-entropy at least k +log(1/¢). The
bias of A on Ext(P,U,) is the expectation for h €p {0,1}" of the bias of Ezt". Now, for all but 2~
h’s, the latter bias has absolute value less than e. The at most 2* exceptions have total probability
at most 2k /2min—entropy(P) < ¢ Therefore, the total bias is at most 2. o

There is also a partial converse:

Theorem 7 Let Ext : {0,1}" x {0,1}¢ — {0,1}™ be an explicit (k,e¢)-extractor. Then, for any
predicate A, and any h € {0,1}", if Ext" does not e-fool A, then K4(h) <k + O(1).

Proof: Let H, be the set of all h so that Ezt" does not e-fool A. H, is constructible using A
as an oracle, so K4(h) < log|Ha| + O(1) for any h € Hy. Without loss of generality, assume
that, for half the elements h in Hy, A is € more likely for an output of Ezt” than for a random
element. Then the same is the case if h is chosen uniformly from this subset of H 4, and x is chosen
uniformly, and we compute A(Ezt(h,z)). Thus, by the definition of extractors, this distribution
on A has min-entropy less than k , i.e., |[H|/2 < 2F or log |[Ha| < k + 1. .

SLet us remark again that a distribution is e-uniform if and only if it has statistical distance at most ¢/2 from the
uniform distribution. Thus this definition coincides with the standard one

SFormally, a family E = {E,} of extractors is defined given polynomially computable integer functions
d(n), m(n), k(n), e(n) where E, : {0,1}" x {0,1}*™ — {0,1}™™ is a (k(n), e(n)) extractor. The family is explicit
in the sense that E, can be computed in time polynomial in n.



Following Trevisan, we use theorem 6 to reduce the problem of constructing extractors into
proving hardness versus randomness tradeoffs. We use theorem 7 to place known explicit extractors
at the base of our recursion.

The following two theorems summarize the best known explicit extractors for general min-
entropy.

Theorem 8 [Tre99] For every n,k there exists an explicit (k,1/m)-extractor

O

1 n
Ezxt:{0,1}" x {0, 1}0(1;]?) — {0,1}™ (where m = k=% for arbitrary § > 0).

Theorem 9 [RRV99b] For every n,k there exists an explicit (k, %)—emtmctor
Ext : {0,1}" x {0,1}000g”n) 5 {0,1}™ (where m = (1 — 6)k for arbitrary § > 0).

In this paper we construct the following explicit extractors.

Theorem 10 For every n,k there ezists an ezplicit (k,1/m)-extractor
Ext: {0,1}" x {0,1}°08") — {0,1}™, (where m = k' for arbitrary § > 0).

Theorem 11 For every n, k there exists an explicit (k,1/m)-extractor
Ext: {0,1}™ x {0, 1}0(1°g"‘"10g2 ) = {0,1}™, for m = Q(k/logloglogn).

Note that this extractor uses optimal seed length for k < 2V1°8™, In [WZ93] it was shown how
to transform an extractor which extract m = k/r bits into one which extracts m = (1 — d)k, (for
arbitrary constant §) while multiplying d by O(r). Using this with theorem 11 gives:

Theorem 12 For every n and k < 2V'°8™ there exists an explicit (k,1/m)-extractor
Ext : {0,1}" x {0,1}0Uognlogloglogn) _, 1 11™  (yhere m = (1 — &)k for arbitrary § > 0).

Note that we improve Trevisan’s extractor and use optimal (d = O(logn)) seed length for

extracting k'~% bits. For low min-entropy (ie. k< 2\/@) we extract a larger fraction of the
entropy. This larger fraction is still small compared to that of [RRV99b]. However, the advantage
of our construction is that it maintains optimal seed length. If extracting a constant fraction of the
min-entropy is desired we also substantially improve [RRV99b] for low min-entropy’.

Our technique yields extractors with rather large error, (e = 1/m). In [RRV99a] it was shown
how to transform an extractor with large error into one that works for any error. When one starts
with error € = 1/m, this transformation increases the seed only by the inevitable and optimal
O(log %) while preserving the other parameters. (The reader is referred to [RRV99a] for exact
formulation). Performing this transformation gives theorems 2,3.

2.5 The Nisan-Wigderson generator

Almost all schemes of converting hardness into pseudo-randomness, as well as the above extractor
constructions, use the NW-generator from [NW88]. Their construction converts a “hard” Boolean
function f on [ bit inputs, into a pseudo-random generator taking an input seed of size d > [ to
an output of length m >> d. To use the construction for derandomization, one needs to specify
the hard function f, and a family A of subsets of {1,---,d} such that each pair of sets has small
intersection. Such families are called “designs”, and the intersection sizes determine the quality of
the pseudo-random generator.

" Actually, our results slightly improve those of [RRV99b] and [Tre99] for all k, as all terms of the form log log log n

can be replaced by log log %‘)ggkﬂ.



Definition 7 A family of sets A = (S1,--+,Sm C [d]) is called a (I, u)-design if
e Foralli, |S;| =1.

e For alli#j,|SiNS;| <w.

Definition 8 (The NW-generator) Let | < d < m be integers, and let n = 2'. Let A be a
(1,u)-design. Define a function NW2 : {0,1}" x {0,1}¢ — {0,1}™ in the following way: Given
f €{0,1}" and = € {0,1}¢, we view f as a function over | = logn bits, (by having f(v) = f,). Let
z|s denote the |S| bit string obtained by restricting x to the indices in S. Define:

NWA(f,2) = f(zls,) © f(xls,)- 0 f(=s,,)
For a fized f, let NW D2 be the function from {0,1}¢ — {0,1}™ defined by NW /2 (z) = NWA(f, z).

Given A, f and z as inputs, NW?(f, z) can be computed in polynomial time. NW ¥ (z) can
be computed, given A, in time polynomial in m, with an oracle for f. [NW88] also show how to
construct good designs A.

Theorem 13 [NW88] There exist constants ci,ca such that for every l,d,m, such thatl < d <m
and d > cplogm there exists a (I,u)-design A = (S1,--+,Sm C [d]), with u = max(%,logm),
Furthermore, this design can be constructed in time poly(2¢).

The proof that the NW construction is a good pseudo-random generator involves looking at
certain restrictions of f.

Definition 9 Given an (I,u)-design A = (S1,--+,Sm C [d]) and a function f : {0,1} — {0,1},
define a collection of functions R? = {ffj,ﬁw € {0,1}¢,1 <i < j <m} as follows:

s {013 = {0,1}

is the function defined by: On input z € {0,1}%, construct a string s € {0,1}% by first assigning,
for each p & S;N S}, s, = By, and then filling the remaining (at most) u bits according to (the first
bits of) z.

f8(2) = NWD(s);
For1<i<m,let ffﬂ(j,z) = f%,ﬁ(z). We refer to these functions as the “restrictions” of f. Note

(2
that the input size of each such restriction is u + logm.

Note that given A and a function f (encoded as a n = 2! bit truth table) and 8 € {0,1}¢ the
truth table of ffﬂ can be computed in polynomial time. These functions are over u + logm bits,
which trivially entails that S( fﬁ‘ﬂ) and K ( fﬁ,) are bounded by m2v.

Implicit in [NW88] is the following®:

8[NW8S] prove that NW/** is e-pseudo-random for all tests computable in size Si/s_q(c/m)(f)/(m2*). This means
that the existence of functions which are “hard to approximate” implies the existence of a pseudo-random generator.

With the above terminology, the argument of [NW88] can be presented this way: [NW88] uses designs with very
small u, (which in turn forces d to be relatively large). This makes the circuit complexity of all the ffﬂ’s relatively
small. Lemma, 1 shows that any circuit A of size m which is not fooled by NW#*2 can be combined with the circuits
for the restricted functions to construct a circuit of size poly(m)2* which approximates f. Thus, if f is assumed to
be hard to approximate by such circuits, the distribution induced by the generator is pseudo-random for Sizen,.
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Lemma 1 There is a polynomial-time oracle Turing Machine M9 with the following property.
Assume NWIA does not e-fool a test A. Choose uniformly a 8, an i, an m bit string o, and an
[ bit string z. Then if M is run on (z,a, ) using oracles g = ffﬂ and A, Prob|M9%4(z,a, ) #
f(2)] <1/2 = Q(e/m).

For completeness we prove lemma 1 in the appendix. This view of the NW-construction is the
key observation of [[SW99]. The above lemma is then used to connect between the complexity of
the original function, that of the restricted functions, and the power of the generator.

Corollary 1 [ISW99] If NW /2 does not e-fool A, then there are 3 and i so that:
Sa12—a(e/m)(f) < Sa(fLy) (mOW).

Corollary 1 gives that if NW/* does not fool A, then one of the restrictions can be used to
show that f is “easy”, (at least in the sense that there exists a small circuit that uses A gates and
“approximates” f). This is useful since all the restrictions are on only u + log m bits. Thus, if we
start with a function f that is “hard” for A, either the NW /2 fools A or we obtain a “smaller”
function that is almost as hard as the original one. This observation was used recursively in [ISW99].
The problem was that in the case that A is not fooled only one of the restrictions could be shown
to be hard. This causes [ISW99] to use a costly exhaustive search to “find” the hard restriction.

In this paper we observe of that the above result can be strengthened to show that in the case
that A is not fooled by NW % a non-negligible fraction of the restrictions are hard. Intuitively,
this will enable us to select a small number of these restrictions using a randomized procedure such
that with high probability we will obtain a hard restriction.

Corollary 2 If NW /2 does not e-fool A, then for an Q(e¢/m) fraction of pairs B and i :
S a1 2—a(e/m)(f) < Sa(f5)(mOD)

Corollary 2 follows just as easily from lemma 1 using a standard argument. An analogous argu-
ment can be used to state corollary 2 for Kolmogorov Complexity. It turns out that by considering
Kolmogorov complexity the same argument gives much better parameters! This happens because
in the Kolmogorov complexity setting, the running time of M doesn’t count. Thus, we get an
additive term and not a multiplicative term.

Corollary 3 If NW/2 does not e-fool A, then for an Q(e/m) fraction of pairs 3 and i :
Ku1/2-ae/m) () < Kalffp) +2m

2.6 Xoring generators

We will recursively construct a sequence of pseudo-random generators/extractors, one of which
will fool the relevant predicate A. We will need a way of combining them. Fortunately, unlike in
[ISW99], the number of such generators will be small. We’d like to “xor” all the generator’s into
one generator. A technical inconvenience is that the “xor generator” does not necessarily fool A.
The following definition and trivial lemma enable us to overcome this difficulty.

Definition 10 For a predicate A on m bits and y € {0,1}™, define a predicate A®Y on m bits by
having A®Y(z) = A(z @ vy). Define A® to be the class of all predicates A®Y.

Lemma 2 Let Pi,---, P, be distributions on {0,1}™ and A : {0,1} — {0,1} be a predicate.
Suppose that one of the P;’s is e-pseudo-random for A®. Consider the distribution P = P, ®---® Py,

which samples independently z; €p, {0,1}™, and outputs z1 @ --- @ z.. Then the distribution P
e-fools A.



The price of lemma 2, is that if you have two candidate generators. Gy : {0,1}% — {0,1}™,
Go:{0,1}% — {0,1}™ the ®-generator G(z1,72) = G1(z1) ® Go(x2) takes a seed of length d; + ds.
This means that “xoring” many generators blows up the seed length. We want to only increase the
seed length of a single generator linearly. We will be able to avoid increasing the total seed length
by more than a constant factor over that of G1, by making sure that the seed lengths are decreasing
exponentially. In particular, this means that there can be only logarithmically many (in the seed
length) elements in the sequence, a contrast with [[SW99], where the recursive construction created
an exponential size (in the seed length) family of generators.

Let us rephrase corollaries 2, 3, and replace A by A®. This change does not affect the parameters
by much. To convert a circuit using A%Y gates to one using A gates, we can replace the A%Y gates
with A gates, and negate wires going to the i'th input of an A%Y gate if y; = 1. This gives:

Corollary 4 If NW/2 is not e-pseudo-random for A®, then for an Q(e/m) fraction of pairs f3
and i :

Sa1j2—ae/my(f) < Sa(ff) (mCW)

As to Kolmogorov complexity, note that by giving y, we can convert a machine with oracle
access to A%Y into one with oracle access to A.

Corollary 5 If NW/2 is not e-pseudo-random for A®, then for an Q(e/m) fraction of pairs f3
and i : K179 qe/m)(f) < Ka(f{p) + 4m

2.7 Hardness Amplification

The above connections relate the quality of the generator and the complexity of the specified
restrictions to the complexity of approzimating the function f, i.e., computing a function f’ that
has non-negligible correlation to f. Much of the work on improving the results in [NW88] concerns
constructing a hard to approximate function from one that is hard to compute in the worst-case
(BFNW93, Imp95, IW97, STV99]). This process is usually called hardness amplification. Here,
we’ll use the hardness amplification from [STV99], which is nearly optimal.

Theorem 14 [STV99] There exists a polynomial time algorithm that given a function f : {0,1}' —
{0,1} (encoded as a 2' bit truth table) and p, produces the truth table of a function f : {0,1}4% —
{0,1}, with the following properties for any predicate A:

1. S4(f) < SA,1/2—p(f)(%)O(1)

2. Ka(f) < KA,1/2—p(f) + O(log %)

Combining this with the corollaries from the last section gives the following analogous results
for circuit complexity and Kolmogorov complexity. Note that again the same argument produces
more efficient parameters in the Kolmogorov complexity setting®.

Corollary 6 If NWHA s not e-pseudo-random for A®, then for an Q(e/m) fraction of pairs (3
and i :

Sa(f) < Sa(f5)(m/e)°W

9[STV99] is concerned only with circuit complexity. Still, their work gives the cited result for Kolmogorov com-
plexity, and it turns out that the proof is even simpler for this case. Intuitively, this happens for the same reasons
as before. loosely speaking, [STV99] construct a polynomial time Turing machine which computes f given a func-
tion that approximates f . As before, the circuit complexity bound involves the time of this machine, whereas the
Kolmogorov complexity bound only needs that a Turing machine is of constant size.
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Corollary 7 If NW/A is not e-pseudo-random A%, then for an Q(e/m) fraction of pairs B and i
Ka(f) < Ka(f£y) +4m+ Olog 7)

The above lemmas give the same intuitive connection between the hardness of the function f
and its restrictions. The difference is that now we measure “worst-case” hardness in both sides of
the inequality. This enables us to use these corollaries recursively.

3 Our construction

In our construction, we use the techniques from the previous sections in a recursive way, as do
[ISW99]. The idea is that if the NW generator fails on f, then many of the restrictions are
almost as complex as f was, and much smaller than f. In [ISW99], all such restrictions were
recursively converted into pseudo-random generators. Instead, we give a randomized procedure
which constructs a single smaller function, by combining many randomly sampled restrictions.
Since, the only way our construction can get random bits to perform this reduction is by including
them in the seed, we use pairwise independence to minimize the number of bits actually used. At
the end, we will have a relatively small number of generators, (one for each level of the recursion),
and we combine them using the @ construction of section 2.6.

We use the same construction for both extractors and pseudo-random generators, using our
standard convention that boolean functions over I bits are equivalent to strings of length n = 2!,
Our construction is given as input the following ingredients:

e The length of strings in the source distribution n. (Or alternatively for pseudo-random
generators n = 2! where [ is the number of inputs of the hard function).

e The length of the output m.

e An explicit extractor (Pseudo-random generator scheme), Base : {0,1}™" x {0,1}¢ —
{0,1}™. To be used as the base of the recursion. (We will soon connect the quality of
Base to that of our construction).

We construct a function Rec : {0,1}" x {0,1}¢ — {0,1}"™. (d will soon be determined). We
now describe the computation of Rec:

It begins by computing three sequences of integers l1,---,l., u1,---, Uy, di,---,d, recursively as
follows:

1. di = c3logn, where c3 is a constant to be fixed later.

2. dt+1 == %.
3. l; =4logn.

4. lyp1 = 4(up + 5logm).
5. up = maw(%,legm)

6. r is such that u,_; = logm, (We will soon prove that such an r exists).

11



We view the first input of Rec as a boolean function f over [ bits. It will be convenient to
view the second input as composed of three parts: The first is used to obtain seeds for “candidate
generators”. We denote this part by s = (s1,---,s,_1) where s; € {0,1}%. (Note that the total
length of s is bounded by > d; < 2d;. The second part which we denote by s’ will be a d' bits
string which is used as a seed for Base. The third part which is of length 8d; will allow Rec to
perform randomized computations. Thus, in this presentation, we allow Rec to use randomization
as long as the number of random bits used does not exceed 8d;. This makes the seed length
d=2d;+d +8d; =0O(logn) +d'.

For 1 <t <, Rec constructs a (I}, us)-design Ay = (S1,---,Sm) with S; C [d;], using theorem 13.
Rec then constructs truth tables for r functions fy,---, f; defined as follows: f; = f. For t = 2
to r, we pick m* pairs (ig,3;,) € [m] x {0,1}% in a pairwise independent way. This requires
2(d¢ +logm) < 4d; random bits using the method from [CG89]. Thus, the total number of random
bits used by Rec is no more than 4}, d; < 8d; as required.
Define f; 11 by:

. AVA .

fer1(a:3,2) = (F0) ! g,) (45 2)

Note that the truth table of each f; can be computed in polynomial time given the truth table of
fi—1, and that the size of inputs to f; are u;—1 + 5logm bits. Thus, inputs to f; are 4 times this
length, or length [;, as required.
It then sets z; = NW/t2t(s;) for t = 1,---,7 — 1, and z, = Basel"(s,).
Finally, it outputs z1 ® 20 @ ... D z;.

The following lemmas assert that the construction produces extractors/pseudo random generators.

Lemma 3 For every n and m, the recursion computing ly,u;,d; terminates, and when it does
r < loglog 318" 4 1 gnd [, = 24logm.

logm

Proof: We'll count the number of steps in which u; decreases, until it reaches the limitation of
Cl(lt)2

ur > logm. For ¢ < r—1, uy = —a Using this rule, and the fact that u; > logm, we get
that u; < (%)Qt%llaﬂb%log n, Where the sequences {a;} and {b;} are defined by the following
recurrences: a; = 2, azy1 = 2(ag+1), by =0, byy1 = 2b;+t—1. One can compute that a; = O(2!1),
and by = O(27!). Substituting this in the above equation we get that u; < (Cé—f)Qt_l - 4logmn,
for some constant d. Choosing c¢3 = 2dcy, we get that: u; < 2‘2t_14logn. This gives that
r < loglog dlogn 4 1 Note that since up—1 = logm, I, = 24logm °

logm

This implies that the construction stops after a small number of recursive steps, and can be
computed in time polynomial in n, (which is exponential in /). We now show that this type of
recursive construction produces extractors and pseudo-random generators.

Lemma 4 There exists some constant ¢ such that for every k', if Base is an explicit (k',1/m)-
extractor Base : {0,1}™" x {0,1}¢ — {0,1}™, then Rec is an ezplicit (k' + crm,4/m)-estractor
Rec : {0,1}" x {0,1}00cgm)+d" _, 1 1}m,

We use the Kolmogorov complexity characterization of extractors. Lemma 4 follows from the
following lemma and theorem 6.

Lemma 5 For some constant c, if Ka(f) > k' + crm, then Rec/ 2/m-fools A.

Proof: We first need:
12



Lemma 6 Let 1 <t <r — 1. With probability at least 1 — 1/m? (over the choice of the m* pairs
(ig,B4)), one of the following two events occur:

o E: NW oA s 1/m?2-pseudo-random for A®.
o E}: Ka(fis1) > Ka(fe) — O(m).

Proof: If E} does not occur, then by corollary 7, for a random (i, 3), Ka(fi) < KA((ft)é‘ﬁ)) +5m

with probability at least (1/m?). Let B be the set of such pairs. Recall that f;1 “contains” each
(ft)ég,ﬁq) for 1 < ¢ < m'. Therefore, if any (iy, 3;) € B, then Ka(f:) < Ka(ft4+1) + O(m). For
each g, there is a chance of Q(1/m?) that (i4,3;) € B. Having chosen m* such pairs we expect
Q(m?) of them to fall in B. Since these events are pairwise independent we can use Chebyshev’s
inequality and get that the probability that all the pairs (i4, ;) “miss” B, is O(1/m?). .

We define E' = Ulgtg,lEtl and E? = ﬂlgtgrflEg- Note that for all 1 < ¢t < r — 1 the
events E; and E? in the above lemma are determined before the seeds to the NW-generators are
chosen. By the above lemma the probability that non of the events E',E? occurred, is bounded by
O(r/m?) < 1/m. If E' occurs then the conditional bias of Rec! for A is at most 1/m by Lemma 2.
If E2? occurs then we can connect the hardness of f; and f;,1 for all 1 <t <r —1, and get that f,
is hard. Specifically, there exists a constant ¢ such that Ka(f;) > Ka(f1) —c(r — 1)m > k' + 2m.
Using theorem 7 we get that when E? occurs, Basel 1/m-fools A. (Verify that by lemma 3
I, = 24logm, so f, is an appropriate input for Base). However, in order to use lemma 2, we need
to prove that Basel is 1/m-pseudo-random for A®. This follows just the same since for every
y € {0,1}™, Kaeu(fr) > Ka(fr) —m — O(1). By lemma 2 we get that if E2 occurred then the
conditional bias of Rec/ on A is at most 1/m. This makes the total bias of Rec/ on A at most 1/m
plus the probability that non of the events E',E? occurred, and the lemma follows. .

The same argument gives that Rec is a pseudo-random generator scheme.

Lemma 7 There exists some constant ¢ such that for every k': Assume Base?, (which has seed
length d') is (m,1/m)-pseudo-random, whenever a function g : {0,1}241°6™ — {0 1} has S(g) > ¥/,
then Rec!, (which has seed length d' + O(l)) is (m,4/m)-pseudo random, whenever a function
f:{0,1} = {0,1} has S(f) > m“k'.

The only difference in the proof is that one should use corollary 6 instead of 7.

4 Results

In this section we show how “plugging” different bases to our construction gives the previously
stated theorems. Theorem 10 follows using Trevisan extractor as Base.

Proof: (of theorem 10) We use the extractor of [Tre99] (theorem 8) as base. Given a constant 4,

we pick k' = % T, Indeed, the extractor of [Tre99] is an explicit (k',1/m)-extractor Base :

{0,113 x {0,1}¥ — {0,1}™, where d' = O(logm). Using theorem 4 we get that Rec is an explicit
1 1

(k,4/m)-extractor, for k = & - mT™ + crm < mT5. The seed length of Rec is O(logn) + d' =

O(logn). o
Theorem 11 follows using the extractor of [RRV99b] as Base.
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Proof: (of theorem 11) We use the extractor of [RRV99b] (theorem 8) as Base. We pick k' = 2m.
Indeed, the extractor of [RRV99b] is an explicit (k',1/m)-extractor Base : {0,1}™" x {0,1}¢ —
{0,1}™, where & = O(log? m). Using theorem 4 we get that Rec is an explicit (k,4/m)-extractor,
for k = 2m + O(rm) = O(mlogloglogn) as required. The seed length of Rec is O(logn) + d' =
O(logn + log? k). o

The generator of theorems 1, 5 is achieved by Using the generator of [STV99] as Base.

Proof: (of theorems 1, 5) We use the pseudo-random generator scheme of [STV99] (theorem
4) as Base. We choose k' = m¢, (where d is the constant “hidden” in the Omega notation of
theorem 4). Indeed, the generator of [STV99] is (m,1/m)-pseudo-random when given a function
g : {0,1}241™m _, {0 1} which cannot be computed by circuits of size k’. The seed length of the
generator is d’ = O(l). Using theorem 7 we get that Rec/ is (m,4/m)-pseudo-random when given a
function f : {0,1}* — {0,1} which cannot be computed by circuits of size k = mm¢ = mloglogl)
The seed length of Rec is O(l) + d' = O(1). o

5 Conclusions and open problems

We have shown how to improve the Nisan-Wigderson generator, to use optimal seed length for
arbitrary hardness. However, there still remains a small gap between the output size of our pseudo-

random generator and that of the best expected generator. (Namely, we get m = kn(m) whereas
we expect to get m = kQ(l)).

The same gap occurs in extractors, here the gap is quantitively smaller (since using Kolmogorov
complexity we get m = k:l_‘s). However, the optimal extractor achieves m = k.

Our construction works by reducing the problem of constructing extractors for general sources
to that of constructing extractors for sources with polynomial min-entropy. Thus, any improvement
of such extractors immediately implies an improvement for all entropy levels.

It is interesting to note that both our results and those of [RRV99b] follow from improving the
Nisan-Wigderson generator, and then applying the Trevisan reduction. A natural question is: can
both of these improvements be made simultaneously? A positive answer may give an extractor
that gets the benefits of both constructions, (one that uses the optimal seed length to extract
m = (1 — §)k bits).

Finally, an interesting feature of our construction is that, using the currently known extrac-
tors, this reduction actually improves the parameters for low min-entropy. As a result we have
that extracting randomness from sources with low (2\/@) min-entropy can be done much more
efficiently then from sources with high min-entropy. This is totally opposite to all previous results.
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A Proof of lemma 1

In this section we repeat the argument of Nisan and Wigderson. We need the following theorem
by Yao, which asserts that to fool general tests it is enough to fool prediction tests.

Theorem 15 [Yao82] There is a polynomial time oracle Turing Machine MA with the following
property. Assume a distribution b = (b1,---,by) on {0,1}"™ does not e-fool a test A. Choose
uniformly an i and an m bit string o. Then if M is run on (by,---,bi_1;a) using oracle A,
Prob[MA(by,---,bi_1;0] # b] < 1/2 — Q(e/m).

We are now ready to construct the required Turing Machine. In our case the distribution
b1, -+, by, is the distribution of outputs of the generator. We use = and (3 to generate it as follows:
We start by using z and § to construct a seed s for the generator. Let us denote the elements
of S; by {a1 < -+ < a;}. For each p ¢ S, we set s,, = (B,. We fill the remaining / places by
setting sq, = zp. We now set by, -+, bp to be the output of NW/2(s). (Note that s is uniformly
distributed when ¢ and z, 8 are uniformly distributed).

We now have the following equalities.

o b = f(x).
e For j <1, b; = ffj,ﬁ(3|5iﬂsj)'

We get that for all j < 4, b; can be computed from = and 3 using fi,Aj,ﬂ. Thus, having oracle

to fz-’Aﬁ we can compute by,---,b;_1. We now use the Turing machine of theorem 15 to give a good
estimate on b; = f(z).
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