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with high probability. But, from the properties of random walks,

Uuo

E(DZV)Z?IQ(n)

But the number of returns to the origin of our stochastic process is bounded
by the maximum value of the logical step k divided by F(D,) and thus it is a
constant. So, we get:

Lemma 3. The expected number of restart messages of Py is bounded above by
a constant.

Let us now allow (instead of a restart message) a new protocol P» which
keeps ¢ = 3 requests per node. We modify P; so that the node which keeps the
token always stores the maximum path constructed up to now.

When the protocol shrinks to a single node (i.e. at end of a period) then
that node notifies all the nodes of the maximum path seen in the past, to try to
use their third batch of request messages in order to restart the protocol. From
the previous analysis, the total number of requests that can be used for restart
purposes is

A - (length of maximum path)

This is with high probability at least alogn for any constant a. The probability
of failure to restart the protocol is then just the probability of these extra requests
all failing to hit Uy. But this is at most

(1= 2 )

and since

up = 0(n) = 41711271

)

we get a failure probability to restart the protocol less than

B alogn
<1 _ 21_“) < p-20(l0g2)/g
g

29
log 2
attempt leading to o (%) total failure probability to restart the protocol.

Thus, we get a modified protocol P; which uses only the unreliable basic
communication primitive and satisfies:

By choosing e.g. o > we get a failure probability at most n1—2 per restart

Theorem 3. There exists a protocol Py which does not need the special restart
message. It uses only a linear total number of unreliable basic communication
requests, and still achieves a ©(n) path of stable links with probability tending to
1 as n — oo.



Thus, the protocol succeeds within a linear number of logical steps and when
uy, is still @(n). In order to find the expected number of restart messages needed
by protocol Pi, we model the stochastic process I(k) (i.e. the path length) as a
random walk in one dimension. By the description of the protocol, if p; is the
probability that I(k) is extended by 1 (via green requests) then

U

szl—(l——(l—f))A

n

and if ¢ denotes the probability of shrinking to the previous node (of unused
red requests) then clearly

a =1—pi
Definition 2. Let a round of the protocol Py be the period until the protocol

sends a restart message.

Definition 3. Let D(z) be the ezpected duration of a round, conditioned on the
event that the length of the path is z(k).

Then, clearly
Doy = P Darys1 + e Dogy-1 + 1

with boundary conditions

Do=0,D, =0

This is a difference equation which is very difficult to solve because py, qp vary
with time. However, we note easily that

@ > (4)

Now, note that initially ug = n—1 and consider the sequence of periods at which
ur, > 5. Then for these periods

A
_ U A (-7 A1-1)
q—(l—n(l—f)) S(l— 5 Sexp | ———
and to get

p—q>¢€
(where € a cosntant) we need

1

p> BY + €

1.e

2< (1 —2¢)exp (M)

which is true because of the condition A(1— f) > 41n2 (for € small but constant).
Thus, for the sequence of these periods, the walk is stochastically dominated
by a walk W with p, q constant and p — ¢ = ¢, in the sense that

Pr{D. >z} >Pr{DY >z} V2 >0



because

i %Q_m =log?2

m=1

Thus, by applying the following version of Chebyshev’s inequality:

PriY; < E(Y;) +w(n)o(V;)} 21—

w(n)
and by choosing any w(n) — co as n — oo (e.g. w(n) = logloglogn) we get

6—7‘71

r

Pr{Yj<n— +w(n)\/ﬁ}—>1

Hence, by equations (1) and (2), with probability tending to 1 our protocol
constructs a path of length at least

In2 1 2In2
2 -] = —e ™ — —-2> 1l— ———
<n r) n+re w(n)v/n _n( A(l—f))
Thus we have shown:

Theorem 1. Protocol P, consiructs with probability tending to 1 a path of length

at least
(1 41ln2 )
n e
g(1=11)

Since the basic communication primitive always returns a random vertex (if
it succeeds) we also have

Theorem 2 (Fairness). Fach node of V can be in the path consiructed by Py
equiprobably.

6 Removing the need for the restart message

In our analysis in the previous section we demonstrated a pair (j, k) with

2nln?2 nln?2

= h TN

and
k=n— ———*0=D 44 vn
N1—7) (=)

such that
Pr{uy <j}—1las1-—

w(n)

by choosing any w(n) — oo as n — oo (e.g. w(n) = logloglogn).



By definition then
Prius < j} = PrY; < k) (2)

The above, in combination with equation (1), is enough to show that protocol
Py indeed constructs a very long path with probability tending to 1, provided
that for some pair (j, k) we have Pr{Y; < k} — 1 and 2j + k is small.

From the Markov property of ug, {X;} are independent geometric random

variables of mean } \
1— 2(1—
1= (1-3(1=7)

and variance

(1-ia-5)" 2
(- (=ia-p)

(- a-n)' sen (B0 )

Let r = %(1 — f). Choose j = [22]. Then

r

oi(X;) =

However

. A
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thus
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)= D oK) <An—j+1) < 2m 3)
i=j+1
We also need the following upper bound on E(Yj):

Lemma 2.

1
B(Yj) <n— e
r

forj = |-1n72] and r = %(1 -
Proof. We have clearly

1
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5 Properties of the Protocol P; and its Analysis

Let I(k) be the length of P, and let r, = |Ry|. Also let ug = |Ug| = n— 1. By
definition n — ug + 7o = 1. In each case our protocol increases at most one of
n — uy and rg by at most one. Thus,

(n—upg1) +rpgr < (n—up) +rp + 1
1.e.
(n—uk)+rk Sk+1
for every k. Also,
V — Up — {vertices of P} C Ry
thus

ky=|Pel=1>n—up—rp—1>n—up—(k+1—-(n—up))—1

1.e.

I(k) > 2(n — ug) — k — 2 (1)

Let Hy, = {P;,U;, R;, Ei}f:o where E; is the set of the requests for random links
already done. Briefly, Hy, is the history of the protocol up to logical time k.

At each logical step k the protocol performs some requests for random links
(green or red).

The probability of failing to get a link of the form y; — Uy (and thus failing
to extend the path) is precisely

A

Pr{upy1 =jlur =j, Hr=H} = Z_: <;\) (%)tft (1 B 1:1_16))\4
=(1- %(1—f))A

for all k,7 and H. Thus, this probability depends only on uy (since n, f and A
are given parameters of the protocol) and since ugyq is either uy or up — 1 we
get:

Lemma 1. The sequence {uy} is a Markov Chain.

Definition 1. Let
Xi :max{k—l:uk:m:i}

for 1 <i<mn—1, so that X; + 1 is the length of the sojourn time of uy, in state
i, and let

n—1

Vi= > (Xi+1)

i=j+1

1.e. the hitting time of state j of uy.



distributed protocol by using suitable communication messages and a special
token for the distributed control in the way we explain below.

More formally, our protocol maintains a triple (Py, Uy, Ri) where Py is a
(directed) path of established links (the current path after k logical protocol
“steps”), Uy s a set of sleeping vertices and Ry is the set of red nodes (whose
green set of requests have been used). Let V' be the set of network nodes (|V| =

The protocol starts at the awake node zq (the sets of the corresponding triple
are Py = 29, Uy =V — {20} and Ry = 0).

Our protocol is motivated by the nice proof of F. de la Vega ([12]) for the
existence of long paths in (sparse) random graphs Gy, , with p = £, where ¢ > 0
a constant. The differences are (i) the distributed version of our protocol and
(ii) the significantly weaker random graph model that our network allows for,
i.e. at most g requested random links, each with a failure probability f. It is
not intuitively obvious that the result of [12] extends to such a weaker model of
random graphs.

Suppose that the protocol has achieved a directed path Pj of established
links with initial vertex xj, end vertex y;. The end vertex of the path holds a
special token T'. Suppose also |Uy| = uy. If U, = 0 the protocol terminates. Else,
there are three cases:

Case 1: yi ¢ Ri. Node y; (which has the token) tries its green requests one
by one until either a (green) link y; — Uy, is established or all such requests fail.
In the former case Py is extended by the node ypy1 (formerly in Up) with the
established link i.e. Pry1 = Pryr41, Upy1 = Ur — {yr+1} and Rr41 = Ry and
the token is passed to yr4+1. In the case of no green requests and no new link, y;
sets Pry1 = Pr, Upy1 = Uy and Rp41 = R U {yx} and informs the nodes in the
current path about the new triple (Py, Uy, Rg).

Case 2: yr € Ryi. Try the red requests out of y; one by one. If y; manages
to link to a node in Uy (say ygr41) then yp extends Py to yry1, sets Ugppr =
Uk — {yr+1}, Rry1 = Ri and the token goes to yry1. Else, yr sends a message
backwards in P, to find the first node whose red requests have not been tried.
Call it yg41. The token passes then to yry1. The path now shrinks to just the
part from 2z to yr41 and yr4+1 1s added to Ry. Also Ug41 = Ug. The last updates
are easily done by circulation of a message from y; backwards till yx41 is found.
Then yg41 resets the triple and informs its path.

Case 3: Now the path has shrunk to a single vertex (zx = yi). We try its
red requests and if a link with Uy is established, the new node will get the token
and continue (as in Case 2) with its green requests. Else, y; cannot do anything
but to send the restart message M(Up) and the protocol starts again from a
new awaken vertex zp41, 1.e. Pry1 = 2py41, and executes only in the remaining
sleeping nodes i.e. Up41 = Ur — {2p41} and Rg41 = Ry.



successful requests. If a link is established, then the sending node is notified and
the receiving node is now active.

For the purpose of restarting a protocol we assume the existence of a special
message

M =< restart,U >

which can be sent by any active node and always succeeds. Here, U is a subset
of V and must consist only of sleeping nodes. M then selects one node, z, of U
randomly and the protocol restarts in the subnetwork {z,U — z}.

In fact, we will show in the paper how to simulate M with just unreliable
random communication attempts.

A protocol P for such a network is a computation that each active node may
execute together with any information exchange with other active nodes which
must be carried out along established links. The update of the established link
information is a duty of the protocol.

3 Our Results

We present here a protocol P; which manages to establish a path of length @(n)
in the network provided g > %. Our protocol has the property that any node
has the same chance to be in the constructed path (fairness). Note that even in
the worst case of constant failure probability f, only a small, constant number
g of random attempts per node is enough to establish a long path. Thus, P; is
optimal with respect to the number of direct random communication requests,
in the sense that no linear path can be established with a sublinear number of
requests.

We also extend P, to a protocol P, which does not need the special restart
message M described in the preceeding section, and has essentially the same
properties.

4 The Protocol P,

In the sequel, let ¢ = 2X (A > 1 an integer). We group the g allowed requests
per node into two equal sets: the green set and the red set, each consisting of A
random link requests. We use two sets of requests so that we have two chances
of independence in the technical analysis: first, we try to establish the long path
link by link considering only green edges. When extension of the constructed
path using green edges is not possible anymore, and a red edge can be used to
extend the path, we use it and then we continue using only green edges again. If
at some step path extension is not possible using red edges either, we backtrack
to the first vertex from which red edges have not bewen tried yet (and thus their
use might be successful in extending the path). If this process leads to a path
which shrinks to a single vertex that we can no longer leave, we start a new
process of path construction from a new initial vertex. All this is done by the



1 Introduction

Unreliable communication networks have been extensively studied because they
pose fundamental problems in distributed computing. The end-to-end commu-
nication problem in such networks is to send information from a sender node
to a receiver node. Without such capabilities (at least for a big network part)
it is not possible to perform distributed computations. Also, as the size of the
network increases, the likelihood of a “fault” also increases. Good protocols for
end-to-end communication allow distributed algorithms to treat an unreliable
network as a reliable channel.

We consider here a network of n nodes which supports only one very poor
communication primitive: each node may request for a random direct connection.
Such a request either fails (independently of other such requests, with probability
f < 1), or, if it succeeds, it returns an established direct link to some network
node, randomly and equiprobably chosen. Furthermore, we assume that each
node may request such links at most g times (g a constant). Once a direct link
is established, the nodes may use it to exchange information for as many times
as they wish.

Many different protocols for end-to-end communication have been developed
when links (and/or intermediate nodes) may fail ([1], [2], [3], [4], [5], [6], [7], [8])-
Also, previous work of the authors examined structural properties of unreliable
networks ([9], [10], [11]).

In this paper, we present a simple protocol which establishes (almost surely)
a very long path in the network (involving a constant fraction, at least, of all
the nodes), provided g(1 — f) > 4In2. Note that our result shows that even
when the number of random requests ¢ is constant and the failure probability
[ is constant too such a long path can still be established (and thus solve the
end-to-end communication problem for a big subset of the network node pairs).

Our communication establishment protocol can start only from a single node.
Other nodes become awake (and start participating in the protocol) via reception
of a special message after a direct successful link establishment. In addition, our
protocol gives equal chance to any network node to participate in the long path.
Thus it has a strong fairness property. To our knowledge, this is the first time
that a protocol is presented to achieve such along path in a distributed way under
such adverse communication conditions (which however model quite realistically
logical Internet direct link establishments).

2 The Model

The network consists of a set V' of n nodes. Initially, exactly one node uq is
active and the others are sleeping. An active node is allowed to request for at
most g direct random link establishments. Such requests are executed one-by-
one and each may independently fa:l with probability f < 1. If it succeeds, then
a direct link to a randomly chosen network node is permanently established. The
model allows repetitions, i.e. the same node may be returned in two different
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