Electronic Collogquium on Computational Complexity, Report No. 10 (2000)

Supermodels and Closed Sets

Amitabha Roy * Christopher Wilson
Dept. of Computer Science Dept. of Computer Science
University of Oregon University of Oregon
Eugene, OR 97403 Eugene, OR 97403
aroy@cs.uoregon.edu cwilson@cs.uoregon.edu
Abstract

A supermodel is a satisfying assignment of a boolean formula for which any small alteration, such as
a single bit flip, can be repaired by another small alteration, yielding a nearby satisfying assignment. We
study computational problems associated with super models and some generalizations thereof. For general
formulas, it is NP-complete to determine if it has a supermodel. We examine 2-SAT and HORNSAT, both
of which have polynomial time satisfiability tests. We see that while 2-SAT has a polynomial time test
for a supermodel, testing whether a HORNSAT formula has one is NP-complete. We then look at sets of
supermodels called closed sets - these are sets of supermodels which retain the supermodel property even
after being broken and repaired. Using combinatorial methods, we examine extremal properties of closed
sets. We find that they are at least linear in size. For large ones, an upper bound is trivial, but we see that
the largest minimal closed set has size between 22"/3 and (4/5)2" 1. A sparse closed set is one in which
each break of a supermodel has only a single repair. We obtain analogous, and slightly tighter, bounds on
sparse closed sets, whose sizes essentially must lie between (2¢)™® and 2" /n.

1 Introduction

The concept of supermodels, introduced in [GPR98], formalizes a notion of fault tolerant satisfying assignments
to boolean formulas. In this paper, we study the problem of identifying these supermodels and generalize this
notion of fault tolerance.

The motivation for studying supermodels in the artificial intelligence/planning community was to build
search algorithms finding robust solutions to problems (typically in scheduling or planning domains). These
solutions have the property that if an expected resource is suddenly unavailable, then a minimal modification
to the solution produces an equally acceptable alternative. Recently, this idea has been used by [BP99].

Our goal is to examine the computational and combinatorial complexity of supermodels. In the first few
sections, we are concerned with the computational aspects of supermodels of boolean formulas. In the last two
sections, we take a combinatorial approach to identify the structure of sets of certain kinds of supermodels.

Essentially, a supermodel of a boolean formula F' is a satisfying assignment « of F', F(«) = 1, such that for
every 4, if we negate the ith bit of o, there is another bit j # ¢ of @ which we can negate to get another satisfying
assignment. That is, if §;(a) is the function which negates the ith bit of «, then (Vi)(3j # i)F(d;(d;(a))) = 1.
In sections 3 and 4, we study the complexity of finding supermodels for arbitrary and restricted classes of
formulas. While we prove that finding supermodels in general is NP-complete, we also exhibit polynomial
time algorithms for finding them in two specific types of boolean formulas: 2-SAT and Affine SAT, two classes
of satisfiability where finding satisfying assignments has efficient algorithms. Intriguingly, while this (efficient
satisfiability checking) is also true for HORNSAT, we show that finding supermodels for HORNSAT formulas
is NP-complete.

In sections 5 and 6, we look at the concept of closed sets of supermodels. This is a extension of the notion
of supermodels under which a model remains a model after an arbitrary sequence of breaks and repairs. These
appear to have a rich combinatorial structure. Closed sets can also be characterized in terms of what’s called
(0, p)-domination in [Te94, TPIT7].

*partially supported by NSF grant CCR9820945

1 ISSN 1433-8092

Due to the complex structure of closed sets, we have made certain simplifying assumptions about their
behavior. Section 5 covers sparse closed sets: these are sets of supermodels such that each supermodel has only
one repair for every possible break that gives another supermodel in the set. We prove that every sparse closed
set has size at least (2¢)"/® and at most 2”/n. We also give an explicit construction of sparse closed sets of
nearly maximum size.

Section 6 deals with general closed sets: we see here that the smallest closed sets must have linear size (there
is a simple example that achieves this bound). On the other hand, while a closed set can be as large as 271,

we apply a generalized “triangle-elimination” technique to bound the size of minimal closed sets to at most
(4/5)2n L.

2 Definitions and Notations

The intended objects of study are strings over {0,1} of some specified length n. The basic operations on these
strings are bit flips (negations): changing a specified bit from a one to a zero or the reverse. However, for the
purposes of this paper we have found it convenient to denote these objects as sets. A string «a of length n
represents a subset X of {1,2,...,n} as its incidence vector (or characteristic sequence): the ith bit of « is 1
iff i € X. In this context, instead of flipping a bit of a, we take the symmetric difference of X with a singleton
set, X A{i}. In this manner we are able to describe a series of bit flips themselves as a set, simplifying the
descriptions of our proofs.

Let [n] refer to a set of n elements {1,2...,n} and let 2[™ refer to its power set. For i € [n], the operator
8; - 27l = 2[7 ig defined as §;(X) := X A{i}.

We shall write §;;(X) to mean §,(6;(X))(= 0;(d;(X))) as shorthand (in these situations, we shall always
assume that ¢ # j unless otherwise mentioned). Note that if §;;(X) =Y then §;;(Y) = X.

The operator A;(X) is defined as follows: A;(X) =, 6i;(X).

For S C [n], define d5(X) inductively: p(X) = X and 65(X) = dg\4:1(0:(X)) where i € S. Given a family
of subsets F of [n] let Fj (F<x) denote the number of sets in F with k elements (< k elements). Let ([Z])
(1)) denote the family of k-element (< k element) subsets of [n].

" Let F be a boolean formula of n variables [n]. An assignment X : [n] — {0,1} is called a model if X makes
F true. We shall also interpret X as an incidence vector of a subset in 2. In all our discussions on boolean
formulas, we make the reasonable assumption that every variable appears in both positive and negative literals.

Definition 2.1 A model X of F is called a (r,s) supermodel if VR € (L"l), there exists S € ([<"l), such that
RN S =0, and 6rus(X) is a model of F. We view r and s as fized constants unless otherwise mentioned.

In other words, X is a (r,s) supermodel iff for every bit flip (called a “break”) of up to r coordinates in
the incidence vector of X, there is a disjoint set of up to s bits that could be flipped to get a model of F. In
this paper we shall be primarily concerned with (1,1) supermodels, which we shall call supermodels. Define
SUP(r, s) to be the set of boolean formulas which have (r, s) supermodels.

A family C C 2/ is said to be a closed setif VX € C Vi € [n], Ai(X) N C # 0.

We define A;(X,C) = Aj(X) N C. Observe that each Y € A;(X,C) is of the form ¥ = 6;;(X), for some
J € [n]. Define the i-th repair set of X in C to be R;(X,C) = {j|d;j(u) € C,j # i} : these are the coordinates
that repair the i-th break to X in C.

A family C C 2" is said to be a sparse closed set if VX € C Vi € [n], |A;(X,C)|=1.

Sparseness embodies the notion of needing exactly one repair. Thus, it is the number of repairs which are few
(hence “sparse”), rather than the size of the sets, which can be rather large.

By weak we refer to a set in which breaks do not necessarily need to be repaired. Define A¥(X) = A;(X) U
0;(X). where C is a family of subsets of [n] and X C [n]. Then C is a weak closed set if VX € C Vi €
[n], A¥(X) N C # 0. Thus weak closed sets allow for the possibility that there are supermodels at distance 1
from each other.

Given a closed set C, an element X € C is said to be redundant if Vi € [n] |A;(X,C)| > 1.

X is irredundant otherwise. A family C is a minimal closed set if for all ' C C and C # C’, C' is not closed.
We can similarly define minimal sparse closed sets in the poset of sparse closed sets.

We note the following trivial combinatorial lemma which we record below because we use it so frequently
in our proofs.

Lemma 2.1 Let F C 2! be a collection of pairwise disjoint 2-element subsets of [n]. Then |F| < n/2.

We shall call such families 2-partitions of [n]. F is a maximal 2-partition if JxcrX = [n]. Clearly a
maximal 2-partition has size n/2.

3 Supermodels of Boolean Formulas

Consider the following decision question:
Problem: SUP(r, s)

INSTANCE: Boolean formula F'.
QUESTION: Does F have a (r, s) supermodel ?
Supermodels were defined in [GPR98], where SUP(r, s) was also proved NP-complete.

Theorem 3.1 [GPRY8] SUP(r,s) is NP-complete

Proof: Reduction from SAT. Let F' be an instance of SAT, where F' is a boolean formula over n variables
{z1,22...,2,}. Construct the formula F' = F V ,4; where z,41 is a new variable. We claim that F is
satisfiable iff G has a (r, s) supermodel. Suppose F is satisfiable: let X be a satisfying assignment. Extend X
to a satisfying assignment X' of F' by setting z,41 to 0. We claim X' is a (r,s) supermodel. Let us break
any set of up to r bits in X. If that break set includes the bit corresponding to z,;, we do not need any
repairs. If it doesn’t, we can repair by flipping the bit corresponding to x,11. Now suppose that F' has a (r, s)
supermodel X'. Then F’ must have a model with 2,41 set to 0: if X' has x,.1 = 0 we are done, otherwise
flip #p41, we are guaranteed a repair. The restriction of that model to {z1,z, ..., 2, } gives us a model for F'.
Hence SUP(r, s) is NP-hard.

Since SUP(r, s) is in NP (an NDTM needs to guess a table indexed by all possible O(n") break sets and a
repair set corresponding each break set), SUP(r, s) is NP complete. QED

We now see interpret supermodels as generalized models of boolean formulas. Let F' be a boolean formula.
Then sup’(r, s) supermodels are just models of F:

sup’(r,s) = {X| X is a model of F'}

and we define sup”(r, s) supermodels inductively:

sup”(r,s) = {X € sup*!(r,s)| VR € (énl),ﬂs € <EL)’R N S =0 and drus(X) € sup* 1 (r,s)}

We define SUP¥(a, b) to be the family of boolean formulas which have a sup”(a, b) supermodel. We define
SUP*(r,s) = Niz SUP(r,s) and, perhaps not surprisingly, we call the corresponding models sup*(r,s) =
N, sup(r, s) , super*-models. Our primary concern will be with the case r = s = 1.

We had to define the concept of a weak closed set corresponding to our definition of supermodels (we have
to allow the case that there might be no repairs necessary).

Lemma 3.1 Let F be a boolean formula. Then F € SUP*(1,1) iff there is a weak closed set consisting of
models of F.

In this situation, we say that F' has a weak closed set of models.
We shall identify supk (1,1) with the decision question: given a boolean formula, does it belong to the
family SUP¥(1,1), (where the identification will be clear from the context) ?

Lemma 3.2 SUP*(1,1) € NEXP.

Proof: An NDTM guesses a weak closed set (which could be of exponential size) and checks that it is indeed a
closed set and that all elements in the closed set is a model of the input instance. O.

If the weak closed set had a polynomial description, then the NDTM would just use polynomial space. We
wonder whether SUP*(1, 1) is complete for NEXP.

However, we can prove the following (weaker) result:

Theorem 3.2 SUP*(1,1) is NP-hard.

Proof: We use the same reduction as in Theorem 3.1. Given instance of SAT, a boolean formula F' over n
variables {x1, 3, ..., 2,} we construct F' = F' V x,,41. Suppose F' has a model X. We construct a weak closed
set of models C of F'. If Y C {1, 22, Znyt1}, let m,(Y) be the projection of the incidence vector of Y into the
first n coordinates {x1,Za,...,Zn}.

C={Y Cln+1]| dX,mn(Y)) =1 iff 2ot € Y}

It is trivial to see that C is indeed a weakly closed set of models. Also observe that if F' had a super*-model,
then it has a model X with 2,41 = 0. Then m,(X) is a model of . QED

Corollary 3.1 SUP¥(1,1) is NP-complete.

Proof: Since sup*(1, 1) models are automatically sup®(1,1) supermodels, for all £ > 0, Theorem 3.2 shows that
SUP¥(1,1) is NP hard. SUP*(1,1) € NP by induction: SUP°(1,1) € NP ([Pa94]) (base case). To see that
SUPi(l, 1) € NP, a NDTM guess a table: which contains a repair (if needed) for each break that is supposed
to give a sup?~!(1,1) supermodel. With each such repair, it also guess a polynomial length certificate of the
sup’~1(1,1) supermodel. It checks the certificate in polynomial time. O

4 Restricted Boolean Formulas

We now prove that finding supermodels (i.e. sup(1,1) supermodels) for 2-SAT formulas is in polynomial time.
2-SAT formulas are in conjunctive normal form with 2 literals per clause.

Let ¢ be an instance of 2-SAT. We define the graph G(¢) as follows: the vertices of the graph are the literals
of ¢ (i.e. variables of ¢ along with their negations) and for each clause @ — 3 (where «, 8 are literals) we add
two directed edges (a, 8) and (— 3, —). Thus the edges of G(¢) capture the implications of ¢. The following
theorem is well-known.

Theorem 4.1 [Pa9/] ¢ is unsatisfiable iff there is a variable x such that there is a path from x to —x and a
path from —x to x in G(¢).

If ¢ has a supermodel, then G(¢) has a further restriction.
Lemma 4.1 If ¢ has a supermodel, then there is no path from u to —u, where u is a literal in ¢.

Proof: Suppose there was a path u — v; — v2-- vy — —u, where m > 0, and v; € {u, ~u}. We now
claim that u has to be set 0 (false) in any model of ¢. Suppose not: let u be set true. Thus there must be
some (v;,v;41) such that v; is true and v; 1 is set false (if m = 0 then let v; = u,v;41 = —u in the following
argument). Then the implication v; = v;41 is not satisfied. If the value of u is fixed (to either true or false) in
¢, then ¢ cannot have a supermodel. O

Define a simple path in G(¢) to be an ordered sequence P = (uy,us, ..., Uy) where ui,us,...,u,, are all
distinct vertices. The length of P, denoted by I(P), is m—1. By Lemma 4.1, we know that if ¢ has a supermodel,
then a simple path cannot include a variable and its negation. If X is an 0-1 assignment to the variables of ¢
let X (u) denote the value of the literal v under X.

Lemma 4.2 Let ¢ have a supermodel. Let P be a simple path in G(¢). Then I[(P) < 3.

Proof: Suppose [(P) > 4. Then there is a simple path P’ = (u1, us,us3, us, us) where [(P') = 4 (take the initial
5 vertices of P). Let X be a supermodel of ¢. Let F' = {u;| X(u;) = 0} and T = {ug,ua...,us} \ F. It is
easy to see that F has to be the initial segment of P’, and T has to be the remaining segment. We claim that
|F| < 2. Suppose not: then X (u1) = X (uz2) = X (uz) = 0. If we now break u;, we will need 2 repairs, hence X
cannot be a supermodel. Similarly |T'| < 2. However |F| + |T'| = 5, a contradiction. O

Using arguments similar to Lemma 4.2, one can show that

Lemma 4.3 Let ¢ have a supermodel X .

1. Let P = (u1,ua,us,us) be a path in G(@) of length 3. Then X (u1) = X (uz) =0 and X (u3z) = X (uq) = 1.
2. Let P = (u1,u2,u3) be a path in G(p) of length 2. Then X (u1) =0 and X (uz) = 1.

We need to bound the length of cycles in G(¢) as well. The proof follows the same technique as Lemma 4.2.
Lemma 4.4 Let ¢ have a supermodel. Let (uy,ua, ..., Um+1 = u1) be a cycle of length m. Then m < 2.

Let X be a partial assignment of the variables in ¢. We now show an algorithm that takes X and makes
forced choices (but only with regard to vertices that take part in cycles) and checks to see whether X can be
extended to a supermodel.

Extend(¢, X)

1. For each cycle (u1,us), (u2,u1) in G(¢), such that exactly one of X (u1) and X (us) is defined, set X (u1) =
X (us). If there is a conflict, because of a vertex taking part in more than 1 cycle, then abort. Let X' be
the new (partial) assignment.

2. For each edge (u1,u2) in G(¢) such that both X (u;) and X (us) are defined, check to see whether the
implication u; — us is satisfied by X. If not, abort.

3. For each triple of assigned vertices u, v, w such that X (u) = X (v) = X(w) = 0, check if (u,v), (u,w) are
edges in G(¢). If so, abort.

4. For each triple of assigned vertices u,v,w if X (u) = X(v) = X(w) = 1, check if (v,u), (w,u) are edges in
G(¢). If so, abort.

5. Return X'.

It is not difficult to see that if X can be extended to a supermodel for ¢, then Extend(X, ¢) returns X'
which can also be extended to a supermodel. The assignments in step 1 are forced: so if there are conflicts then
there cannot be any supermodel. The (forcibly extended) supermodel now has to pass step 2 as well, to make
sure it is a model. If there were vertices u, v, w all assigned false by X' with (u,w), (u,v) edges in G(¢), then
X' cannot be extended to a supermodel: a break to u requires 2 repairs whatever the extension. Hence X' has
to pass through step 3, and similarly, through step 4.

Now we are ready to describe our algorithm Supermodel(¢) to find supermodels for 2-SAT theories where
the input instance is the 2-SAT formula ¢.

Supermodel(¢)

1. Construct G(¢). Set initial partial assignment X = §.
2. Check to see whether there is any vertex u such that there is a directed path from u to —u. If so, abort.
3. Check to see whether there is any path of length 5. If so, abort.

4. For every simple path of length 3 and every simple path of length 2, construct a partial assignment X as
prescribed by Lemma 4.3. If there is a conflict in assigning a value to a vertex, abort.

5. Run Extend(¢, X) which either aborts or returns a (possibly new) partial assignment X'.

6. For each isolated cycle (u,v), (v,u) (where both u, v have both in-degree and out-degree 1) such that both
X'(u) and X'(v) are undefined, set both X'(u) = X'(v) = 1.

7. Let U be the set of literals left unassigned by X’. Construct a 2-SAT formula 3 as follows:

(a) Initially set S8 to the trivial (empty) formula.

(b) for each pair of unassigned literals u € U and v € U such that there is a vertex w in G(¢) with
X'(w) =0, and (w,u) and (w,v) are edges in G(d), set 5 =5 A (u V v).

(c) for each pair of unassigned literals v € U and v € U such that there is a vertex w in G(¢) with
X'(w) =1, and (u,w) and (v, w) are edges in G(¢), set =0 A (—u V —v).

(d) For each pair of literals u and v € U such that there is a vertex w in G(¢) with X'(w) = X'(u) =0,
and X (v) unassigned with (w,u) and (w,v) as edges in G(¢), set § =8 A (v).

(e) For each pair of literals u and v € U such that there is a vertex w in G(¢) with X'(w) = X'(u) =1
and X (v) unassigned with (u,w) and (v, w) as edges in G(¢), set 8 =5 A (—v).

)

If B is unsatisfiable, then abort else find a model for S and combine with X’ to get an assignment M.

If Supermodel(¢) does not abort, the returned assignment M is a supermodel. We first observe that
it is a model since each step we make sure that if (u,v) is an edge in G(¢) then X'(u) < X'(v). Let X be
the partial assignment before executing step 7. Let u be a vertex in G(¢) set false by X. Let N(u) = {v €
G(®)|(u,v) is an edge in G(¢)}. If X was extensible to a supermodel, then we can have at most one vertex in
N (u) set to false in that extension and this happens exactly when § is true. The argument is symmetric when
v is set false by X. Also breaks to the variables in U do not need repairs as they are intermediate vertices in a
chain of length 2.

Each step in supermodel(¢) is easily seen to be in polynomial time. Hence

Theorem 4.2 In polynomial time, one can determine if a 2-SAT theory has a (1,1) supermodel and find one
if it exists.

In fact, one can show that each step can be done in NL.
Theorem 4.3 SUP(1,1)-2-SAT € NL.

Surprisingly, the situation completely alters when we consider sup(1,) supermodels for b > 1.
Theorem 4.4 SUP(1,b)-2-SAT is NP-complete for b > 1.

Proof: Reduction from (b+1)-SAT. Let T'=C; A Ca... A Cp, be an instance of (b+ 1)-SAT where each clause
C; is a disjunction of b+ 1 literals I{ U5 ... Ul}, . We construct an instance T" of SUP(1, b)-2-SAT as follows:

T'= \ FG)

1<i<m

where F'(i) is a 2-SAT theory defined for each clause C; as follows:

Fiy = N (a=10)
1<j<(b+1)

ARUEZSY))

1<5<(b+1)

A A @k = a'l +1,E])

1< <b—11<k<(b+1)

where we have introduced 1 + b(b + 1) new variables ¢; and a’[j, k] for 1 < j < b,1 <k < (b+1) to define
the gadget F(7).

Now suppose T had a model X. Extend that to a model of T' by setting ¢; = 0 for all 1 < ¢ < m and
a'[j,k]=1forall 1 <i<m,1<j<b1<k<(b+1). We claim that this is a sup(1, b) model of T". Flip any
variable v. Now we do a case analysis of how many repairs are needed:

o [v=1¢] Since i UI{...Uli,, =1 (since X is a model, there is at least one literal in {I3,15,...,1{,,}
which is already set to 1: so we need to flip at most b literals in {lf,...,l; }.

e [v = a'[j, k]] Need to flip a[i, k] where 1 < i < j and we might need to flip 1! if that was set to true by
X. Hence we flip at most j <b— 1+ 1 = b variables.

e [v = 1}] No repairs are necessary.

Now suppose T" has a sup(1,b) supermodel. Note that in such a model ¢; = 0 for all ¢ (otherwise we will
need more than b repairs when we flip the value of ¢;). Now all literals {13,15,...,1},,} cannot be set to 0, since
a break to ¢; would again necessitate b + 1 repairs. Hence at least one of the literals in {I{,15,...,1} Jrl} is set
to 1. In other words, the literal C; is true. Since ¢; = 0 for all 4, T must have a model. QED

We can also show that finding super*-models for 2-SAT is in polynomial time.

Theorem 4.5 SUP*(1,1)-2-SAT € P.

Proof: Let ¢ be the input 2-SAT formula over n variables [n]. We construct the graph G(¢) as described before.

Since a super*-model is by definition also a (1,1) supermodel, we must have the same path restrictions set
forth by Lemma 4.1 and Lemma 4.2. However, if ¢ has a super*-model then we can show that any simple path
in G(¢) can have length at most 1. Suppose not: let (u,v,w) be a simple path of length 2. Let X be a super*-
model of ¢. Because of Lemma 4.3, we know that X (u) = 0, X(w) = 1. Suppose X (v) = 1 (the argument for
X (v) =0 is similar). If we break the value of X (v), then we have 2 alternatives: no repair or set X (w) = 0. In
the latter case, if we now break X (u), we need 2 repairs. In the former case, we now break X (w), then we face
the same problem once we break X (u). Hence the length of a simple path in G(¢) can have length at most 1.
Note G(¢) may have cycles (u,v), (v,u), however in that situation {u,v} must form one connected component.
We can assign either 0 or 1 to both u,v. So wlog, assume that G(¢) has no cycles. In that case, the simple
path length restriction means that G(¢) is a bipartite graph.

Let G(¢) = RU B where R, B are disjoint vertex sets and all edges in G(¢) are between vertices in R and
vertices in B. Let R could be the vertices with in-degree 0 and B be the vertices with out-degree 0. Observe
that a vertex cannot have positive in-degree and positive out-degree.

Claim 1 If (u,v) is an edge in G(¢), then the out-degree of —u is 0.

Proof: Otherwise, there would be a path of length 2 or a cycle, both of which we have excluded. O

Hence if u € R iff —u € B. We also observe that there are no isolated points in G(¢) since every clause is
a disjunction of distinct literals. Now let X be an assignment that sets every literal in R false (0) and (that
automatically sets) every literal in B true.

Claim 2 X is a super*-model.

Proof: We exhibit a weakly closed set that contains only models of ¢ and that contains X. Let Yp (Yg)
denote the restriction of any assignment Y onto the literals in B (R). Consider the set of assignments C =
{Y| Yp contains at most one positive literal }. Note that if B contains at most one positive literal under Y,
then Yy contains at most one negative literal. It is clear that C is a closed set. O

An instance of HORNSAT is a boolean formula in CNF where each clause contains at most 1 positive literal.
As in 2-SAT, there is a polynomial time algorithm to find a model of a Horn formula. However, unlike the
situation in 2-SAT), finding supermodels for Horn formulas is NP complete.

Theorem 4.6 SUP(1,1)-HORNSAT is NP-complete.

Proof: SUP(1,1)-HORNSAT is clearly in NP.To prove that it is NP-hard, we reduce from 3-SAT. Let T' =
Ci N Cs--- A Cyy, be an instance of 3-SAT. We assume without loss of generality, that there are no pure literals
inT.

For ease of description, we first apply an intermediate transformation to 7' by replacing any positive literal
(say z) in C; by a new negative literal (—a;). But then we add clauses to T to signify that —a, & = =
(((maz) V) A (ap V x)). Thus we obtain

T = /\ C{/\(—'aw &)

1<i<m z

where x refers to a variable (positive literal) in T' and C; refers to the pure Horn clause (no positive literal)
by replacing all the positive literals in C; as described above. Note that since we assume that there are no
pure literals in T', we add clauses for ((—a;) <) for all variables z. Observe that T' is almost Horn, the bad
clauses are only the clauses (a, V z). Clearly T' has a model iff T has a model.

Now we produce an instance of SUP(1,1)-HORNSAT from 7". We first introduce two new variables A, B.
For each clause C} = = [;[1] V =1;[2] vV —;[3] of T' (note that [;[1],1;[2],1;[3] are variables) define the clause

G = (=n v an(L[A]) vV —ni(lf2]) vV oona(lif3)))
N (n,iA)/\(A=>B)
A L] = (L)) A L[2] = na(lf2])) A (L8] = na(li[3]))
where n;, n;(1;[1]), n;(1:[2]), n;(1;[3]) are all newly introduced variables. Note that C' is Horn. For the clauses
that represent (a; <) we construct the gadget

D(x) = (he = ag) A (az = tz) A (hy =) A (2 = ty)

where h, and t, are new variables, x refers to a variable in the original theory T'. Note that D(x) is also Horn.
Our instance of SUP(1,1)-HORNSAT is

T'= A ¢/ \D@)

1<i<m T

It is easy to that each n;(l;[1]) is always at the end of a chain of implications of length 2 (some v = v =
ni(ls[1])).

Suppose T" had a model X'. Extend that to a model X" of T" by setting n; = 0 for all i € {1,...,m},
A=1,B=1and n;{(l;[j]) =1 for all 1 <i < m and for all 1 < j <3 and setting h, = 0,t, =1 for all z.

We now show that that X" is a supermodel. Suppose some variable in 77s domain is flipped, then we need
no repairs. If A is flipped, we need no repairs. If B is flipped, we need one repair(A). If h, or t, are flipped,
we need one repair: because of TV, (x V az) A (-2 V —ay). If n; is flipped, we do not need to repair A, B.
But we do need to repair either n;({;[1]),n;(1;[2]) or n;(l;[3]) where C} = = ;[1] V =1L[2] V —{;[3]. To be able
to set one of these to 0 we require one of [;[1],1;[2], 1;[3] to be set to 0, which is true since X' is a model of T".
Hence X" is a supermodel.

Now suppose T" has a supermodel X". We claim that in such a model n;(l;[1]) = 0 (because it is at the end
of path of length 2 in a 2 SAT sub formula, see Lemma 4.3) and similarly h, = 0,t, = 1 (also by Lemma 4.3).
We also claim that in such a supermodel, A = 1. Suppose not, then A = 0. This implies that n; = 0 for all 4.
If n; is now flipped, we need to repair at least one of the literals n;(l;[1]) appearing in C}' and repair A. SO
2 repair will be needed. Hence A = 1. Since h, = 0,t; = 1, both a, and z cannot be set to the same value.
Hence a, < 2 is true. We now need to show that X" also makes C] = [;[1] V ;[2] V [;[3] true. If I flip n;, one
needs to repair with one of n;({;[1]), n;(1;[2]), n:(1;[3]). But this is possible only if one of I;[1],1;[2],1;[3] is set to
0. QED

Another class of boolean formulas that have polynomial time satisfiability checkers is Affine SAT: these are
formulas which are a conjunction of clauses, where each clause is an exclusive-or (denoted by @). One can find
a satisfying assignment for a formula in affine form by a variant of gaussian elimination. We now prove that
finding supermodels for affine formulas is also in polynomial time.

Theorem 4.7 SUP(1,1)-Affine-SAT € P.

Proof: Let ¢ = C1 A Cy... AN C,, be a boolean formula in affine form over the set of variables X =
{$1,.’E2,.. .,.’I:n}.

For each variable z, define I(z) = {i| 1 < i < m,x appearsin C;}. For i € I(z), let Ny(z) = {y €
X| y appears in C;,y # x} denote the set of variables that appear with z in clause C;. With a slight abuse of
notation, let I(Y) = NyecyI(y) denote the set of clauses where all variables in Y appear together where Y C X.
We similarly define N;(Y') for i € I(Y). For 1 <i < m let Y N C; denote the set of variables in Y that appear
in clause C;.

Lemma 4.5 ¢ has a supermodel iff for all x € X, there exists y = y(x) € X, such that y € ﬂiel(z) N;(z) and
z € Nierqy Nily)-

Proof: Tt is easy to see that {z,y(x)} are a break-repair pair. O

Since the conditions in Lemma 4.5 are easily checkable in polynomial time, we have a polynomial time
algorithm for SUP(1, 1)-Affine SAT. QED

We can in fact, prove the following stronger theorem

Theorem 4.8 SUP(r, s)-Affine-SAT € P.

Proof Sketch: Let r = 1 and apply induction on s. We first check whether the input formula ¢ (having n
variables {z1,%2,...,%n} has a sup(l,j) supermodel (for 1 < j < s —1). If so, we are done. Otherwise
construct the set L = X, = {S C X| |S| = s}. Note that |L| € O(n®) and L contains all possible repair sets of
size s for each break. However not all sets in L can be repair sets: we might break a variable z, repair by some
set [€ L but those s repairs might themselves need further repairs. The following lemma characterizes valid
repair sets.

Lemma 4.6 The variable x € X be repaired by the set S € L in a sup(1, s) supermodel of ¢ iff for eachi € I(x),
|S N C;| is odd and for each i € {1,...,m}\ I(z), |S N C;| is even.

Since the conditions of Lemma 4.6 can be checked in polynomial time (there are 2% subsets to check), there
is a polynomial time test for sup(1, s) supermodels for affine formulas (recall that s is a fixed constant and not
a part of the input).

For arbitrary r, the above description can be easily modified to provide an algorithm for sup(r, s) as well.
QED

5 Sparse Closed Sets

In this section, we give a lower bound to the size of sparse closed sets. We first make some easy observations
about sparse closed sets. In the following discussion, let C refer to a sparse closed set.

Lemma 5.1 If Y = 6;;(X) and Z = 6(X) are distinct, where X,Y,Z € C, then {i,j} N {k,1} = 0.

Proof: Wlog assume ¢ = k. Then A;(X,C) = {Y, Z} contradicting the fact that |A;(X,C)| =1. O
If we have three sets X,Y, Z with Y = 0;;(X), Z = 0;(X), then the incidence vectors of X,Y and Z form
an equilateral triangle with sides of length 2, the metric being the Hamming distance. We shall refer to this as

a 2-triangle. Thus Lemma 5.1 says that a sparse closed set is 2-triangle free.
Given X € C, let Na(X) = U Ai(X,0).

Lemma 5.2 |No(X)| =n/2.

Proof: Consider the set N'(X) = {{i,j}| 0;;(X) € N2(X)}. Because of Lemma 5.1, we know that N’ is a 2-
partition of [n] and since C is closed, it is a maximal 2-partition. Hence |N'(X)| = n/2 using Lemma 2.1. Also
since the map ¢ : No(X) — N'(X) defined by ¢(0;;(X)) = {i,j} is a bijection, we have |[N'(X)| = |[N2(X)|. O

Observe that Lemma, 5.2 implies that if C is a sparse closed subset of 2" then n is even. This also follows
from observing that the elements of [n] belong to a unique break-repair pair (otherwise there would be more
than one repair for a particular break).

We can define the (undirected) graph G = G(C) as follows: the vertices of G are the elements of C and the
edges are {u,v} where v = §;;(u) for some i # j € [n].

C is said to be connected if G(C) is connected.

Lemma 5.3 Let C be a sparse closed set. Then C is minimal iff C is connected.

Proof: Let H be a connected component of G(C). Let u € H. By definition, for each i € [n], u in G(C) is
connected to v where v € A;(u,C). Hence A;(u, H) = Ai(u,C). Hence H is closed (it is obviously sparse).
Thus C is minimal iff H =C. O

If C is sparse closed, wlog we can assume that) € C (We can relabel 0’s and 1’s in the incidence vectors in
C appropriately). Let C;, = {A € C| |A| = k}. We note the following two obvious facts about minimal sparse
closed sets.

Lemma 5.4 If C is minimal and O € C then
1. Cr =0 for all odd k.
2. If Cy, be the highest non-empty level (i.e. |Cx| > 0 and C; =0 for all i > k), then k > n/2.

Proof: (i) We observe that if u = () and {u,v} is an edge in G(C), then |u| = 0(mod 2). Using Lemma 5.3 and
the fact that | X| + |0;; (X)| = 0(mod 2), the result follows by induction.
(ii) Suppose k < n/2. Let Ci, be the highest non-empty level and let u € C. Since Cy, is non-empty and highest,
Ai(u,C) C Cr—2 UCy for all i € [n]. Consider the set R(u) = J;c, Ri(u,C). Clearly |R(u) Uu| < 2k < n (as
|R;(u,C)| = 1). Consider R' = [n] \ (R(u) Uw). There must be some I,m € R’ such that d;,(u) € C. But
|0im (u)| = k + 2 (since I,m & u), a contradiction. O

The idea behind lemma 5.4 (ii) is that if there are more 0’s than 1’s in the incidence vector, there must be
two 0’s which form a break-repair pair.

Lemma 5.5 Let u € Cy, where 2 < k < n/2 is even. Let P(u) = {v € Cr_2| u = d;;(v) for some i and j }.
Then |P(u)| < k/2.

Proof: Consider the set P'(u) = {{i,j}| v = 0;;(v),v € Cx_2} so that |P(u)| = |P'(u)|. Since u € Cj and
v = 0;;(u) € Cg—2, this means that i,j ¢ v and 4,j € u. Lemma 5.1 implies that for distinct elements
{i,j} € P'(u) and {k,l} € P'(u), {i,5} N {k,1} = 0. This means that P'(u) forms a partition of the elements
in u into 2 element subsets, hence |P'(u)| < k/2 by Lemma 2.1. Thus |P(u)| < k/2. O.

Lemma 5.6 Let C be minimal sparse,) € C and 2 < k < n/2. Then |Cxt2| > [Ck|(n —2k)/(k + 2).

Proof: Let u € C. Define R(u) as in Lemma 5.4. Let R’ = [n] \ (R(u) Uw). Since k < n/2, and |R'| > n — 2k.
For each ¢ € R', there is a unique j € R' such that J;;(v) € C. Observe that |0;;(u)] = k + 2. The set
R" = {{i,j}| i,j € R',0;;(u) € C} is a partition of R into disjoint 2-element subsets. Hence |R"| > (n — 2k)/2.
Thus each u € Cj, is connected to at least (n — 2k)/2 vertices v € Cr42. By Lemma 5.5, |P(v)| < (k +2)/2
which bounds the over count. Hence there are at least W
If C is minimal sparse with ¢ € C, then we know that |C3| = n/2 by Lemma 5.2. Hence by Lemma 5.4,

(assume for clarity that 8|n)

elements in Cgyo. O

i<n/2

Icl > . > el

n nm—4) n(n—4)(n—238)

2 5t 5e T3 39
1 28 (n)8)

2 Ws)!; /)
1 Y& ()

> R 2 g =i

- ﬁa + /4y

Estimating
(/9™ (n/4)"/
(n/8)! ~ (n/8e)n/8

We have proved the following theorem.

= (2¢)"/® ~ 1.235"

Theorem 5.1 Every sparse closed subset of 2" has size at least (26)”“/8.

10

We now give some examples of sparse closed sets. Let B denote the family of subsets of [n] whose incidence
vectors satisfy the following boolean formula

B = /\ (®2—1 = x2;) (1)

1<i<n/2

where x; refers to the jth bit of the incidence vector.
It is easy to see that B is a sparse closed set (since it is connected) of size 2/? and that it is minimal. We
do not know examples of sparse closed sets of size smaller than 27/2.

Conjecture 5.1 Every sparse closed subset of 2(" has size at least 2™/2.

We now turn to the problem how large sparse closed sets can be. Since we know that sparse closed sets
are 2-triangle free, this allows us to derive an upper bound. In the following discussion, let d(z,y) denote the
Hamming distance between the n-vectors z and y.

Theorem 5.2 If F C 21" is 2-triangle free, then |F| < O(2"/n).

Proof: Let be the incidence vector of a set in F. Let N;(z) = {y € 2[M|d(z,y) = i}.

It is easy to see that |Ni(z) N F| < 2: if there were 3 elements a,b,c € Ni(z) N F, then they form a
2-triangle. Thus |Ni(z) \ F| > n — 2.

Define

Ni(F) = (U N,-(m)> \ F.
zEF

We will find a bound for |N1(F)|. One can easily show that for each a € N1(F), |N1(a) N F| < 2. Note that

if x € Ni(a) N F, then o € Ny(x). This means that for at most two different z € F can « be in Ny (z). Hence

[Ny (F)| > |F|(n —2)/2. Since FU Ny (F) C 2™ and F N Ny (F) = 0, we have |F| < 2"/(n/2). QED

Corollary 5.1 IfC C 2 is sparse closed, then |C| < O(2"/n).

The best explicit construction of sparse closed sets we can give are of size 2"/n? which we describe be-
low. Constructions of large sparse sets (not necessarily closed) are considerably easier: an easy probabilistic
construction shows that there are sparse (i.e. 2-triangle free) sets of size 2" /n!5.

We now describe a construction of sparse closed sets of size 2"/n%. We slightly modify the notation of
Equation 1 to define the following family of boolean functions. Let S C [n/2]. Define

Bs = /\($2i—1 # T2;) /\($2i—1 = T9;).

€S ¢S

So By = B of Equation 1. It is clear that each Bg defines a sparse closed set: we shall refer to an element
of this sparse closed set as some z € Bg to mean that x satisfies Bg. The following lemma allows us to build
large (non-minimal) sparse closed sets.

Lemma 5.7 If S,T C [n/2] such that d(S,T) > 3 then Bs V Br defines a sparse closed set.

Proof: We prove that if x € Bg and y € Br, then d(z,y) > 3, which implies that Bg V Br is 2-triangle free. Let
D = SAT thus |D| > 3. Observe that any vector that satisfies x2; 1 = 22; is at least distance 1 away from any
vector that satisfies xo; 1 7# x2; where i € D. Hence Bg V Br is 2-triangle free. O

Thus if F is a family of subsets of [n/2] such that S,T € F, S # T = d(S,T) > 3, then /g, Bs will
define a sparse closed set. We quote the following standard result from coding theory [Va92, R092].

Theorem 5.3 (Gilbert-Varshamov Inequality) There exists a family F C 2" satisfying the condition

S,T€F, S#T =d(S,T) >3 such that |F| > o2 where Va(n) = |(Z)] = (5) + (1) + (3)-

Using a family of size 9(2;;2) guaranteed by Theorem 5.3 as our “index” set, we get that many disjoint
balls each of size 2"/ with a 2-triangle free union.

11

Corollary 5.2 There exist (non-minimal) sparse closed sets of size Q(2"/n?).

We suspect that minimal sparse closed sets cannot achieve this bound. A bound on the largest known one
is as follows:

Theorem 5.4 There exists a minimal sparse subset of 21" of size 80™/8 ~ 1.69".

The proof follows from the existence of a minimal sparse closed set of 80 subsets for n = 8. We can use this
to construct a minimal sparse set of size 80™/8 by taking direct products. We do not have succint description
of this set. There is another (equally mysterious) example: a minimal sparse closed set of size 10 consisting of
subsets of [6]. We include this example in the appendix. Their odd structure seems to be due to the fact that
the break-repair pairing changes from element to element in the closed set, unlike in the 2"/ example.

6 Closed Sets

In this section, we study the extremal properties of general closed sets. The first theorem concerns the minimum
size of a closed set. Again without any loss of generality, we can assume that if C is closed, then () € C. In the
following discussion, let C refer to a closed set such that § € C.

Theorem 6.1 |C| > n.

Proof: Following Lemma 5.2 we can easily show that |Na(z)| > n/2 for each z € C. Let a =) € C and assume
that b = d41(a) = {s,t} where s,t € [n]. Define I = Ry(b,C) U Ry(b,C).

Observe that if i € I, then d,;(b)(or 8¢) € Na(a). Hence |Na(a) N Na(b)| > |I].

Now each j € ([n]\ (JU{s,t})) in b is repaired by (at least one) r € [n]\ {s,t}. Also d;,(b) € Na(b) \ Na2(a).
Hence

— I -2
INa(6)\ Na(a)| 2 "1 =2
One can similarly show
— I -2
[Na(a) \ Nat)] > "2
Hence
[N2(a) UN2(b)] = [Na(a) \ Na(b)| + [Na2(b) \ Na(a)| + [N2(a) N Na(b)|
n—|Il-2 n-—|I|-2
2 + 5 +|I]
= n—2

Counting a, b along with Ny(a) U N5 (b), we have the desired result. QED

We note that while our lower bound for sparse closed sets (Theorem 5.1) is not known to be achieved, the
lower bound in Theorem 6.1 is achieved. The boolean formula E;(z1, s, ..., T,) defines a closed set of size n,
where Ej (21,22, .. .,2Zy) is true iff exactly one variable in {z;,za,...,2,} is true.

As in the previous section, we define the undirected graph G(C) with vertices as elements of C and edges
{u, d;5(u)} for some 4, j € [n]. We can also easily see that a weak version of Lemma 5.3 holds for general closed
sets.

Lemma 6.1 Let C be a minimal closed set. Then C is connected.

Because minimal closed sets are connected and () € C, all sets in C have even parity (analogous to Lemma 5.4).
It is clear that minimal closed sets can have size at most 2”~!. We can improve this result to a constant fraction
of 271,

Let F = {{X1,Y1},...,{Xm,Ymm}} be a family of unordered tuples of subsets of [n] such that X; # Y; for
all i. An independent set of F is a sub-family Z C F such that if {X,Y},{R,S} € 7T and {R, S} # {X,Y} then
{X,Y} n{R,S} =0. Let m(F) = [{X|3Y,{X,Y} € F}| be the number of distinct sets which appear in any
tuple of F. If X C [n], define the degree of X as deg(X,F) = {Y| {X,Y} € F}|.

12

Lemma 6.2 Let F = {{X1,Y1},...,{Xm,Ym}} be a family of subsets of [n] such that X; #Y; and deg(X) < 2
for all X C[n]. Let T be a mazimal independent subset of F. Then m(F) < 2m(Z).

Proof: 1f F = T we are done. Else let Z = F\ Z. If {X,Y} € Z, then either deg(X,Z) = 1 or deg(Y,Z) = 1
(observe that neither can be > 1 as 7 is an independent set): otherwise ZU {{X,Y }} would be an independent
set, contradicting maximality of Z. Hence, |[{X| deg(X,Z) = 0}| < |Z|. Observe also that deg(X,Z) < 1 for
each X with deg(X,Z) = 1. Hence |Z| < m(Z). Thus

m(F) =m(Z) + |{X| deg(X,Z) = 0}| < 2m(Z). QED
The following lemma is useful in characterizing closed sets.
Lemma 6.3 If C is a minimal closed set, then oll X € C are irredundant.

Proof: Suppose there is some X € C which is redundant. We claim that C \ {X} is a closed set. Suppose not.
Then there is some Y € C\ {X} and an ¢ € [n] such that A;(Y,C) = {X}. Then X = §;;(Y") for some j # i. We
claim now that |A;(X,C)| =1 contradicting the hypothesis. Clearly, Y = ;;(X) € A;(X,C). Suppose there is
some k # i such that Z = §;,(X) € C. Then 6;,(Y) = Z, contradicting our assumption that A;(Y,C) = {X}.
0O

Thus if C is minimal, then for each X € C, there is some ¢ € [n] such that ¥ = §;;(X) is the unique
element in A;(X,C). We shall write Y = §7; ,,(X) in that case. Observe that the order (i, /) is important.
For X,Y € C, Z C [n], we say that the pair {X,Y} excludes Z if Y = 67,) (X),Z = 634 (X) for some distinct
i,J,k € [n], and |A;(X,C)| = 1 (we note that we can write {X,Y} as unordered pair because if Y = 47, , (X)
then X = 67, ,,(Y) and Z is still excluded). Thus if ¥ = §7; ,(X), then {X,Y} excludes n — 2 elements
7 = (Szk(X) € AZ(X)\Az(X,C) where k 75 7.

Lemma 6.4 Let C be a minimal closed set and let X € C,Z C [n]. Then
{Y € C| {X,Y} excludes Z}| < 2.

Proof: Wlog assume Z = {). Then X = {i,j} for some i,j € [n]. Any Y such that {X,Y} excludes Z has to
have Y| =2 and Y N X # (. Hence there can be at most 2 such sets. O

For Z C [n], define e(Z,C) = {{X,Y}| {X,Y} excludes Z, X,Y € C}. Lemma 6.4 implies that deg(X, e(Z)) <
2.

Lemma 6.5 Lete(Z) # 0. Let T C e(Z,C) be a mazximal independent set. Then m(Z) < 2n.

Proof: Assume wlog Z = (). Then e(Z) consists of unordered tuples of 2-element subsets of [n]. Consider
the family F = {X N Y| {X,Y} € Z}. It is clear that F consists of one element subsets of [n]. We claim
that |F| = |Z|. Suppose not. Then there are two pairs {X,Y},{R,S} € Z such that X N Y = RN S. Let
X ={a,b},Y = {a,c} so that Y = 47, ,(X) and let R = {a,d},S = {a,e} so that o, ,(R) = S. Note that
since 7 is an independent set d ¢ {b,c} and e & {b,c}. Since §(4,)(R) =Y, we cannot have &, ,(R) = S, a
contradiction. Since |F| < n, this implies that |Z| < n. Since Z is independent, m(Z) < 2n. O

Now Theorem 6.2 implies that m(e(Z)) < 2(2n) = 4n. So each X € C excludes at least n — 2 sets and each
set is excluded by at most 4n elements in C. Hence

ICl(n — 2)

on—1 >
> o]+ =N

which implies that [C| < £2252"~! & (4/5)2"~!. Thus we have proved

Theorem 6.2 If C is a minimal closed subset of 21", then |C| < (4/5)2"".

As in the situation for sparse closed sets, we do not know of constructions of large minimal closed sets which
achieve the above bound. However we have the following:

Theorem 6.3 There exists a minimal closed subset of 21" of size 227/3.

13

The proof of the theorem relies on the existence of a minimal closed set of size 16 for n = 6 (displayed in
the appendix), which was found by exhaustive search. A direct product of these yields a minimal set of size
16™/6, thus proving the theorem. Similar searches found the minimal set for n = 5 is 8 and for n = 4 is 4. This
suggests the following conjecture.

Conjecture 6.1 The largest minimal closed subset of 2(" is of size 27 2.

We now turn to the following algorithmic question : given a closed set as input, is it minimal ? Observe
that a brute force algorithm that checks each subset of the closed set will run in exponential time in the size
of the input. The size of the input could itself be exponential with respect to n, the length of the strings. Our
goal is to find an algorithm that runs in polynomial time in the size of the input (not necessarily polynomial
time in n).

Theorem 6.4 In polynomial time, one can test if a closed set is minimal.

Proof: Let C denote the input closed set. For each vertex u € C the algorithm runs the procedure expand({u}).
The procedure expand(X) executes the following steps in sequence:

1. If X = C return true.
2. If 3u € C\ X, such that A;(u,C) C X for some i € [n], set X = X U {u}.
3. If no such u exists and X C C then return false (C is not minimal). Else go to step 1.

If expand(u) returns true for each u € C then C is minimal. If expand(u) is false for any « € C then C is not
minimal.

To see correctness, observe that if C was minimal, then no node u can be removed so expand(u) will return
true for each invocation. If C was not minimal, there would be some node u that can be removed. The procedure
expand would detect which node it is. QED

7 Conclusions and future work

The principal results of sections 3 and 4 are summarized in the first table.

SAT SUP(1,1) SUP(1,2) SUP*(1,1)
general | NP-complete | NP-complete | NP-complete | NEXP, NP-hard
2-SAT P P NP-complete P
HORNSAT P NP-complete open open
Affine SAT P P P P

The complexity of SUP(r, s) where r and s are part of the input as opposed to being fixed constants remains
an interesting open question. It is not hard to see that SUP(r,s) is in £f: it is not known whether it is
complete for that class. The status of this problem for restricted cases such as 2-SAT is similarly open. Another
interesting question is whether we can improve on SUP*(1,1) € NEXP (e.g. to PSPACE or even NP). This
improvement seems to rely on finding suitable small certificates for closed sets. Finally, a practical modification
of supermodels involves weakening the condition to allow only a high percentage of the breaks to be repaired.
We wonder how this would affect the complexity issues.

The second table summarizes the results from sections 5 and 6.

closed | closed minimal | sparse closed | sparse closed minimal
largest | 271 < (4/5)2"1 < 0(2"/n), < 0(2"/n)
> 92n/3 > Q(Qn/n2) > |{on/8
smallest n < on/2
> (2e)™*

The most interesting questions here involve tightening the bounds in the table above and understanding
the structure of the minimal sets. The sparse minimal sets in particular seem to have a rich combinatorial
structure.

14

References

[BP99] Olivier Bailleux and Pierre Marquis, Distance-SAT: Complexity and Algorithms, Proceedings of the
Sizteenth National Conference on Artificial Intelligence (AAAI-99), 1999, pp 642-647.

[GPRY8] Matthew Ginsberg, Andrew Parkes, Amitabha Roy, Supermodels and Robustness, AAAI-98/TAAI-98
Proceedings , Madison, WI, 1998, pp 334-339.

[Pa94] Christos H. Papadimitriou, Computational Complezity, Addison-Wesley, 1994.
[Ro92] Steven Roman, Coding and Information Theory, Springer-Verlag, 1992.

[TP97] J. A. Telle and A. Proskurowski, Algorithms for Vertex Partitioning Problems on Partial k-Trees,
SIAM Journal on Discrete Mathematics, vol. 10, no. 4, pp 529-550, November 1997.

[Te94] J. A. Telle, Complexity of domination type problems in graphs, Nordic Journal of Computing 1 (1994),
pp 157-171.

[Va92] J. H. van Lint, Introduction to Coding Theory, Second Edition Springer-Verlag, 1992.

15

Appendix

We conclude with some examples of minimal sparse closed set and minimal closed sets. The figure below shows
a sparse closed set of size 10 for n = 6. The break repair pairs are also shown for each string in the set.

2 3 4

(I
() 000000

111010 11010 1 [
g | | , 2 6
9
3
© RERSE
3] 5

16

We also give an example below of a sparse closed set of size 24 for n = 8 :

{00000000, 11000000, 00110000, 00001100,
00000011, 11100001, 11011000, 11000110,
01101001, 10110001, 11100111, 00101101,
01001011,01111000,01111110, 10111101,
00100111, 10010011,11111111,10011100,
11011011,01001110, 10010110,00110110}

An example of a minimal set of size 16 for n = 6 used to prove Theorem 6.3 is below:

{100100, 010100, 001100, 111100
010010, 111010,000110,110110
101110, 011110, 100001, 001001

101101,011101, 000011, 110011}

ECCC ISSN 1433-8092
17 http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

