References

with high probability. But, from the properties of random walks,

$$E\left(D_z^W\right) \geq \frac{u_0}{c} = \Theta(n)$$

But the number of returns to the origin of our stochastic process is bounded by the maximum value of the logical step k divided by $E(D_z^W)$ and thus it is a constant. So, we get:

Lemma 3. The expected number of restart messages of P_1 is bounded above by a constant.

Let us now allow (instead of a restart message) a new protocol P_2 which keeps $g = 3\lambda$ requests per node. We modify P_1 so that the node which keeps the token always stores the maximum path constructed up to now.

When the protocol shrinks to a single node (i.e. at end of a period) then that node notifies all the nodes of the maximum path seen in the past, to try to use their third batch of request messages in order to restart the protocol. From the previous analysis, the total number of requests that can be used for restart purposes is

$$\lambda \cdot (\text{length of maximum path})$$

This is with high probability at least $\alpha \log n$ for any constant α. The probability of failure to restart the protocol is then just the probability of these extra requests all failing to hit U_k. But this is at most

$$\left(1 - \frac{u_k}{n}(1 - f)\right)^{\alpha \log n}$$

and since

$$u_k = \Theta(n) = \frac{4 \ln 2}{g(1 - f)} n$$

we get a failure probability to restart the protocol less than

$$\left(1 - \frac{2 \ln 2}{g}\right)^{\alpha \log n} < n^{-2\alpha \log^2 / g}$$

By choosing e.g. $\alpha > \frac{2g}{\log^2}$ we get a failure probability at most $\frac{1}{n^2}$ per restart attempt leading to $o\left(\frac{1}{n}\right)$ total failure probability to restart the protocol.

Thus, we get a modified protocol P_2 which uses only the unreliable basic communication primitive and satisfies:

Theorem 3. There exists a protocol P_2 which does not need the special restart message. It uses only a linear total number of unreliable basic communication requests, and still achieves a $\Theta(n)$ path of stable links with probability tending to 1 as $n \to \infty$.
Thus, the protocol succeeds within a linear number of logical steps and when \(u_k \) is still \(\Theta(n) \). In order to find the expected number of restart messages needed by protocol \(P_1 \), we model the stochastic process \(l(k) \) (i.e. the path length) as a random walk in one dimension. By the description of the protocol, if \(p_k \) is the probability that \(l(k) \) is extended by 1 (via green requests) then
\[
p_k = 1 - \left(1 - \frac{u_k}{n}(1 - f)\right) \lambda
\]
and if \(q_k \) denotes the probability of shrinking to the previous node (of unused red requests) then clearly
\[
q_k = 1 - p_k
\]
Definition 2. Let a round of the protocol \(P_1 \) be the period until the protocol sends a restart message.

Definition 3. Let \(D(z) \) be the expected duration of a round, conditioned on the event that the length of the path is \(z(k) \).

Then, clearly
\[
D_{z(k)} = p_k D_{z(k)+1} + q_k D_{z(k)-1} + 1
\]
with boundary conditions
\[
D_0 = 0, D_n = 0
\]
This is a difference equation which is very difficult to solve because \(p_k, q_k \) vary with time. However, we note easily that
\[
q_k \geq f^\lambda
\]
(4)
Now, note that initially \(u_0 = n - 1 \) and consider the sequence of periods at which \(u_k \geq \frac{n}{2} \). Then for these periods
\[
q = \left(1 - \frac{u_k}{n}(1 - f)\right) \leq \left(1 - \frac{(1 - f)}{2}\right) \leq \exp\left(-\frac{\lambda(1 - f)}{2}\right)
\]
and to get
\[
p - q > \epsilon
\]
(where \(\epsilon \) a constant) we need
\[
p > \frac{1}{2} + \epsilon
\]
i.e.
\[
2 < (1 - 2\epsilon) \exp\left(\frac{\lambda(1 - f)}{2}\right)
\]
which is true because of the condition \(\lambda(1 - f) > 4 \ln 2 \) (for \(\epsilon \) small but constant).

Thus, for the sequence of these periods, the walk is stochastically dominated by a walk \(W \) with \(p, q \) constant and \(p - q \geq \epsilon \), in the sense that
\[
\Pr\{D_z \geq x\} \geq \Pr\{D_z^W \geq x\}, \forall x > 0
\]
because
\[
\sum_{m=1}^{\infty} \frac{1}{m} 2^{-m} = \log 2
\]
\[\square\]

Thus, by applying the following version of Chebyshev’s inequality:

\[
\Pr \{ Y_j < E(Y_j) + w(n)\sigma(Y_j) \} \geq 1 - \frac{1}{w(n)}
\]

and by choosing any \(w(n) \to \infty \) as \(n \to \infty \) (e.g. \(w(n) = \log \log \log n \)) we get

\[
\Pr \left\{ Y_j < n - \frac{e^{-rn}}{r} + w(n)\sqrt{n} \right\} \to 1
\]

Hence, by equations (1) and (2), with probability tending to 1 our protocol constructs a path of length at least

\[
2\left(n - \frac{\ln 2}{r} \right) - n + \frac{1}{r} e^{-rn} - w(n)\sqrt{n} - 2 \geq n \left(1 - \frac{2\ln 2}{\lambda(1-f)} \right)
\]

Thus we have shown:

Theorem 1. Protocol \(P_1 \) constructs with probability tending to 1 a path of length at least

\[
n \left(1 - \frac{4\ln 2}{g(1-f)} \right)
\]

Since the basic communication primitive always returns a random vertex (if it succeeds) we also have

Theorem 2 (Fairness). Each node of \(V \) can be in the path constructed by \(P_1 \) equiprobably.

6 Removing the need for the restart message

In our analysis in the previous section we demonstrated a pair \((j, k)\) with

\[
j = \frac{2n \ln 2}{g(1-f)} = \frac{n \ln 2}{\lambda(1-f)}
\]

and

\[
k = n - \frac{n}{\lambda(1-f)} e^{-\lambda(1-f)} + \omega(n)\sqrt{n}
\]

such that

\[
\Pr \{ u_k \leq j \} \to 1 \text{ as } 1 - \frac{1}{w(n)}
\]

by choosing any \(w(n) \to \infty \) as \(n \to \infty \) (e.g. \(w(n) = \log \log \log n \)).
By definition then

\[Pr\{u_k \leq j\} = Pr\{Y_j \leq k\} \]

(2)

The above, in combination with equation (1), is enough to show that protocol \(P_1 \) indeed constructs a very long path with probability tending to 1, provided that for some pair \((j, k)\) we have \(Pr\{Y_j \leq k\} \to 1 \) and \(2j + k \) is small.

From the Markov property of \(u_k \), \(\{X_i\} \) are independent geometric random variables of mean

\[E(X_i) = \frac{(1 - \frac{i}{n}(1 - f))^\lambda}{1 - (1 - \frac{i}{n}(1 - f))^\lambda} \]

and variance

\[\sigma^2(X_i) = \frac{(1 - \frac{i}{n}(1 - f))^\lambda}{[1 - (1 - \frac{i}{n}(1 - f))^\lambda]^2} \]

However

\[\left(1 - \frac{i}{n}(1 - f)\right)^\lambda \leq \exp\left(-\frac{\lambda i}{n}(1 - f)\right) \]

Let \(r = \lambda(1 - f) \). Choose \(j = \left\lceil \frac{\ln 2}{r} \right\rceil \). Then

\[\left(1 - \frac{i}{n}(1 - f)\right)^\lambda \leq e^{-jr} \leq \frac{1}{2} \]

thus

\[\sigma^2(Y_j) = \sum_{i=j+1}^{n-1} \sigma^2(X_i) \leq 2(n - j + 1) < 2n \]

(3)

We also need the following upper bound on \(E(Y_j) \):

Lemma 2.

\[E(Y_j) < n - \frac{1}{r} e^{-rn} \]

for \(j = \left\lceil \frac{\ln 2}{r} \right\rceil \) and \(r = \lambda(1 - f) \)

Proof. We have clearly

\[E(X_i + 1) = \frac{1}{1 - e^{-r}} \]

thus

\[E(Y_j) = \sum_{i=j+1}^{n-1} E(X_i + 1) \leq \sum_{i=j+1}^{n-1} \frac{1}{1 - e^{-r}} \]

\[\leq \int_j^{n-1} (1 - e^{-rs})^{-1} dx \leq \frac{1}{r} \int_{rn}^{rn} (1 - e^{-y})^{-1} dy \]

\[= \frac{1}{r} \left[y - \sum_{m=1}^{\infty} \frac{1}{m} e^{-my} \right]_{rn}^{\infty} \]

\[= \frac{1}{r} \left[rn - \sum_{m=1}^{\infty} \frac{1}{m} e^{-mrn} \right] \]

\[< n - \frac{1}{r} e^{-rn} \]
5 Properties of the Protocol P_1 and its Analysis

Let $l(k)$ be the length of P_k and let $r_k = |R_k|$. Also let $u_0 = |U_0| = n - 1$. By definition $n - u_k + r_0 = 1$. In each case our protocol increases at most one of $n - u_k$ and r_k by at most one. Thus,

$$(n - u_{k+1}) + r_{k+1} \leq (n - u_k) + r_k + 1$$

i.e.

$$(n - u_k) + r_k \leq k + 1$$

for every k. Also,

$$V - U_k - \{\text{vertices of } P_k\} \subseteq R_k$$

thus

$$l(k) = |P_k| - 1 \geq n - u_k - r_k - 1 \geq n - u_k - (k + 1 - (n - u_k)) - 1$$

i.e.

$$l(k) \geq 2(n - u_k) - k - 2 \quad (1)$$

Let $H_k = \{P_i, U_i, R_i, E_i\}_{i=0}^k$ where E_i is the set of the requests for random links already done. Briefly, H_k is the history of the protocol up to logical time k.

At each logical step k the protocol performs some requests for random links (green or red).

The probability of failing to get a link of the form $y_k - U_k$ (and thus failing to extend the path) is precisely

$$\Pr\{u_{k+1} = j | u_k = j, H_k = H\} = \sum_{t=0}^{\lambda} \binom{\lambda}{t} \left(\frac{u_k}{n}\right)^t f^t \left(1 - \frac{u_k}{n}\right)^{\lambda-t}$$

$$= \left(1 - \frac{u_k}{n}(1 - f)\right)^\lambda$$

for all k, j and H. Thus, this probability depends only on u_k (since n, f and λ are given parameters of the protocol) and since u_{k+1} is either u_k or $u_k - 1$ we get:

Lemma 1. The sequence $\{u_k\}$ is a Markov Chain.

Definition 1. Let

$$X_i = \max\{k - l : u_k = u_l = i\}$$

for $1 \leq i \leq n - 1$, so that $X_i + 1$ is the length of the sojourn time of u_k in state i, and let

$$Y_j = \sum_{i=j+1}^{n-1} (X_i + 1)$$

i.e. the hitting time of state j of u_k.
distributed protocol by using suitable communication messages and a special
token for the distributed control in the way we explain below.

More formally, our protocol maintains a triple \((P_k, U_k, R_k)\) where \(P_k\) is a
(directed) path of established links (the current path after \(k\) logical protocol
“steps”), \(U_k\) is a set of sleeping vertices and \(R_k\) is the set of red nodes (whose
green set of requests have been used). Let \(V\) be the set of network nodes \(|V| = n\).

The protocol starts at the awake node \(x_0\) (the sets of the corresponding triple are
\(P_0 = x_0, U_0 = V - \{x_0\}\) and \(R_0 = \emptyset\).

Our protocol is motivated by the nice proof of F. de la Vega ([12]) for the
existence of long paths in (sparse) random graphs \(G_{n,p}\) with \(p = \frac{\epsilon}{n}\), where \(\epsilon > 0\)
a constant. The differences are (i) the distributed version of our protocol and
(ii) the significantly weaker random graph model that our network allows for,
i.e. at most \(g\) requested random links, each with a failure probability \(f\). It is not
intuitively obvious that the result of [12] extends to such a weaker model of
random graphs.

Suppose that the protocol has achieved a directed path \(P_k\) of established
links with initial vertex \(x_k\), end vertex \(y_k\). The end vertex of the path holds a
special token \(T\). Suppose also \(|U_k| = u_k\). If \(U_k = \emptyset\) the protocol terminates. Else,
there are three cases:

Case 1: \(y_k \notin R_k\). Node \(y_k\) (which has the token) tries its green requests one
by one until either a (green) link \(y_k \in U_k\) is established or all such requests fail.
In the former case \(P_k\) is extended by the node \(y_k+1\) (formerly in \(U_k\)) with the
established link i.e. \(P_{k+1} = P_k y_k+1, U_{k+1} = U_k - \{y_k+1\}\) and \(R_{k+1} = R_k\) and
the token is passed to \(y_k+1\). In the case of no green requests and no new link, \(y_k\) sets
\(P_{k+1} = P_k, U_{k+1} = U_k\) and \(R_{k+1} = R_k \cup \{y_k\}\) and informs the nodes in the
current path about the new triple \((P_k, U_k, R_k)\).

Case 2: \(y_k \in R_k\). Try the red requests out of \(y_k\) one by one. If \(y_k\) manages
to link to a node in \(U_k\) (say \(y_k+1\)) then \(y_k\) extends \(P_k\) to \(y_k+1\), sets \(U_{k+1} = U_k - \{y_k+1\}\), \(R_{k+1} = R_k\) and the token goes to \(y_k+1\). Else, \(y_k\) sends a message
backwards in \(P_k\) to find the first node whose red requests have not been tried.
Call it \(y_k+1\). The token passes then to \(y_k+1\). The path now shrinks to just the part
from \(x_k\) to \(y_k+1\) and \(y_k+1\) is added to \(R_k\). Also \(U_{k+1} = U_k\). The last updates
are easily done by circulation of a message from \(y_k\) backwards till \(y_k+1\) is found.
Then \(y_k+1\) resets the triple and informs its path.

Case 3: Now the path has shrunk to a single vertex \((x_k = y_k)\). We try its
red requests and if a link with \(U_k\) is established, the new node will get the token
and continue (as in Case 2) with its green requests. Else, \(y_k\) cannot do anything
but to send the restart message \(M(U_k)\) and the protocol starts again from a
new awaken vertex \(x_{k+1}\), i.e. \(P_{k+1} = x_{k+1}\), and executes only in the remaining
sleeping nodes i.e. \(U_{k+1} = U_k - \{x_{k+1}\}\) and \(R_{k+1} = R_k\).
successful requests. If a link is established, then the sending node is notified and the receiving node is now active.

For the purpose of restarting a protocol we assume the existence of a special message

\[M = \langle \text{restart}, U \rangle \]

which can be sent by any active node and always succeeds. Here, \(U \) is a subset of \(V \) and must consist only of sleeping nodes. \(M \) then selects one node, \(x \), of \(U \) randomly and the protocol restarts in the subnetwork \(\{x, U - x\} \).

In fact, we will show in the paper how to simulate \(M \) with just unreliable random communication attempts.

A protocol \(P \) for such a network is a computation that each active node may execute together with any information exchange with other active nodes which must be carried out along established links. The update of the established link information is a duty of the protocol.

3 Our Results

We present here a protocol \(P_1 \) which manages to establish a path of length \(\Theta(n) \) in the network provided \(g > \frac{4 \ln 2}{4 - f} \). Our protocol has the property that any node has the same chance to be in the constructed path (fairness). Note that even in the worst case of constant failure probability \(f \), only a small, constant number \(g \) of random attempts per node is enough to establish a long path. Thus, \(P_1 \) is optimal with respect to the number of direct random communication requests, in the sense that no linear path can be established with a sublinear number of requests.

We also extend \(P_1 \) to a protocol \(P_2 \) which does not need the special restart message \(M \) described in the preceding section, and has essentially the same properties.

4 The Protocol \(P_1 \)

In the sequel, let \(g = 2\lambda \) (\(\lambda > 1 \) an integer). We group the \(g \) allowed requests per node into two equal sets: the green set and the red set, each consisting of \(\lambda \) random link requests. We use two sets of requests so that we have two chances of independence in the technical analysis: first, we try to establish the long path link by link considering only green edges. When extension of the constructed path using green edges is not possible anymore, and a red edge can be used to extend the path, we use it and then we continue using only green edges again. If at some point path extension is not possible using red edges either, we backtrack to the first vertex from which red edges have not been tried yet (and thus their use might be successful in extending the path). If this process leads to a path which shrinks to a single vertex that we can no longer leave, we start a new process of path construction from a new initial vertex. All this is done by the
1 Introduction

Unreliable communication networks have been extensively studied because they pose fundamental problems in distributed computing. The end-to-end communication problem in such networks is to send information from a sender node to a receiver node. Without such capabilities (at least for a big network part) it is not possible to perform distributed computations. Also, as the size of the network increases, the likelihood of a “fault” also increases. Good protocols for end-to-end communication allow distributed algorithms to treat an unreliable network as a reliable channel.

We consider here a network of \(n \) nodes which supports only one very poor communication primitive: each node may request for a random direct connection. Such a request either fails (independently of other such requests, with probability \(f < 1 \)), or, if it succeeds, it returns an established direct link to some network node, randomly and equiprobably chosen. Furthermore, we assume that each node may request such links at most \(g \) times (\(g \) a constant). Once a direct link is established, the nodes may use it to exchange information for as many times as they wish.

Many different protocols for end-to-end communication have been developed when links (and/or intermediate nodes) may fail ([1], [2], [3], [4], [5], [6], [7], [8]). Also, previous work of the authors examined structural properties of unreliable networks ([9], [10], [11]).

In this paper, we present a simple protocol which establishes (almost surely) a very long path in the network (involving a constant fraction, at least, of all the nodes), provided \(g(1 - f) > 4\ln 2 \). Note that our result shows that even when the number of random requests \(g \) is constant and the failure probability \(f \) is constant too such a long path can still be established (and thus solve the end-to-end communication problem for a big subset of the network node pairs).

Our communication establishment protocol can start only from a single node. Other nodes become awake (and start participating in the protocol) via reception of a special message after a direct successful link establishment. In addition, our protocol gives equal chance to any network node to participate in the long path. Thus it has a strong fairness property. To our knowledge, this is the first time that a protocol is presented to achieve such a long path in a distributed way under such adverse communication conditions (which however model quite realistically logical Internet direct link establishments).

2 The Model

The network consists of a set \(V \) of \(n \) nodes. Initially, exactly one node \(u_0 \) is active and the others are sleeping. An active node is allowed to request for at most \(g \) direct random link establishments. Such requests are executed one-by-one and each may independently fail with probability \(f < 1 \). If it succeeds, then a direct link to a randomly chosen network node is permanently established. The model allows repetitions, i.e. the same node may be returned in two different
Efficient Communication Establishment in Extremely Unreliable Large Networks

Sotiris E. Nikoletseas and Paul G. Spirakis *

Computer Technology Institute (CTI) and Patras University
61 Riga Fereon Street, 26221, Patras, Greece
Fax: +30-61-222086
Email: {nikole, spirakis}@cti.gr

Abstract. We consider here a large network of \(n \) nodes which supports only the following unreliable basic communication primitive: when a node requests communication then this request may fail, independently of other requests, with probability \(f < 1 \). Even if it succeeds, the request is answered by returning a stable link to a random node of the network. Furthermore, each node is allowed to perform \(at \ most \ g \ such \ requests \) where \(g \) is constant (independent of \(n \)).

We present here a protocol that manages (with probability tending to 1) to establish a very long path (i.e. of length \(\Theta(n) \)) of stable links in such a network, provided \(g > \frac{1}{1-f} \). This protocol thus manages to establish end-to-end communication for a large part of the network, even in the (worst) case when the failure probability \(f \) is constant and the number \(g \) of random requests is constant too. This protocol is optimal in the sense that no linear path can be established with a sublinear number of requests. We also show that our protocol is fair in the sense that any node can equiprobably be in the established path. We expect this protocol to be useful for establishing communication in uncontrolled networks such as the Internet.

Keywords: Networks, Reliability, Communication Primitives, Markov Processes, End-to-end Communication

Submitted to TRACK A

* This work has been partially supported by European Union IST PROGRAMME Projects ALCOM-FT (Algorithms and Complexity in Future Technologies) and ARACNE (Approximation and Randomized Algorithms in Communication Networks).