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Abstract

In this paper, we address the problem of evaluating the Integer Circuit (IC), or the {U, x, +}-circuit
over the set of natural numbers. The problem is a natural extension to the integer expression by
Stockmeyer and Mayer, and is also studied by Mckenzie, Vollmer and Wagner in their “Polynomial
Replacement System”. We show a polynomial-time algorithm that reduces QBF (Quantified Boolean
Formula) problem to the Integer Circuit problem. This complements the result of [W84] to show that
IC problem is PSPACE-complete. The proof in this paper provides a new perspective to describe
PSPACE-completeness.

1 Introduction

1.1 Background and Motivation

In many instances of complexity theory, “formulae vs. circuits” plays a crucial role. For example,
polynomial-size boolean formula evaluation is in NC4, while polynomial-size boolean circuit evaluation
is P-complete. In as early as 1973, Stockmeyer and Meyer studied the complexity of integer expressions
[SM73]. They showed that {U, +}-expression problem is NP-complete. Their result easily extends to
the {U, x, +}-expressions. Interestingly, if we allow negation, namely, consider the circuit {U, x,+, =},
the problem is already PSPACE-complete. But they didn’t consider the integer circuits.

The general problem on the complexity of Circuit evaluation has always been of people’s interests.
For instance, Beaudry-McK-Peladeau-Therien have a somewhat deep treatment of circuit evaluation
over finite monoroids [BMPT97]. Allender et al. [ATMV98] discussed depth reduction.

Kaltofen [K88] discussed the difficulty with coefficient growth when polynomials are represented as
straight-line programs (another view of arithmetic circuits). See also Plaisted’s hardness result [P77].

Wagner in his paper [W84] defined “hierarchical description”, which are the same as {U, +}-circuits.
He proved (Lemma 1.2) that the membership problem for hierarchical descriptions is in PSPACE, and
left open if this problem is SPACE-complete.

Mckenzie, Vollmer and Wagner in [MVW99] defined “polynomial replacement systems”, and their
paper naturally leads the question on the PSPACE-completeness of the integer circuit evaluation.

1.2 Result

In this paper, we prove that integer circuit, or {U, X, +}-circuit evaluation is PSPACE-hard. This
result, combined with [W84], shows that the integer circuit evaluation problem is PSPACE-complete.
As a consequence, the EVAL[-] and RANGE[-] problems considered in [MVW99] for simple acyclic prs
are PSPACE-complete.

There are PSPACE-completeness characterizations, like Stockmeyer and Meyer’s QBF [SM73], Babai
and Fortnow’s Arithmetic Program with Binary Substitution [BF91], Shamir’s IP = PSPACE[S90], Cai
and Furst’s Three-bit Bottleneck [CF87]. Our result provides a new perspective to describe PSPACE-
completeness.
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1.3 Organization of the paper

Section 2 contains the definitions and formal notations that would be used in the rest of the paper.
Section 3 contains the reduction from QBF to the Integer Circuit Problem. The reduction consists of
3 parts: pre-processing the QBF; core reduction to remove the quantifiers; and the post-processing to
extract the result. Section 4 is the summary.

2 Definitions and notations

We give some definitions and notations are will be used in the rest of the paper.

2.1 Quantified Boolean Formula

QBT (Quantified Boolean Formula) is a well-known problem. We consider the following standard form

of QBF:
Q121Q229..Qnzy ¢(21, 22, ..., 2p)

where @; =V or 3,i=1,2,....,n,and ¢(2z1,...,2,) is a DNF of variables 21, s, ..., 2,. We call this type
of QBF ”standard”, since it has special properties that:

1. all variables are quantified, namely, there is no “free” variables — we call such a QBF closed.
2. ¢ is a DNF, i.e., ¢ is the OR of several terms, while each term is an AND of literals.

The QBF problem is: given a QBF in standard form, to decide if the formula is true or false. It is
well-understood that the standard QBF is a PSPACE-complete problem [SM73], [P94].

2.2 Integer Circuit

We consider the following problem: a Integer Circuit (IC) is a polynomial-sized circuit on finite sets of
positive integers. It takes n variables: Xy, Xs, ..., X,,, where each X,, is a singleton, i.e., X; = {z;},; €
N, for i =1,2,...,n. The gates in the circuits are: Union, denoted by U, which takes the union of two
sets; Addition, denoted by @, defined as A@® B :={a+b|a € A,be B}; Multiplication, denoted by
®, defined as A® B:={a-b|a€ A,be B}. So the circuit takes in n singletons, and outputs a finite
set of positive integers. An Integer Circuit Problem (ICP) is, given such a circuit with the inputs, and
a positive integer N, to decide if the final output set contains this N. Below is the formal definition of

I1C.

Definition 1 (IC & ICP) An Integer Circuit (IC) family is a family of circuits {Cy}. For every
n, C, has n input gates and a number of computational gates of fan-in 2, one of which is denoted the
“final gate”. The total number of gates is bounded by a polynomial in n. Each input gate takes in one
singleton of positive integer. All the computational gates are of fan-in 2 and perform operations on finite
set of positive integers. There are three kind of internal gates:

1. Union Gate It is denoted by U, and computes the union of two input sets.

2. Addition Gate It is denoted by @, and is defined as A® B :={a+b|a € A be B}

3. Multiplication Gate It is denoted by ®, and is defined as A®Q B:={a-b|a€ A,be B}
The output of the circuit is the output of the “final gate”.

A Integer Circuit Problem (ICP) is that given the triple (C, 2z, N), where C is an IC, z is the
input to C, N is an integer, and we use C(z) to denote the output of C' on input z, to decide if N € C(x).

Wagner have shown that ICP is in PSPACE [W84]. In this paper, we show it is actually PSPACE-
complete. We prove this by showing a reduction from QBF to the ICP.



2.3 Integer Vector

We give some definitions on integer vectors and the operations on them.

Definition 2 (Integer Vector) An n-dimensionalinteger vector v is written as v = (v', v?, ... v"),
where v' € Z, for1=1,2,...n. We denote the set of all n-dimensional integer vectors by Z".

Definition 3 (L, norm) For integer vector v, we define its Lo, norm to be:
[|v|| := max {|v| :i=1,2,...,n}
For a finite set S of integer vectors, we define its Lo, norm to be:
S|l := max {[|v]| : v €S}

Definition 4 (Neighbors) Two n-dimensional integer vectors u and v are neighbors in the k-th
entry, iff:

1. uF = =k,

2. u =, foralli#k,1<i<n,
We denote this by u = [v]g and v = [u]g.

Definition 5 (Scalar Multiple) For integer a and integer vector v, their scalar multiple is defined

as

a-v:={(a-v'a-v? .. av")

We denote —1-v by —v.

Definition 6 (Addition and Multiplication of Integer Vectors) For integer vectors u and v, we
define the addition and multiplication as follows:
ut+v = <u1 +ol w407 e+ ™)

u-v o= (ulelu?oe? L ut ™)

Notice the multiplication defined here is entry-wise multiplication, rather than the inner product.
Now we define some useful constant vectors.

Definition 7 We define the following constants:

o 0" :=(0,0,..,0).
o 17 :=(1,1,..,1).
o e :=(e1,€a,.,€), where ey, =1, ande; =0 for alli #k,1 <i<n.

o 17 :=(x1,%9,..,2n), where xxy = =1, and z; = 1 forall i # k,1 <i<n.
For example, €3 = (0,1,0,0,0), and 15 = (1,1, -1, 1).

When the value of n is clear from the context and there is no danger of ambiguity, we normally
eliminate the n — e.g., we write e, rather than €.

2.4 Vector Integer Circuit

We will look at another kind of circuit — Vector Arithmetic Circuit (VIC'), which is closely related to
the IC. Actually the only difference between VIC and IC is that in VIC, the operations are over sets of
integer vectors, rather than sets of positive integers in 1C.

Definition 8 (VIC & VICP) An Vector Integer Circuit (VIC) family is a family of circuits {Cy, }.
For every n, C, has n input gates and a number of computational gates of fan-in 2, one of which is
denoted the “final gate”. The total number of gates is bounded by a polynomial in n. FEach input
gate takes in one singleton of integer vector. All the computational gates are of fan-in 2 and perform
operations on finite set of integer vectors. There are three kind of internal gates:

1. Union Gate It is denoted by U, and computes the union of two input sets.
2. Addition Gate It is denoted by @, and is defined as A® B := {u+ v |u € A,v € B}



3. Multiplication Gate It is denoted by ®, and is defined as AQ B:={u-v|ue& A,ve B}

The output if the circuit is the output of the “final gate”.
A Vector Integer Circuit Problem (VICP) is that given the triple (C,z,v), where C is a VIC,
z is the input to C, v is an integer vector, and we use C(z) to denote the output of C on input z, to

decide if v € C(x).

So an vector integer circuit has the almost same structure as an integer circuit, but the elements
under operation are integer vectors, rather than positive integers, and they have their version of addition
and multiplication.

The reason we introduce the VICP is that we will first reduce the QBF to VICP, and then we further
reduce VICP to ICP, thus showing ICP is PSPACE-hard.

3 Reducing QBF to ICP

In this section we show how to reduce QBF to VICP. Our reduction contains three parts: pre-pocessing
the DNF to a truth table; core reduction to remove the quantifiers; and post-pocessing to extract the
result. The first two parts reduce QBF to VICP, and the third part reduces VICP to ICP.

3.1 Part 1: Pre-processing the DNF

We begin by some definitions.
It is intuitively clear we can use integer vectors to represent truth assignments, and all we need is a
formal definition.

Definition 9 (Truth assignment vector) An n-dimensional integer vector v is a truth assign-
ment vector, if all its entries are 1 or -1, i.e., v* = %1, fori1 =1,2,...n.

In the rest of the paper, when n is fixed and clear from the context, we normally refrain from writing
n explicitly.

Claim 1 There are 2™ truth assignment vectors in Z".

Definition 10 (Satisfying vector) For an n-dimensional truth assignment vector v and a boolean
formula ¢ of n variables x1, ..., x,, we say v satisfies ¢, if ¢(y1,y2,..,yn) is TRUE, where y; = TRUE
ifv' =1, and y; = FALSE ifv' = —1, fort1=1,2,...,n.

Notice we can add “dummy variables” into a boolean formula, and thus a formula of n variables is
also a formula of m variables for m > n. For example, we can view formula (21 A 23) V —2z3 as a formula
of variables 21, 22, 23, 24, and so vector (1,1,1,—1) is a satisfying vector for this formula. In particular,
we can also view the constants TRUE and FALSE as boolean formulae of n variables. Therefore any
n-dimensional truth assignment vector satisfies TRUE and no truth assignment vector satisfies FALSE.

Definition 11 (Truth Table) For a formula ¢ of n variables, we define its truth table to be
T(¢) :={v | v satisfies ¢, ve 7"}

In particular, when ¢ is a constant (TRUE or FALSE). Is truth table is the set of all n-dimensional
truth assigment vectors when it is TRUE and () when it is FALSE.

Our goal in this part is to construct a truth table for a DNF, using the vector integer circuit.
Notice if ¢ is a DNF, then it can be written as

¢:Ot1\/(¥2\/"'\/am

where each a; 1s a conjunctive form. So we know



While each T'(e;) is easy to compute: WLOG we assume
(07 :$1AI2/\~~~/\$k /\_|$k+1/\"'/\_'$k+l

then

Tai = 1,1,..,1,—1,—1,...,—1,0,...,0 D e , —€ DD 1en,—e, 2

() = {( )} @ ekt —erqipr} { } (2)
k l

here the @ is the addition operation in vector integer circuit.

Thus we have

Lemma 1 There is a polynomial time algorithm Ay, that takes in a DNF ¢ and outputs a vector integer
circuit C' along with its input x, such that C(z) = T(¢).

Proof: The algorithm A; does the following: First it uses Equation 2 to compute T'(«a;) for i =
1,2,..,m, and then it uses Equation 1 to compute T'(¢). The total size is polynomial in n and m, and
thus is polynomial in |¢]. [ ]

3.2 Part 2: Core reduction — remove the quantifiers

This part is the main part of the reduction.
Notice the QBF we are studying takes the form

F=Qiz1Q2%3..Qnzn ¢(l‘1; sy l’n)

By Lemma 1, we know we can have a truth table for ¢. Now we want to compute the truth table of F.
Notice since F' is closed, i.e. there is no free variables in F'| its value is either TRUE or FALSE, and
thus its truth table is either the set of all n-dimensional truth assignment vectors or the empty set.
From now on we will fix n, that is, for all boolean formulae, we will assume that they are formulae
of n variables.
Let’s look at the QBF with a single quantifier:

Definition 12 (Equivalent Formula) Let F' = Qmam ¢(z1,...,2m) be a QBF with one quantifier,
where ¢ is a boolean formula. We define its equivalent formula to be

¢/ L ¢(I1,...,$m_1,0)A¢(x1,...,£m_1,1) i
o ¢(£1:'~~Jxm—110)v¢($1a“'axm—lal) i

which is also a boolean formula.’
Then we obviously have
Claim 2 F and ¢' are equivalent, i.e., for allxy,x9, ...,2m—1 € {0, 1}, F(21, ..., &m=1) = ¢' (21, ..., Zm—1).

Lemma 2 Let F = Qmam (21, ..., 2m) be a QBF with one quantifier, and ¢’ be its equivalent Formula.
We denote the truth table of ¢ by T = T(¢). Then we have

¢ IfQm =V, thenT(¢')={v : vETA [v]n € T}.

¢ IfQm =73, thenT(¢')={v : veTV [v]n, €T}

Proof: Immediate from the definition of ¢ and ¢'.
|

Now, given a QBF with n quantifiers, we can remove the quantifiers one by one, from inside to
outside.

Definition 13 (Equivalent QBF Chain) Let F' = Q121Qaz32...Qnzn ¢(21, ..., 2,) be a closed QBF.
An equivalent QBF chain of F is a sequence of QBF’s: {Fy, Iy, ..., F.}, satisfying:

'In the rest of the paper, when there is no danger of confusion, We will use 1 and 0 to represent TRUE and FALSE,
respectively.



1. F,=F.

2, Fr_1 = Qix1..Qr_12k_1 ¢r_1, and ¢r_1 is the equivalent Formula of Qrrrdr, fork=1,2,...,n,
and ¢, s defined to be ¢.

So all the QBF’s in the equivalent QBF chain are closed, and in particular, Fy = ¢¢ is a constant
of value either TRUE or FALSE. Again it is immediate that all the QBF’s in the chain are equivalent.
So F is true, iff Fy is true, and iff the truth table of Fj is the set of all n-dimensional truth assignment
vectors.

Next we will see how we can compute the truth tables of ¢, ¢n_1, ..., do using vector integer circuits,
inductively. When we have the truth table of ¢¢ at hand (it is either the complete set or the empty set),
we can tell if the original formula F is TRUE or FALSE.

We define a transition function as follows:

Definition 14 (Transition Function) The transition function f is defined as follows;

. Sd (S {1} if@Q=VY |
F(@Q, S, k,n) = { 9. S(U (2 .{Skg)ﬂg}) if 8 =3 )

where @ is a quantifier, and S is a set of integer vectors. 13 is defined as before. When there is no
danger of confusion, we may omit the n.

The transition function can be implemented by the vector integer circuit. Suppose now we have a

QBF F = Q121Q222...Qnxy ¢(21, ..., 2,), where ¢ is a DNF, and S = T'(¢) is the truth table of ¢. Then
we can repeatedly apply the transition f on S:

Definition 15 (Operation Chain) For a closed QBF F, let S be the truth table of the DNF in F.
We define S, := S, and Sk—1 := f(Qk, Sk, k,n), fork =n,n—1,..,1. The sequence {Sy, S1, ..., Sp} is

called the operation chain for F'.
We have several observations:
Lemma 3 [|Sk|| < 27F
This can be easily shown by induction on k.

Definition 16 (Good vectors) An integer vector v = (v!,v?, ... v") € Sk is good in Sk, iff [v!]| =
22k foralli=1,2,...,n.

The next lemma is an important one.

Lemma 4 Ifv € S;_1 is good, then:

1. If Qr =V, then there exists u € Sy, such that:
e u s good in Sk.
o [u]g, which is also good, is also in Sj.
e v=2 u.
o [V]r, which is also good, is also in Sk_1.

2. If Qi = 3, then there exists u € Sg, such that:
e u s good in Sk.
ev=2-uorv=2-u-1; .
o [V]r, which is also good, is also in Sk_1.

Proof: We consider two cases:

1. Suppose @ = V. Then, by Definition 14, there must exist vectors u,w € S, such that v =

u+ w - 1. Notice v is good, so [v/| = 2" 7*+1 for all i = 1,2,...,n. However, v’ = u’ + w' for
i # k, and v* = v* —w*. By Lemma 3, each entry of u and w is bounded by 2=k Thus the only
possibility is that both u and w are good in Sk, u' = w', for i # k, and u* = —w*. That means

w=[ulg. Sov=u+w- 1y =u+ [u]g -1 = 2-u. Furthermore, [v]x = w +u-1x € Sg_1.



2. Suppose @ = 3. Then, still by Definition 14, there exists a vector u € Sk, such that v=2.u
or v=2-u-1;. In either case, this u should be good, and notice [v]y = v - 1. So we have
[V]k :2-[u]k 1, € Sp_1 or [V]k =2 u-1p -1, =2 -u€ S,_;.

What this lemma tells us is that: if there is a good vector v in Si_1, then there must be good vector
in Sk corresponding to it, and the neighbor of v in the k-th place is also in Sk.
In the subsequent discussion, we will only focus on the good vectors in Sg, Sy, ..., Sp.

Definition 17 (Filtering Function & Filtered Operation Chain) We define, for every k, a fil-
tering function, ¥ (-), as follows:

Yk (Sg) = {v | v € Sk, vis good in Si}

For the operation chain {Sy, S1,...,Sn} of @ @QBF F we define Gy := ¢x(Sk), for k =0,1,...,n, and call
the sequence {Go, G1, ..., Gy} the filtered operation chain of F.

So ¢ (-) “filters” all the non-good vectors out of Sk.
Then immediately from 4, we have

Claim 3 Gy = ¢r(f(Qr+1, Grt1, k).

The intuition is: there are two ways to do the filtering: one way is we filter out those non-good
vectors in each step of the transition, and only apply the next transition to the remaining good ones;
the other way if that we do all the transitions first, and then filter out the non-good ones in the end.
What lemma 4 tells us is that these two ways have the same result.

Now we are ready to prove the main lemma, which connects our filtered operation chain {G}, to
the truth tables of the equivalent QBF chain.

Lemma 5 (Main Lemma) Let F be a QBF, and its equivalent QBF chain be {Fy, F, ..., F,}. For
each F;, write its Formula inside the quantifiers by ¢;, and denote the truth table of ¢; by T; = T'(¢:).
Let {G} be the filtered operation chain of F as defined in Definition 17. Then we have

Gr=2""%. T,

and especially, Gy = 2" - Ty. Since Ty is the truth table of ¢q, and thus Ty is either the complete set of
truth assignment vectors or the empty set, depending on whether F is TRUE or FALSE. Therefore Gy
1s also either the complete set of the empty set.

So we have

Corollary 1 (All-or-Nothing Rule) If the QBF F is TRUE, then Gq contains all good vectors for
So, namely, all 27 vectors whose entries are £2"; if F' is FALSE, then Gq is empty.

Proof: [Main Lemmal]

We prove by induction.

For k = n, Notice both T,, and S,, are truth tables of ¢, so T, = S,,. Each vector in the truth table
is a truth assignment vector, i.e., their entries are all 1. Therefore all vectors in S,, are good, and thus
Gn=5,=1T,.

If the lemma is true for k, now we look at the case kK — 1. We inspect the relationship between T _
and T, the truth table for the Formula ¢x_1 and ¢g. ¢x_1 is the equivalent Formula for Qrxi ¢r. We
look at the cases Qr =V and @ = 3, respectively.

o Qr=V.
For an arbitrary vector v € Gg_1, we know from lemma 4, that there exists u € Gy, such that
v = 2-u, and also [u]x € G. By induction hypothesis, Gx C 2"7% . T} so u € 2"~% . T}, and
[u]r € 2"=% . T;. By Lemma 2, we know u € 2% . T, _;, or v=2 -u € 2"~F+L . T}, Therefore
Groy C 2R+ Ty,
On the other hand, For an arbitrary vector u € 27~%+1 . T} _;, we write u = 2 - w. Then we
know w € 27~k . T} _,. Again by Lemma 2, we know both w and [w]; are in 7=k . T,. By
induction hypothesis, both w and [w]g are in Gx. Sou =2 -w = w + [W]g - 1z € G_1.Therefore
Gro1 22" F+H1 . Ty,

-~



[ ] Qk = 4.

For an arbitrary vector v € Gi_1, from Lemma 4 we can assume there exists u € Gy, such that
v =2 -u (if it is not the case, consider [v]g, which is also in Gi_1). By induction hypothesis, we
have u € 2"=%.T},. By Lemma 2, we know both u € 2"=% . T;_; and [u]x € 2°~% . T;_4, i.e., both
v=2-ue€2" %1 .7,y and [v], € 2" ~k+1 . T, _; . Therefore Gx_y C 27~ F+1 . T} _y.

On the other hand, For an arbitrary vector u € 2"=%+1 .7, _, we write u = 2 - w. Then we have
w € 2"~k . T, _;. Again by Lemma 2, we know either w or [w] is (or both) in 2n=k . T.. By
induction hypothesis, either w or [w]g is in Gi, and thus eitheru=2-w € Gy_1oru=2-w-1; €
G _1.Therefore Gx_1 D 2*~%+1 . T, .

|
So if we combine lemma 1 with the All-or-Nothing Rule, we have

Lemma 6 There exists a polynomial time algorithm As, that takes a QBF in standard form, F, and
outputs a vector integer circuit C' along with the input z, such that F' is TRUE, iff (2",2",...,2™) € C(x).

Proof: The vector integer circuit is constructed as follows: first we apply Lemma 1 to get a circuit
that generates the truth table S of the DNF ¢ inside the QBF F. Then we construct another circuit
that repeatedly apply the transition function defined in Definition 14 for n times. Putting the two pieces
together, we now have a circuit that outputs Sy. By the All-or-Nothing Rule, if F' is TRUE, and the
filtered set, Go = 1o(So) contains all good vectors, and in particular, vector (27,2, ...,2"), thus Sy also
contain this vector; if F'is FALSE, then G is the empty set, and so Sy doesn’t contain any good vector,
nor the vector (27,27, ..., 2"). [ ]

Notice this result already implies

Theorem 1 VICP is PSPACE-complete. ]

3.3 Part 3: Post-processing to extract the result

Now we will reduce the Vector Integer Circuit Problem to the Integer Circuit Problem, where each
element in the sets is a positive integer.
We state the Chinese Remainder Theorem first:

Theorem 2 (Chinese Remainder Theorem(CRT)) For any n positive numbers a1, as, ..., a, which
are pairwise relatively prime, that is, GCD(a;,a;) = 1, for all 1 <i < j <n, let M :=T[}_, a;. Let

V :={v|vis an integer vector and —a;/2 < V< a;/2,i=1,2,...,n}

Then there exists an 1-1 mapping h from V to {1,2,...,M}. And the mapping is homomorphic, in that
foranyu,veV, ifu+veVandu-v eV, then we have

h(u) + h(v) = h(u+v) (mod M)
h(u)-h(v)= h(u-v) (mod M)

Now it is almost immediate for us to reduce the VICP problem to ICP problem.

Lemma 7 There exists a polynomial time algorithm A, which takes a QBF in standard form, F, and
output a triple (C,z, N), where C' is an integer circuit, x is the input to C', and N a positive integer,
such that F is TRUE, iff N € C(x).

Proof: TFirst by Lemma 6, we have a vector integer circuit Cp, whose output contains (27,27 ..., 2"),
iff Fis TRUE.

Now we pick the smallest n distinct prime numbers: p1 = 2,ps = 3, ..., pn, and let a; := p?“, for
1=1,2,..,n. Then we know ay, as, ..., a, are pairwise relatively prime. By the Prime Number Theorem
(see [L65]), we know p, < n®, and thus a; = p!t! < n?? < 237" and q; > 7+ fori=1,2...,n. Let
M =T[i_, ai. Now notice for each vector generated in circuit Cy, its entry is bounded by 2" in absolute
value (see Lemma 3). So by CRT, we have a 1-1 mapping h(-).



Then we construct an integer circuit C' from Cjy: for every input gate in Cy with vector v, we put an
input gate in C, with number h(v). for every computational gate in Cp, we put a computational gate
in C' in the corresponding place. The type of the computational gates in Cy and C' also correspond to
each other: for a union gate in Cp, we put a union gate in C'; for an addition gate in Cy, we put an
addition gate in C'; for a multiplication gate in Cj, we put a multiplication gate in C'. Finally, we mark
the “final” gate in C' in the corresponding place of the “final” gate in Cy — and we denote the output
of this “final” gate by R — notice R is a set of positive integers

We let o := h({2",2",...,2™)). Then from CRT and Lemma 6, we know, 3m € R, m = a (mod M),
iff the original QBF, F is TRUE.

Things are becoming a little bit trickier, since we actually doesn’t know m — except its residue
modulo M. But that turns out not to be a serious problem.

Let B:= R® {M — a}, then we know the original QBF is TRUE, iff B contains a multiple of M.

We will prove (in Lemma 8) that each element in B is bounded by 287" Now we want to construct
a set

L={k-M|1<k<A}

for A = 287",
Then we know B contains a multiple of M, iff

A+1)-Me(Bal)

We will prove (in Lemma 10) that such a L is constructible using polynomial size integer circuit, and
therefore, we can couple the integer circuit computing B and the circuit computing L — we take the
addition of them as the final output of the magic circuit and then check if (A 4+ 1) - M is in the output.
Then we know (A4 1) -m € B® L iff the QBF is TRUE. Take N to be (A + 1) - m, and we finish the
proof.

|

Now we prove that

Lemma 8 ||B|| < 98n"

Proof’s sketch: Notice in the construction of the integer circuit C', the numbers in every input gate is

bounded by M = [];_, a;, which in turn is bounded by 237" When we look at the computations within
the circuit C, in part 1, constructing the truth table, at most n multiplications (by a constant, which is
bounded by M) are performed to each number; in part 2, there are n transition function operations, each
has one multiplication with a constant and one addition or a doubling. Therefore the maximum number

we can get is bounded by (2M)?"+! < 277" _ that is a bound for [|A]|. Finally since B := A®{M —a},

we have || B|| < 28n"
|

Finally we need to show how to construct L in polynomial time:
Definition 18 We denote the set {1,..., N} by [N].
Lemma 9 For any integer N, we can construct the set [N] using O(log N) gates.

Proof’s sketch: By induction. Notice if N is odd, then [N] = ([(N—1)/2]®[(N-1)/2]®{1})u{l,2};
if N is even, then [N] = ([N/2] @ [N/2]) U {1}. [ |

Lemma 10 We can construct the set L using O(n*) gates.
Proof’s sketch: Notice L = [A\]® {M}. [ |

So now we have theorem

Theorem 3 ICP is PSPACE-hard.



4 Summary and further questions

So we have shown the ICP is PSPACE-hard. This, together with the paper [W84], shows the ICP is
PSPACE-complete.

An interesting question about this proof is: the All-or-Nothing Rule is actually stronger than enough
for our purpose, and so what we can do about that. One thought is maybe we can weaken the problem
a little bit. So consider the “size-version” of the ICP: we still have a circuit €' along with input z and
an integer N, but now the problem is not membership but the size — if |C'(z)| = N or not.

One can easily modify the Part 3 of the reduction to show the size-version of ICP is also PSPACE-
hard, and it is also PSPACE-complete.

But now one can ask the “approximation” problem: given circuit C'm input z, integer N, and a real
number ¢, we ask if N is an approximation of |C'(z)| within a factor of ¢, or, if (1 — ¢)|C(z)] < N <
(14 ¢€)|C(z)]. Ts the problem still PSPACE-complete? Does the complexity depend on ¢ now?
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