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Abstract

Ordered binary decision diagrams (OBDDs) and parity ordered binary de-
cision diagrams have proved their importance as data structures representing
Boolean functions. In addition to parity OBDDs we study their generalization
which we call parity AOBDDs, give the algebraic characterization theorem and
compare their minimal size to the size of parity OBDDs.

We prove that the constraint that no arcs test conditions of type z; = 0
does not affect the node-size of parity (A)OBDDs and we give an efficient
algorithm for finding node—minimal parity (A)OBDDs with this additional
constraint. We define so—called uniqueness conditions, use them to obtain a
canonical form for parity OBDDs and discuss similar results for parity AOB-
DDs.

Algorithms for minimization and creating the form which satisfies the
uniqueness conditions for parity OBDDs running in time O(S?) and for parity
AOBDDs running in time O(nS?®) are presented (n is the number of variables,
S is the number of vertices); both the algorithms are quite simple.

All the results are also extended to case of shared parity OBDDs and shared
parity AOBDDs — data structures for representation of Boolean function
sequences.

1 Introduction

Data structures representing Boolean functions play a key role in formal circuit
verification. They are also important as combinatorial structures correspond-
ing to Boolean functions and have applications also in other fields. Once a
data structure representing Boolean functions is chosen it should allow com-
pact representation of many important functions and fast implementation of
fundamental algorithms (for surveys see [2], [7], [8]), e.g. the equivalence test-
ing (decision whether two functions represented by different structures are
identical), the minimization (finding the smallest structure representing the
given function), the synthesis (applying operations to represented functions
to obtain new ones). Data structures for representation of Boolean function
sequences are also studied and used.

Graph—based data structures for Boolean functions allow to implement
algorithms for Boolean function manipulation using standard graph algo-
rithms. Ordered binary decision diagrams (OBDDs), binary decision diagrams
(BDDs) with an additional variable-ordering constraint, as a data structure
for Boolean functions were introduced in [1]. Excellent algorithmic properties
of OBDDs are the reason why they are applied in many cases. Their more
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powerful modification — parity OBDDs were introduced in [4] and further
investigated in [6]. Further information may be found in [7]. In addition to
parity OBDDs we also consider their generalization — Parity Arc—ordered
binary decision diagrams (AOBDDs). We restrict the order in which the
variables are to be queried in parity AOBDDs but we allow to test different
variables in the same vertex (for definitions of both parity OBDDs and parity
AOBDDs see Section 2). The minimal node-size of a parity AOBDD never
exceeds the minimal node-size of a parity OBDD for the same function. We
also study shared parity OBDDs and shared parity AOBDDs — structures
for representation of Boolean function sequences.

The size-minimality of used data structures plays an essential role in effi-
ciency of used algorithms; the smallest possible sizes of used data structures
are studied. We prove the algebraic characterization theorem for parity AOB-
DDs (Theorem 3.4 and Theorem 3.5); it is analogous to the characterization
theorem for parity OBDDs (Theorem 3.6) which was proved in [6]. Next, the
relationship between the size of a minimal parity OBDD and the size of a
minimal parity AOBDD for the given function is discussed (Theorem 3.7).

The minimal data structure representing the given function can possibly
have more different non-isomorphic forms. It is demanded that the canonical
form must be size-minimal, it must exist for all Boolean functions and it
must be polynomially computable from any non-canonical form of the data
structure (see [2]). Existence, variability of the definition and properties of
canonical forms of used data structures are interesting from the theoretical
point of view. Ivestigation of canonical forms leads to understanding of the
freedom in the choice of data structures representing the given function and
may lead to the design of better data structures. We choose one of the forms to
be a canonical one and present an algorithm for constructing such a canonical
form for a given parity OBDD similar to Waack’s algorithm for minimization.
Actually, it is simpler, at least its last (transform) phase which does not use
the Gaussian elimination.

In Section 2 we give definitions of used data structures and introduce
notation used in the paper. In Section 3 we study the size-minimality of par-
ity OBDDs and parity AOBDDs. We prove that the constraint that parity
BDDs, parity OBDDs and parity AOBDDs do not contain negative arcs, i.e.
arcs testing conditions x; = 0, does not affect the node—size of the node—
minimal diagram representing the given function (Theorem 3.1 and Theorem
3.2). We give an efficient algorithm (Removal of zero arcs) for finding such
parity (A)OBDDs (see Subsection 6.2). The main theorem of Section 3 is
the algebraic characterization theorem for parity AOBDDs (Theorem 3.4 and
Theorem 3.5) in which the size of the node-minimal parity AOBDD represent-
ing a given function is expressed in terms of the dimension of an appropriate
linear space.

In Section 4 we define the uniqueness conditions for parity AOBDDs. The
properties of parity AOBDDs satisfying the uniqueness conditions are in depth
studied in Theorem 4.3. Unfortunately, parity AOBDDs representing the same
function which satisfy the uniqueness conditions need not to be isomorphic. In
Section 5 we define the uniqueness conditions for parity OBDDs and prove the
canonicity of the representations which satisfy the uniqueness conditions for
parity OBDDs (Theorem 5.3). We give an efficient algorithm (Unification) for
finding structures which satisfy the uniqueness conditions (see Subsection 6.5)
both for parity AOBDDs and parity OBDDs. In case of parity OBDDs we also
prove directly (non-algorithmically) the existence of such representation and
we give a linear—time algorithm for finding the isomorphism between canonical
forms (the PDFS algorithm). All the results are extended to case of shared
parity OBDDs and shared parity AOBDDs.

Waack ([6]) presented the algorithm for node-minimization of parity OB-
DDs running in time O(nS“) where w is the exponent of matrix multipli-
cation (currently the best achieved one is 2.376 [3], but the practicle—usable



algorithms achieve only w = 3) where S is the size of the diagram (the num-
ber of its vertices). Lobbing, Sieling and Wegener ([5]) proved that if there
exists an algorithm for node-minimization of parity OBDDs running in time
O(t(S)) then there exist an algorithm for computing the rank of a Boolean
S x S matrix running in time O(¢(S)); thus we can hardly hope to find a
practicle—usable algorithm for node-minimization of parity OBDDs running
in time o(S®). In Section 6, we desribe the algorithm for node-minimization
of parity OBDDs running in time O(S®). Our algorithm does not use any
of methods for fast matrix multiplication. The application of Gaussian elim-
ination procedure is completely eliminated from the last (transform) phase
of minimization. For overview of running times for presented algorithms see
Table 1 at the beginning of Section 6.

2 Definitions and Basic Properties

Let us denote by F> the two—element field. We understand the set B, of
Boolean functions of n variables as 2"—dimensional vector space over F» (see
also [6]).

A parity arc—ordered binary decision diagram with respect to a permu-
tation 7 of the set {1,2,...,n} is an acyclic digraph® with the properties
described below. We abbreviate the name of the structure to @AOBDD or to
©-®AOBDD. The permutation 7 restricts the order of the input variables in
which they are to be queried: we demand to query the variables in the follow-
ing order: T.(1),Tx(2),.-.,Tx(n)- There are two special vertices, we call them
a source and a sink. If the function is all-zero then the presence of the sink
is not necessary. There exists a dipath from the source to each of the vertices
and a dipath from them to the sink. Each arc except for those from the source
is labelled with a pair consisting of a variable z; and an element of F>. Arcs
from the source are unlabelled with either variables or elements of F». We call
arcs labelled with zero negative arcs and arcs labelled with one positive arcs.
Every two vertices can be joined by no, one or more arcs. Every sequence of
variable-indices induced by variables labelled to arcs of any dipath from the
source to the sink is strictly w—increasing; that means the variables on any
dipath from the source to the sink are queried in the prescribed order.

With an additional constraint that arcs from any vertex (except for those
from the source) have to be labelled with the same variable our definition
becomes the definition of parity OBDDs ( for the definition of parity OBDDs
see [6]). In this case we consider instead of variable-labelling of the arcs a
variable-labelling of the vertices of the @OBDD. If we leave the variable—
ordering constraint the definition of parity OBDDs becomes the definition of
parity BDDs.

We consider the number of vertices as the size of the @AOBDD as in
case of @OBDDs ([6]). As in case of @OBDDs the actual storage size of
@AOBDDs can be larger. The storage size of a @AOBDD with the size S
belongs both to Q(S) and O(nS?). Let 7’ be the reversed permutation to =,
ie. 7/ (i) = m(n+ 1 —1). It is clear that the size of the minimal 7—6®AOBDD
is equal to the size of the minimal 7'~-®AOBDD.

We write fs for the function represented by a @AOBDD B. The value of
fe(wi,ws, ..., wy,)is 1 iff there is an odd number of dipaths from the source to
the sink using only admissible arcs for an assignment w; to z; (1 < ¢ < n). For
an assignment of Boolean values to the variables the set of admissible arcs is
the set of all arcs from the sink and arcs for which their variables and Boolean
values labelled to them are consistent with the given assignment. Notice that
the representation of Boolean functions with the additional constraint from
the previous paragraph becomes the represenation of Boolean function for
@OBDDs. It is possible to extend our definition of a parity arc—ordered BDD

1We abbreviate directed graph to digraph.



to a shared parity AOBDD with more sources to represent the set of Boolean
functions in the same manner as in [6].

It is a straightforward use of the definition to implement an algorithm for
computing the function represented by a @AOBDD with running time linear
in the number of arcs.

Let v be a vertex of a @AOBDD then f, is a function of Boolean variables
Z1,...,Zn which is equal 1 iff there is an odd number of admissible dipaths
for the given variable-assignment from v to the sink. Note that if v is the
source then f, is the function represented by the @AOBDD; if v is the sink
then f, is the all-one Boolean function. We call the function f, the function
represented by the vertex v. Let V be a set of vertices then fy is @yev fo
where @ is Fy—addition. Let us denote by A Fr—multiplication and by span F'
the linear span of the set of Boolean functions F.

Let f be a Boolean function of n variables and F' be a set of n—variable
Boolean functions. Let the function A;f be defined in the following way (@
is Fy-addition):

(Aif)(wl;---,xn):f(O,---7071,x7,'+17---7xn)@f(oy---7070,$7}+1,---7mn)

Let Af beaset {A;f,1 <i<n}and AF be the union UfeF Af. Let AVF
be AA'"'F for j > 1 and A°F be F and A* f be an union | J° ) A*{f}. Note
that A*f=J"_, A{f} and that A*f is the smallest set of Boolean functions
containing f and closed under all operations A; (1 <7 < n).

Let ©;f be the set of all n-variable boolean functions g for which there
exists constants ci, ..., ¢; such that g(z1,...,2,) = f(c1,..-,Ci, Tit1, .-+, Tn).
Let ©f be equal to Uj_g<i f.

3 Size—Minimality

In the whole section we assume that the permutation of variable indices is
an identity, i.e. w(¢) = 4. First, we prove that the usage of negative arcs is
needless.

Theorem 3.1 Let B be a ®AOBDD. Then there exists a ®AOBDD repre-
senting the same function and of the same size without negative arcs.

Proof: First we allow the digraph to contain unlabelled arcs from all its
vertices; these arcs are admissible for every variable-assignment. In the
@AOBDD B we replace each arc labelled with variable z; and value 0 with
an unlabelled arc and an arc labelled with x; and 1. It is easy to see that this
operation does not affect the function represented by the @AOBDD.

Let v1,vs,...,v, be an ordering of the vertices of B such that there is no
arc from v; to v; for any ¢ > j. This ordering exists because the digraph is
acyclic. Note that v; has to be the source and v, has to be the sink. Define an
operation remove(e) for an unlabelled arc e from v to w as follows: First we
duplicate the vertex v and create a new vertex v’ such that arcs from the same
vertices and with the same labels lead to the vertex v’ as to v. We remove e
from arcs leading from v and make e to be the only arc leading from v'. It
is obvious that the function represented by the @AOBDD has not changed.
Now we contract the arc leading from v', i.e. arcs leading to v’ are redirected
to w (their labels are not changed). Remember there was only one arc leading
from v’ and this arc was unlabelled. If there arise two arcs with the same label
joining the same pair of vertices we remove both of them. Note that the whole
operation does not affect the represented function, the size of the ®AOBDD
and it can create a new unlabelled arc leading only from descendants of v. If
we apply the operation remove to all unlabelled arcs from v,—_1, and then to
all unlabelled arcs from v,—2, ..., and then to all unlabelled arcs from wv2, the
resulting @AOBDD has got the properties described in the theorem. B

Notice that in the same way it is possible to prove the following theorems:



Theorem 3.2 Let B be a ®OBDD. Then there exists a @ OBDD representing
the same function and of the same size without negative arcs.

Theorem 3.3 Let B be a ®BDD. Then there exists a @BDD representing
the same function and of the same size without negative arcs.

Notice that it is possible to exchange the role of negative and positive arcs
in Theorem 3.1, Theorem 3.2 and Theorem 3.3. In the following we consider
only @AOBDDs which do not contain negative arcs. Hence every labelled arc
is positive.

Before proving the main theorem of this section we state the following
three lemmas:

Lemma 3.1 Let V be a set of vertices and let the source be not an element
of V. Then for each 1 < i < n there exists a set of vertices W such that
Nifv = fw and W does not contain the source.

Proof: It is enough to set W to the set of all vertices to which odd number
of arcs labelled with variable x; lead from the vertices of the set V. l

Lemma 3.2 Let f be an n-variable Boolean function. Then there are uniquely
determined m-variable Boolean functions hi,...,h, and Boolean constant ¢
which satisfy:

e The function h; does not essentially depend on the first i variables.
. fZCGB@in:l (.’I:l /\hi)
The function h; is equal to A;f and the constant c is equal to f(0,...,0).

Proof: We prove the lemma by the induction on n. For n = 1 the lemma is
clear. Let n > 1. Since the expression ¢ ® @?:2 (zi A h;) does not essentially
depend on the first variable and x1 A h1 is zero for 1 = 0 it must hold that
0,2, ..., 20) = c®@]_, (xi A hs). It follows from the induction hypothesis
applied to the restriction of f to the last n — 1 variables that ¢ = f(0,...,0)
and h; = A;f for 4 > 2 and that these functions are uniquely determined.
Thus it holds:

f(x1,x2,...,2p) = (xlAhl)@CGB@(!I}i/\hi)

=2
f($1,$2,...,.’1}n) = (.’El /\hl)@f(o,ﬂ'}g,.--,wn)
f(1a$2;---;$n) =h EBf(O,.’L‘z,...,:L'n)
This implies that h1 = A1 f and that hy is uniquely determined. B

The main result of this section is the following theorem:

Theorem 3.4 Let @AOBDD B be the size-minimal @AOBDD representing
the function f, i.e. one with the minimal number of vertices. Then the number
of its vertices is equal to 1 + dimp, span A* f

Proof: Let V be the vertices where an odd number of arcs from the source
lead to. Because all arcs from the source are unlabelled it is clear that fy = fg.
From Lemma 3.1 it follows that for each function g € A*f there exists a set
of vertices W not containing the source such that g = fw. Thus also for every
g € span A* f there exists a set of vertices W not containing the source such
that ¢ = fw. Thus the number of vertices distinct from the source must be
at least dimp, span A* f and thus there must be at least 1+ dimp, span A* f
vertices altogether.

Now, we prove that the number of vertices mentioned in the theorem is
sufficient. If the function is all-zero then dimr, span A* f equals 0 and the
@AOBDD with the only vertex (the source) represents the function. Other-
wise I € A*f where I is the all-one Boolean function. Let A*® f be those



functions which belong to A*f and do not essentially depend on the vari-
ables z1,...,z; (remember we have assumed that 7 is the identity), clearly
AN F=NOF A Wf > D AME ST}, Let fi,..., fr be a basis of
span A* f with the following property: For each ¢ there exists j that f;, ..., fx
is a basis of span A*(® f. It is clear that fj, necessarilly equals I. W.Lo.g. we
can assume 7 < k f;(0,...,0) = 0; if this is not the case then it is enough to
replace f; with f; + I. Now, we construct a @AOBDD, each vertex of which
represents one of the basis functions and which contains only these vertices
and the source.

The @AOBDD construction is made from the end of the basis sequence.
The vertex representing fr = I is the sink. Let ¢ < k and assume the structure
with vertices for fi41,..., fr has been constructed. Let ! be the index such
that f; € span A*® f\span A*U*D f. From the definition and Lemma 3.2 it
follows that f; = @7, (x; A A fi). Since A;f; € A9 f for each I1+1 < j <
n the function A; f; is expressible as the combination of some of the functions
fi+1y---, fr- Add a new vertex w to represent the function f; and for j such
that [+1 < j < n add arcs from this vertex to the vertices whose combination
represent Ajf; and label these arcs with z; (and the value one). Note that
arcs leading from the vertex representing f; € span A*® f\span A*UFD f are
labelled only with variables x;4+1,...,%, and those labelled with the variable
x; lead to vertices representing the basis of span A*U) £ Thus the constructed
digraph really satisfies the variable—ordering condition. Now add (unlabelled)
arcs from the source to the vertices whose combination represents the function

f.m

Notice that w.l.o.g. we can in the proof assume that fi € {f, f + I}
and thus we obtain the following corollary (the similar result also holds for
©OBDDs):

Corollary 3.1 For each function f there exists a size-minimal @ AOBDD
with at most 2 unlabelled arcs from the source and without any negative arcs.
Moreover if f(0,...,0) equals O then there exists a size—minimal @ AOBDD
with at most one unlabelled arc. If f(0,...,0) equals 1 then one of the unla-
belled arcs leads from the source to the sink.

Notice that in the same way we could prove the following theorem:

Theorem 3.5 Let B be the size-minimal shared @ AOBDD representing func-
tions fi,..., fr. Then its size equals:

k + dimp, span Uf_; A*f;

Note that the functions in span A* f need not to be expressible as the
linear combinations of functions represented by the vertices of the diagram.
The just proven theorems give only the formula for the size of the size-minimal
diagram, they do not relate the functions represented by the vertices of the
diagram to functions in span A* f.

The following theorem is proved in [6]:

Theorem 3.6 Let B be the size—minimal shared @ OBDD representing func-
tions fi,..., fr. Then its size equals:

k + dimp, span Uk, O fi
Note that span A* f C span ¢ f. Thus the following corollary holds:

Corollary 3.2 The size of a size—minimal ® AOBDD representing functions
fi, --, fr is at most the size of a size-minimal @ OBDD representing the
same set of functions.

The relation between the size of a size-minimal @AOBDD and a size—
minimal @OBDD is described in the next theorem. All the @(A)OBDDs
considered since now to the end of the section may contain both positive and
negative arcs. Let us first prove the following lemma:



Lemma 3.3 Let hy(z1,...,2n) =210...0Ts. Bvery @ OBDD representing
function h, has at least 2n arcs.

Proof: Suppose the existence of a ®OBDD representing h, with at most
2n — 1 arcs and select of them By with the most arcs leading from the source.

Let D; be the sum of the outdegrees of vertices labelled with z;. Clearly
2?21 D; < 2n — 2 and D; > 1. Choose i such that D;;, =1 and there is no
arc leading from the source to the (only) vertex labelled with z;, — it must
exist: otherwise there is for all ¢ such that D; = 1 an arc from the source
to the vertex labelled with x;, thus the outdegree of the source is at least
|{7|D; = 1}| and the sum of all outdegrees in By is at least 2n. Let vy denote
the vertex labelled with x;,. Remove vo (with all adjacent arcs) from Bg and
get a ®OBDD with at most 2n — 3 arcs representing either h,_1 or hp_1 @1
(a function of the variables without z;,). Now add a vertex w, an arc from
the source to w and an arc from w to the sink labelled as the only arc leading
from vg in the original @OBDD. The constructed @OBDD represents h, and
has at most 2n — 1 arcs and more arcs from the source than the original one
— the contradiction to the choice of Bo. B

Notice that in the proof of this (rather technical) lemma we did not use
that the parity binary decision diagram was ordered.

Theorem 3.7 Let f be an arbitrary Boolean function.

1. Let B be an arbitrary & OBDD representing the function f. Then there
exists a ®AOBDD By with at most the same number of vertices as By
has and with at most the same number of arcs as Bi.

2. Let B1 be an arbitrary ®AOBDD representing the function f. Then
there ezists a @OBDD By with at most O(n)-times more vertices than
B1 has and with at most O(1)—times more arcs than Bi.

All bounds given in this theorem are assymptotically sharp.

Proof: The first part of the theorem is clear since @AOBDDs generalize
@OBDDs. The sharpness is witnessed by function g(z1,...,2Zn) = z1V...VZyp.
Let gr(z1,...,Zn) = Tk V...V Z,. Then set Og is equal to {g1,...,9n,I,0}
and the set Ag is equal to {I @ g¢2,...,I ® gn,I}. Thus it is clear that
span ©Og = span A* g and the sizes of the minimal @AOBDD for g and the
minimal @OBDD for g are equal (see Theorem 3.4 and Theorem 3.6).

In order to prove the second part of the theorem we show how to construct
a @OBDD B, with at most n—times more vertices and at most three—times
more arcs than a @AOBDD B; has. Let v be a vertex of B; and z;,, ..., z;, be
variables used in labels of arcs leading from v. Create new vertices v!,...,v"
and redirect arcs leading to v to vertex v! (preserving their labels). Join v*
to each of vertices v2,...,v" with the pair of arcs, one labelled with z;, and
0 and the other labelled with z;, and 1. Then we make leading from v’ the
arcs from v labelled with z;;. Now we remove the vertex v from the digraph
(there are no arcs leading either from or to v at the present). Notice that
the represented function has not changed during the process. If we apply the
above process to all vertices of By then we obtain a ®OBDD with at most
O(n)-times more vertices and at most O(1)-times more arcs.

The sharpness is witnessed by function hA(z1,...,2,) =21 P...Pzn. The
size of the minimal @AOBDD is clearly 3 and it contains n + 1 arcs; the size
of the minimal @OBDD is n + 2 and it contains 2n arcs (see Lemma 3.3). B

4 Parity AOBDD uniqueness properties

In order to formulate the uniqueness conditions let us define the PDFS® al-
gorithm for parity AOBDDs: The algorithm is the usual graph depthfirst

2P states for priority



search algorithm started from the source of the @AOBDD with one addi-
tional rule: if there are more possibilities to select an arc to continue through
it always continues through the arc with the m—greatest variable and it prefers
an arc leading to the sink among all such arcs. We call the (rooted) tree
with labelled arcs produced by the algorithm PDFS-tree. Notice that there
might exist more different PDFS—trees for the same parity AOBDD. We call
a parity (A)OBDD Ulinearly reduced if functions represented by its vertices dif-
ferent from the source are linearly independent. We say that a parity AOBDD
satisfies the uniqueness conditions if it satisfies the following four conditions:

e It is linearly reduced.
e It contains no negative arcs.

e It contains at most one unlabelled arc to a non-sink vertex and at most
one to the sink; in particular the degree of its source is at most two.

o Its PDFS—tree is unique.

The ordering of the vertices and the tree—arcs of an acyclic digraph induced
by (P)DFS is the ordering induced by the pre—order listing of its vertices
and tree—arcs, i.e. a vertex or a tree—arc precedes all vertices and tree—arcs
first visited by the (P)DFS algorithm after it. It is clear that after each arc
immediately follows the vertex to which it leads. The sequence of vertices
induced by (P)DFS is the sequence of all vertices ordered consisently to the
ordering induced by (P)DFS.

We study the properties of uniqueness conditions for parity AOBDDs in
the following four theorems.

Theorem 4.1 For each Boolean function f there exists a 1-®AOBDD which
satisfies the uniqueness conditions.

The proof of this theorem is postponed to the section 6.

Theorem 4.2 Any n1-®AOBDD B which satisfies the uniqueness conditions
15 stze—minimal.

Proof: Let f be the function represented by B and vo, .. . , v, be the sequence
of B’s vertices induced by PDFS; note that vo is the source. We prove by
induction on 7 that f,, € span A* f. If there are two unlabelled arcs in B
then v; is the sink and the function represented by v» is f + I. If there is only
one unlabelled arc in B then the function represented by v; is f itself. Thus
v; € span A* f holds for vertices visited through an unlabelled arc. Let v;
be a vertex visited through an arc labelled with z; and let vi, (k < %) be its
tree-parent. If v; is the sink then it is clear that v; € span A* f. Otherwise,
from the induction hypothesis we know that f,, € span A* f. Let W be all
the vertices accessible from v, by an arc labelled with x;. The vertex v; is
the vertex with the greatest index among the vertices in W; if this was not
the case then there would be more arcs labelled with z; leading to unvisited
vertices when the algorithm continued through the arc to v; and the PDFS-
tree of B would not be unique. From the facts that® (see Lemma 3.1) A, f,, =
Docw fus fo, € span A* f and fo, € span A* f for all w € W,w # v it
follows that fo, = Aj fu, © @, e wpo, fw and thus f,, € span A f.

From the just proven fact that ’alrthe functions represented by vertices of
B are in span A* f and from the fact that B is linearly reduced we conclude
that B is size-minimal (see Theorem 3.4). B

There can be more ®-AOBDDs satisfying the uniqueness conditions rep-
resenting the same boolean function; however they have in some sense the
same structure; this is stated and proven in the following theorem.

3Remember that A j fix variables m—smaller or equal to z;.



Lemma 4.1 Let FF C G be sets of Boolean functions, fi,f2 functions which
are not contained in F', span {fi1 }UF = span {f2 }UF and let span F be closed
under all operations Ay, ..., An. Then span GU{Arf1} =span GU{Af2}.

Proof: Clearly f' = f1 @ f» € span F and thus Axf = (Arf1)® (Arf2) € F
(F is closed under Ay). The lemma immediately follows. B

Theorem 4.3 Let B1 and By be two n—®AOBDDs which satisfy the unique-
ness conditions and represent the same function f. Let vy, vi,..., v, be the
vertices of B1 and v, vi,...,vZ, be the vertices of Bz in the ordering in-
duced by PDFS. Then their PDFS-trees are isomorphic and it holds for each
1<k<m:

span {fv},l <4<k} =span {fv?,l <i<k}

Proof: We prove by the induction on ¢ that the PDFS—subtrees induced by
vg,...,v; and vd,...,v}, i.e. subtrees containing the tree-arcs leading only
between v1,...,v; and v?,...,v?, are isomorphic and span {fv%,...,fvil} =
span {f’u%, et f’uf}

Let a be the next arc of the PDFS—tree of B;. If the next arc of the
PDFS—tree of By does not correspond to a, w.l.o.g. we assume that a leads
from the vertex with a greater index than the next PDFS-tree arc in B2 and
if they both lead from the vertex with the same index then a is labelled with
a m—greater variable. Let j be the index of the vertex a leads from and zj the
variable it is labelled with. Both functions fv} and fv? are in the following

set (because the @AOBDDs are linearly reduced):

Span {fv%,...,fv}}\span {fv}7"'7fv}_ }=

1

Span {fU%?' "7f1)]2,} \Span {f’U%’ . "fUJQ._l}
Both span {fv},...,fv}_l} = span {fﬁ, . "f”f_l} are closed under all op-
erations Ag,...,A, because there are no arcs labelled with T, (z), ..., Tx(n)
leading from v1,.. .,v},l and v3,.. .,v]?,l to the vertices in the ordering induced
by PDFS greater or equal to v; or vf, i.e. to the vertices first visited after
v} and v;. To see this use the priority rule of the PDFS algorithm to the
vertices on the path from v§ to v} and on the path from vZ to v]?. Thus due
to Lemma 4.1 (F = {f’u%! .. '7fv]1._1} = {fvf’- . -:ffujz._l}a fi= fv}! fa= fv]?:

G= {fv}""afvil_l} = {fvfa'--afv?_l}):
span {fo1,-..; for_ s Drfor} =span{foz,..., fiz_ Drfoz}

For the contradiction assume that the PDFS—trees differ at a, i.e. the arc
corresponding to a is missing in By (due to our assumption and the priority
rule of the PDFS algorithm). The function A f,1 is not expressible as a sum
of functions represented by vertices of B; PDFSismaller than a (i.e. visited
before it) because Bj is linearly reduced. Since in B; all the edges labelled with
zr from v]? lead to the vertices smaller than v]? , this function is expressible
as a sum of functions represented by corresponding vertices of Bz but the
linear spans of functions represented by them are equal in B; and By — the
contradiction. W

Unfortunately the equality of the linear spans does not imply that f,1 =
f,2 for all 1 <4 < m; one can find non—-isomorphic parity AOBDDs repre-
senting the same function which both satisfy the uniqueness conditions.

4The numbers of the vertices are equal due to Theorem 4.2.



5 Parity OBDD uniqueness properties

We define the PDFS algorithm for parity OBDDs first. The algorithm is
the usual graph depth—first search algorithm started from the source of the
@®OBDD with one additional rule: if there are more possibilities to select an
arc to continue through it always continues through the arc leading to the
vertex labelled with the m—greatest variable; if there is an arc leading to the
sink it prefers this arc to any other. We call the (rooted) tree with labelled
vertices produced by the algorithm PDFS—tree. As in case of parity AOBDDs
there might exist more different PDFS—trees for the same parity OBDD.

We say that a parity OBDD satisfies the uniqueness conditions if it satisfies
the following four conditions:

e It is linearly reduced.
e It contains no negative arcs.
e Its PDFS—tree is unique.

e If there is a tree arc leading from its vertex v to the vertex labelled with
x; then there are no other arcs leading from v to any vertex labelled
with ;.

Notice that there can be either exactly one tree arc leading from v to a vertex
labelled with z; (and no other arcs) or any number of non-tree arcs leading
from v to vertices labelled with z;.

Theorem 5.1 For each Boolean function f there exists a m—®OBDD repre-
senting f which satisfies the uniqueness conditions.

Proof: Asin case of m-®AOBDDs we could postpone the proof to the section
6 but it is useful to present also the following non-algorithmic proof.

W.lo.g. assume 7 is an identity. First we create a sequence fi, ..., fon+1_;
of (not necessarily distinct) Boolean functions. We define the operation O
(1<i<n+1) as follows:

e For 1 < i< mnlet OFf =0OFf0 f0qf 0 (0 e f!) where f° is

obtained from f by fixing® z; to zero and f' by fixing it to one.
e Fori=n+1let O f=f

We abbreviate O'f to Of. We create the basis g1,...,gm of span Of =
span Of (see Theorem 3.6 and Lemma 5.2) from sequence Of by greedy algo-
rithm, i.e. we take the first non—trivial function in Of and then (repeatedly)
extend the basis with the first linearly independent function until we obtain
the basis of &f. We say the function in the sequence Of was created by the
operation OF if it was added to the sequence directly by the operation 0¥ i.e.
not by the operation O*t! in the definition of O*. Note that the definition
of OF guarantees that the function created by OF does not essentially depend
on the first k¥ — 1 variables.

Let us state some properties of the just defined operation and the selected
basis in the following lemmas:

Lemma 5.1 Consider the set Z of all {0, 1, x}—n-tuples (21, ..., 2zn) for which
z; = % implies z; = % for all j > i. Let f[z] for z € Z be a subfunction of
f obtained by fizing all variables x; corresponding to entries different from
* to 2;%. Define the ordering <: 0 < % < 1; order Z lezicographically with
respect to < and let f1,..., foni1_, be the resulting sequence of functions. Let
Of = fi,..., fan+1_1. Then the following holds for every 1 < k < 2"+t —1:

span {fla"';fk} = span {fi’?f’:?}

5The resulting function is a subfunction of f, i.e. the function of the same number of variables
as f which does not esentially depend on the fixed variables.
SNote that Of = {f[2],2 € Z}.
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Proof: The proof proceeds by the induction on n (the number of variables).
For n = 1 the lemma is clear since O' f = £(0), f(z) — £(0), f(1) — £(0). Sup-
pose n > 1 now. The equality of linear spans for k < 2" follows from the appli-
cation of the induction hypothesis to the restriction of f(0,z2,...,Z») to the
last n—1 variables. The function for = f(z1,...,2,)® f(0,22,...,2,). Thus
the equality holds also for £ = 2™ because of f[0,%,...,%x] = f(0,z2,...,2,) €
span {fi,...,fan}. The equality below follows from the application of the
induction hypothesis to the restriction of g(x2,...,xn) = f(0,22,...,2,) ®
f(1,z2,...,2,) to the last n — 1 variables (k > 2"); all the function f[z] with
z1 = 0 are among the functions fi,..., fon_;:

span {f2"+1a"'7fk} = Span {g[O,...,0,0],9[0,...,0,*],9[0,...,0, 1]’} =

spa‘n {f[0,0,---,0,0]@f[]-,(],---,0,0],f[0,0,---,0,*]@f[]-,o,---,o,*],
fl0,0,...,0,1] &® f[1,0,...,0,1],...}
Since the equality of the linear spans holds also for &£ > 2". B

We use notation Of = fi1,..., fon+1_; in the rest of the proof of Theorem
5.1.
The corollary of Lemma 5.1 is the following lemma:

Lemma 5.2
span O f = span {Of}

Lemma 5.3 If f; € Of is non—constant and x; is the first variable on which
f; essentially depends then f;j(z1,...,xn) s of the form z; A h(z1,...,Tn)
where h is an n-variable Boolean function which does not essentially depend
on the first i variable. Moreover, the function f; was created by O° and the
function h is uniquely determined and satisfies:

h=Af;

Proof: Let f; be created by OF. Because f; essentially depends on z; it
follows that k < i. Since k < n, the definition of OF implies that f = ¢° @ ¢
where ¢° is obtained from g by fixing s to zero. If g did not essentially
depend on zj then ¢g° @ g would be the all-zero function because of g = g°.
Hence g essentially depends on zj and g° @ g also essentially depends on z
and thus s = k.

If z;, = 0 then the function f; = ¢° ® g is clearly zero. Hence f; =
ziA(g°Dg) =i A (¢° @ g') (remember k = i) where g' is obtained from g
by fixing x1 to one. Now, the uniqueness and the equality h = A; f; follows
from Lemma 3.2. B

Lemma 5.4 If h does not essentially depend on its first k variables then
span Oh = span Ok and Ot h contains in particular the following func-
tions (ordered by their appearance in the sequence): h(0,...,0), o A Aph,
Tn—1 NDAp_1h, ..., Tr41 N A]H_lh.

Proof: The proof proceeds by the induction on k; we start with k¥ = n and
continue to k = 0. The lemma is clear for k = n.

Suppose k < n now. Let h’ be the function obtained from h by fixing
Zk+1 to zero; clearly h(0,...,0) = h'(0,...,0) and Ath = AR for I >k + 1.
The functions h(0,...,0) and z; A Ak (for I > k + 1) are contained (in this
order) in the sequence O**2h/ due to the induction hypothesis. The function
h—h' = zpq1 A Apyih is contained in the sequence OFF'h after all the other
above mentioned functions due to the definition of OFF!,

The equality span Oh = span O*T!h follows by the application of Lemma
5.2 to the restriction of h to the last n — k variables. B

11



Lemma 5.5 Ifh € span Of and h does not essentially depend on its first k
variables then it can be ezpressed’ as a combination of gi,...,gm not essen-
tially depending on their first k variables.

Proof: Let h = P, ; g; and I C I be the indices of functions g; essentially
depending on some of variables z1, ..., 2. Since h does not essentially depend
on any of z1, ...,z then fixing these variables to zero does not affect h. But
all the functions g;, i € I', are all-zero functions after fixing these variables to
zero (Lemma 5.3) and thus h = @ Because g1, ..., 9m is a basis of
span O f it follows I' = (). W

ien\1 9i

Lemma 5.6 If function f; € Of was not selected to the basis and xi is
the first variable on which f; essentially depends then f; is expressed as a
combination of functions, preceding it in Of, whose first variables on which
they essentially depend are all xy.

Proof: Let f; = @,., 9; where for all 4 € I holds i < j; this is possible
because f; was not selected to the basis. Let I’ C I be the indices of functions
g essentially depending only on variables Zx+1,...,%,. No function g;, i € I,
essentially depends on any of variables z1,...,zr—1 (Lemma 5.5). Fix zj to
zero; then f; and g;,7 € I\ I', are the all-zero functions (Lemma 5.3). But the
fixing xx to zero does not affect any function g;, i € I', and from f; = €D, ; g:
it follows that €P,., gi is the all-zero function and thus f; = P

Because g1, - - -, gm is a basis of span Of it follows I' = (). B

iennr 9

Let us continue the proof of Theorem 5.1 and construct the desired parity
OBDD now. We call its vertices vo,...,Un; vo is the source and v1,...,vn
are vertices representing gi,...,gm. If gr (1 < k < m) was created by O°
then it does not essentially depend on the first ¢ — 1 variables and if g; is
not constant then it essentially depends on the i-th variable (see Lemma
5.3). If gp is constant then it must be the all-one function, otherwise it
would not have been chosen to the basis, and vy is the sink. If g; is not
constant then g = z; A ((@?:H_l [ IWAWANIAY; gk) ® (Aige)(0,... ,0)) due to
Lemma 3.2 and Lemma 5.3. From Lemma 5.4 it follows that O'F! A; g
(the sequence of functions immediately following gx) contains all the follow-
ing functions: (Aigr)(0,...,0), Tn A Dp Ai Grye -y Tig1 A D1 Aj gr. The
vertex vy is labelled with xz; and the arcs from it lead to the vertices repre-
senting (A;gr)(0,...,0),2n A Dp A Gieye - oy Tix1 A Dir1 D; gr. If the func-
tion itself is not represented by a vertex there are arcs leading from v to
the set of vertices representing the corresponding linear combination. All
the new arcs are labelled by ones. It is a straightforward use of Lemma
3.2 and Lemma 5.3 (these lemmas imply the already mentioned equality
gy = T; N\ ((@7:1’4—1 L IRAWANIAY] gk) D (Aigk)(o, Cy 0))) to check that vy rep-
resents gg.

The resulting digraph is really a 7-¢OBDD, i.e. we have not violated the
ordering constraint during its construction: if z; is the first variable on which
g, essentially depends then vy, is is labelled with z; (due to the way of the con-
struction); if f; € Of was not selected to the basis and z; is the first variable
on which it essentially depends, it can be expressed as a linear combination
of some functions g1, ..., gm but for each of them the first variable which it
essentially depends on is z; (Lemma 5.6) and thus the vertices corresponding
to them are labelled with xz; — i.e. the arcs from the vertex labelled with z;
lead to the vertices labelled with z;, j > <.

It remains to prove that the constructed parity OBDD satisfies the unique-
ness conditions. It is obviously linearly reduced and it contains no negative
arcs. Let Py be the set of all dipaths from the source to vg; assign to each
dipath the string of indices of the variables assigned to the vertices on the

"Since g1, .. .,9m is a basis of span O f h is uniquelly expressible as a combination of g1, ..., gm.
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dipath and assign to each vertex vy the lexicographically greatest string pg
from set Py; we consider that the prefix of any string is greater than the
string itself. It is a straightforward work (using the way in which the parity
OBDD was constructed) to check that pi1,...,pm is a decreasing sequence of
strings; the vertex to which is assigned a lexicographically greater string is
visited by the PDFS algorithm before the vertex with a smaller one. Thus the
vertices are visited by the PDFS algorithm in the order of increasing indices
(vo,v1,v2,...,vm). Now, suppose for the contradiction that the PDFS—tree
is not unique - that is there is a vertex v (labelled with ;) representing g
where the algorithm can choose an arc to continue through from several arcs;
all these arcs lead to the vertices labelled with the same variable (say z;) and
due to Lemma 3.2, Lemma 5.3 and Lemma 5.6 the sum of the functions they
represent is £; A A; A; gr. Function z; A Aj A; gr in the sequence created
by O+ immediately following gz was not included to the basis of span O f
(if it was included the corresponding vertex is the only vertex labelled with
z; to which an arc from vy leads) and thus can be expressed as a linear com-
bination of other functions (let G’ be the set of these functions) preceding
2; AAj Aj g, in Of. Due to Lemma 5.3 and Lemma 5.6 the first variable on
which any function in G’ essentially depend is z;. But because of the defini-
tion of O no function between gr and x; A A; A; gi essentially depends on
x; (consider the position of z; A Aj A; gi in the sequence Of as discussed in
the proof of Lemma 5.4) and thus all functions in G’ precede the function gy
in Of. But that means that all the vertices labelled with z; to which an arc
from v, leads were already visited — the contradiction. The last uniqueness
condition immediately follows from the above discussion and Lemma 5.6. B

Let turn our attention to properties of any m—@OBDDs satisfying the
uniqueness conditions.

Theorem 5.2 Fach n—-®OBDD B which satisfies the uniqueness conditions
is size—minimal.

Proof: Let f be the function represented by B and v, ..., vs be the sequence
of B’s vertices induced by PDFS; note that vi is the source. We prove by
induction on 7 that f,;, € span ¢f. For ¢ = 1 the statement is trivial since
vy is the source and f,, = f. Suppose ¢ is greater than 1. Let v; be the
tree-parent of v; (in particular, k& < 7). We distinguish several cases:

e The vertex vy is the source and v; is the sink. All the arcs are positive
and thus fy, (0,...,0) is equal to 1. Thus the all-one function f,, is in

span < f.

e The vertex v is not the source and v; is the sink. Let vx be labelled
with . All the arcs are positive and thus f,, (z1,...,2x) is equal to
1 for zjy = 1 and ; = 0,1 # k’. Thus the all-one function f,, is in
span < f.

e The vertex vy, is the source and v; is not the sink. Let v; be labelled with
x;r. Note that v; is the only son of the source (vi) labelled with x;,. Let
W be the set of all the sons of the source (vi) labelled with variables
m—greater than x; including the sink if it is the son of the source (vg).
Due to the induction hypothesis {fu;w € W} C span Of. Let f be
the function obtained from f = f,, by fixing all the variables strictly =-
smaller than z;s to zero. Clearly f' € span Off and f' = f,, &P
and thus also f,; € span ©f.

weWw fw

e Neither vy is the source nor v; is the sink. Let v and v; be labelled
with zz and z;. Note that v; is the only son of v labelled with x;.
Let W be the set of all the sons of v, labelled with variables w—greater
than z; including the sink if it is the son of vx. Due to the induction
hypothesis {fu;w € W} C span Of. Let f' be the function obtained
from f,, by fixing z; to one and all the variables strictly m-smaller
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than z; except for x;s to zero. Clearly f' € span Of,, C span ¢f and
f''= fo; © @ ey fo and thus also f,; € span Of.

From the just proven fact that all the functions represented by vertices of B
are in span ¢ f and from the fact that B is linearly reduced we conclude that
B is size-minimal (Theorem 3.6). B

Theorem 5.3 Let B1 and By two n—®OBDDs which satisfy the uniqueness
conditions and represent the same function f. Then their PDFS—trees and the
diagrams themselves are isomorphic.

Proof: Let v3,. .., v, be the sequence of B;’s vertices induced by PDFS and
v2,...,v2 be the sequence of By’s vertices induced by PDFS; the numbers of
the vertices are equal due to Theorem 5.2. By the induction of ¢ we prove
that the PDFS—subtrees induced by v,...,v} and vZ,...,v? are isomorphic
and f,1 = f,2.

Let a be the next arc of the PDFS—tree of By. If the next arc of the
PDFS—tree of By does not correspond to a, w.l.o.g. we assume that a leads
from the vertex with a greater index than the next PDFS—tree arc in By and if
they both lead from the vertex with the same index then a leads to the vertex
testing a m—greater variable. Let j be the index of the vertex a leads from, zy,
the variable tested by U} and x; the variable tested by the vertex to which a
leads. Both functions f,1 and f,2 are due to the induction hypothesis equal.

The function represented by the vertex to which a leads is due to Lemma
3.2 z; A Ay Ay f,1. For the contradiction assume that PDFS—trees differ at
J

a, i.e. the corresponding arc to a is missing in By (due to our assumption
and the priority rule of the PDFS algorithm). The function z; A A; Ay f,1 is
J

expressible as a sum of functions represented by vertices of By PDFS—smaller
than a (i.e. visited before it) because B is linearly reduced. But this function
is expressible as a sum of functions represented by corresponding vertices of
B> but the functions represented by them are equal — the contradiction.

We have proved that the functions represented by corresponding vertices
(v} and v}) in B; and B» are equal. Because B; and Bj are linearly reduced
they are isomorphic. B

Both the PDFS algorithm for @AOBDDs and $OBDDs can be modified
to shared @AOBDDs and shared @OBDDs representing functions fi,..., fi
using the following procedure: We create a new vertex, call it the supersource,
and add arcs leading from it to all its k sources. The PDFS algorithm starts
from the supersource, first visiting the source representing fi, then the source
representing f» etc. During the search it applies all its rules. After removing
the supersource we obtain PDFS—forest. The uniqueness conditions for shared
SAOBDDs and @OBDDs remain unchanged; of course we consider a PDFS—
forest instead of a PDFS—tree. In the same way the following two theorems
can be proved:

Theorem 5.4 For each sequence of Boolean functions there exists a shared
w-®@AOBDD By which satisfies the uniqueness conditions. Moreover, Bo is
size—minimal. The PDFS—forest of any other shared n-©AOBDD B represent-
ing the same sequence of functions and satisfying the uniqueness conditions is
isomorphic to the PDFS—forest of Bo and the linear spans of functions repre-
sented by the first k vertices visited by the algorithm PDFS in Bo and B are
equal for all k.

Theorem 5.5 For each sequence of Boolean functions there exists a shared
w-®@O0BDD Bg which satisfies the uniqueness conditions. Moreover, Bo is
size—minimal. Any other shared w-® OBDD representing the same sequence of
Boolean functions and satisfying the uniqueness conditions is isomorphic to
Bo.
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Table 1: Running times for presented algorithms

Algorithm Parity OBDDs | Parity AOBDDs
The storage size (T) 0(S?) 0(nS?)
Evaluation o(T) o(T)
Removal of negative—arcs 0(S®) 0(nS?)
Linear reduction 0(S?) 0O(nS?)
Unification 0(5?%) 0(nS?)
Minimization 0(5®) 0(nS?)
The PDFS algorithm O(T +n) O(T +n)

6 Algorithms

In this section we discuss basic algorithms for parity OBDDs and parity AOB-
DDs. They include: Ewvaluation — evaluation of the represented function for
the given assignment of Boolean values to the variables, Remowval of negative—
arcs — modification of a @OBDD (®AOBDD) in order to get rid of all neg-
ative arcs (without enlarging its size), Linear reduction — modification of a
®OBDD (#AOBDD) to a linearly reduced one, Unification — modification of
a @OBDD (®AOBDD) to one which satisfies the uniqueness conditions and
PDFS algorithm itself. The Minimization algorithm can be implemented by
one call of Unification since the diagram which satisfies the uniqueness condi-
tions is size-minimal (Theorem 4.2 and Theorem 5.2). The achieved running
times of discussed algorithms are presented in Table 1. All discussed algo-
rithms are easily adaptable to case of shared @OBDDs and shared @AOBDDs
yielding the same running time.

Recall that S is the size of @OBDD or @AOBDD, i.e. the number of its
vertices; the actual storage size of the diagram (T) is linear in the sum of the
number of its vertices and its arcs.

6.1 Evaluation and the PDFS algorithm

Implementation of Evaluation using DFS approach in time O(T) is trivial
(see also [4], [6]). Implementation of the PDFS algorithm uses the bucket—
sort algorithm and the usual DFS algorithm. The bucket—sort algorithm is
used to sort all the arcs together according to the priority rule (this takes
time O(T + n)) — let the resulting sequence of the arcs be a1,a2,...,ax. We
store two lists of arcs at each vertex — one contains unmarked arcs, the other
marked arcs. All arcs are unmarked at the beginning. We take the arcs in
the order in the sequence a1,a2,...,ax; each time we move the arc a; from the
list of unmarked arcs to the end of the list of marked arcs of the vertex a;
leads from. This clearly takes time O(T). At the end the lists of marked arcs
contain all the arcs and moreover the lists are sorted according to the priority
rule. The usual DFS algorithm is started and it visits the arcs according to
their order in the lists of marked arcs (this clearly takes time O(T')). Testing
violation of the uniqueness conditions is simple — it is enough to compare the
first and the second unvisited arcs in the list. The whole algorithm runs in
time O(T + n).

6.2 Matrix representation of (A)OBDDs and Re-
moval of negative—arcs

The remaining algorithms discussed in this section use matriz represenation
of ®OBDDs and @AOBDDs without negative arcs (see also [6]). A parity
OBDD is represented by a S x S matrix whose rows and columns are indexed

by vertices of the @OBDD; its entry is one iff there is an arc leading from the
row—vertex to the column—vertex in the @OBDD, the other entries are zero.
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A parity AOBDD is represented by a S x nS matrix whose rows are indexed
by vertices of the @AOBDD and columns are indexed by pairs of vertices
of the ®AOBDD and variables; its entry is one iff there is an arc labelled
with the column—variable leading from the row—vertex to the column—vertex
in the ®AOBDD, the other entries are zero. Eztended matriz representation of
®»OBDDs and #AOBDDs is similar to the matrix representation but entries of
the matrix contain subsets of {0, 1, x}; these sets represent the labellings of arcs
between the corresponding vertices (and labelled with the appropriate variable
in case of ®AOBDDs). Extended matrix represenation is used only in the
algorithm Removal of negative—arcs. Transformation to and from the matrix
representation and extended matrix representation is easily implementable in
time O(S?) in case of ®OBDDs and O(nS?) in case of ®AOBDD:s for all their
used representations — it is enough to fill the matrix with zeroes in case of
matrix representation or empty sets in case of extended matrix representation
and then to take one diagram arc after another and modify appropriately the
matrix; this clearly takes time O(S?+T) in case of @OBDDs and O(nS? +T)
in case of @®AOBDDs. The transformation in the oposite direction can be
done by going through the whole matrix and adding arcs corresponding to
non—zero (non—empty—set) matrix entries to the diagram.

The rank of a vertex of a @OBDD is the variable which it is labelled with,
the rank of a vertex of a @AOBDD is the w-smallest variable labelled to any
of arcs leading from it.

Let us turn our attention to the implementation of Removal of negative—
arcs: First we create the extended matrix representation. We follow the ideas
in the proofs of Theorem 3.1 and Theorem 3.2. We replace all arcs labelled
by zero by a pair of arcs — one labelled with one and one labelled with *
(admissible for all variable assignments). We produce (using the topological-
sort algorithm) the ordering of its vertices vy, ..., v, such that there is no arc
from v; to v; for any ¢ > j. Operation remove(e) for unlabelled arc e leading
from w can be easily implemented in matrix representation of a @OBDD
(®AOBDD) in running time O(S) in case of @OBDDs and O(nS) in case of
®AOBDDs. As discussed in the proof of Theorem 3.1 newly created unlabelled
arcs lead from the vertices preceding w in the ordering and do not violate the
ordering condition. For each of O(S) vertices there can be at most O(S) (to
each other vertex at most one) arcs labelled with x and thus operation remove
is applied at most O(S?) times; this yields with the bound for the running
time of remove the desired running time. Note that the algorithm does not
affect the size (i.e. the number of vertices) of a &(A)OBDD.

6.3 Operation reexpress

An essential operation for both algorithms Linear reduction and Unification is
the operation reezpress(w, W) where w is a vertex (different from the source
and the sink) of a @(A)OBDD and W is a set of its vertices containing w.
There must be neither the source nor the sink contained in W. In case of
@OBDDs we demand that the rank of all vertices in W is the same (i.e. it
equals to the rank of w), in case of ®AOBDDs we demand that the rank of all
vertices in W is equal or m-greater than the rank of w. Operation reexpress
expects as input the matrix representation of a ®(A)OBDD without negative
arcs. The goal of reexpress is to change the function represented by w to
D.cw fu and change the structure of the ©(A)OBDD in order not to affect
either functions represented by the vertices different from w or the size of the
@®(A)OBDD. The implementation of reexpress consist of two phases:

1. Duplicate all the arcs leading from vertices of W different from w and
let the copies lead from w; remove pairs of identical arcs. In the matrix
representation that means: Add (in the sense of F» addition) all rows
corresponding to vertices of W different from w to the row representing
w.
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2. Let U be the set of vertices from which an arc leads to w. Create new
arcs from each u € U to all vertices of W except for w. In case of
@®AOBDDs label newly created arcs correspondingly to the arcs leading
from u to w. Remove pairs of identical arcs if they arise. In the matrix
representation that means: add (in the sense of F; addition) the column
coresponding to w to the columns corresponding to w € W \ {w}; in
case of @AOBDDs split the matrix to n parts with S columns each
representing arcs labelled with the same variable and proceed in the
same way in each of these parts.

Clearly, the new function represented by w is EBu cw fu- 1t is a straightforward
use of definition of ®(A)OBDDs to check that f, is the only represented
function affected by the whole operation. Because the rank of all vertices in
W was the same (in case of @AOBDDs the rank of w was the 7—smallest) we
did not violate the order constraint. Both the first phase and the second phase
of the operation require running time O(|W|S) = O(S?) in case of ®OBDDs
and O(|W|nS) = O(nS?) in case of ®AOBDDs. Thus the whole operation
requires time O(S?) for ®OBDDs and O(nS?) for ®AOBDDs. Note that if
a ®(A)OBDD is linearly reduced it is also linearly reduced after performing
the operation reexpress.

6.4 Linear reduction

The presented algorithm follows the ideas of Waack’s algorithm for linear
reduction of @OBDDs (see [6]) but we use the possibility to remove negative
arcs from the &(A)OBDD.

First we get rid of negative arcs by calling Removal of zero arcs. Then
we sort the vertices according to their rank (using the bucket-sort algo-
rithm) into a m—decreasing sequence — v, ..., vn; we find the first ¢ such that
span {fv;;.--, fo;_1 } = span {fu,,..., fv; } and express f,; as a linear combi-
nation of fu,,...,fu; 1 fo; = @, ey fw- Then we call reexpress(vi, WU {v;})
— clearly the new function represented by v; is the all-zero function and thus
it can be removed with all the arcs leading from and to v; without affecting
any of functions represented by the other vertices. But it is necessary to check
that the call of reexpress(v;, W U {v;}) is legal, i.e. the rank constraint is sat-
isfied. In case of @AOBDDs this is trivial, in case of @®OBDDs this is true
due to the following lemma:

Lemma 6.1 Consider a @ OBDD which does not contain negative arcs and
let f, = GBweW fuw, let fu,w € W, be linearly independent functions and let
the rank of v be the w—smallest among the ranks of vertices in W. Then the
rank of all vertices in W is equal to the rank of v.

Proof: Let z; be the rank of v. Let W’ C W be those vertices whose rank is
m—greater than the rank v. If we fix to zero the variables m—smaller than or
equal to z; all functions f, and f,,w € W\W’, become the all-zero functions
but any of functions fu,w € W', does not change. Thus @, .y fu is the
all-zero function and because f,,w € W, are linearly independent we have
W' =01

The following two lemmas play a key role in testing linear independence
of represented functions:

Lemma 6.2 Let W be a set of vertices of a @OBDD of the same rank and
let all the functions represented by vertices with the rank m—greater than the
rank of vertices in W be linearly independent. Functions fu,,w € W are
linearly independent iff their rows in the matriz representation are linearly
independent.

Lemma 6.3 Let W be a set of vertices of a @AOBDD, let wo € W be the
verter with the w—smallest rank in W and let all functions represented by
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vertices with the rank w—greater than the rank of wo be linearly independent.
Functions fw,w € W are linearly independent iff their rows in the matriz
representation are linearly independent.

The proof of Lemma 6.2 can be found in [6]; the proof of Lemma 6.3 can
be done in the same way.

To check the linear independence we use the well-known Gaussian elimi-
nation procedure. We add rows corresponding to the vertices one by one to
the matrix representing the ®AOBDD and check if its rank is full (see Lemma
6.3); in case of ®OBDDs we only check (see Lemma 6.2) that the rank of its
submatrix representing the vertices with the same rank is full. We keep, in or-
der to make the process of adding a new row fast enough, the already created
matrix in the following form: The first one—entry in each row strictly precedes
the first one—entry in the next row. The algorithm for adding new rows to the
matrix and maintaining it in the described form is a standard linear algebra
algorithm: Let r be the row to be added and let ¢ be the coordinate of its
first one—entry (if r is all-zero, r is not linearly independant with respect to
matrix rows). If there is no row with the first one—entry coordinate equal to 4
we can insert r to the matrix to the appropriate position; in other case let r’
be the row with the first one—entry coordinate equal to 7. We continue adding
the row r @ r' instead of r now. Clearly, the span of the rows is the span of
the rows of the input matrix and r and the rows of the matrix are linearly
independent and the matrix is in the decribed form. The running time is
linear in the size of the matrix for each row-addition.

The described algorithm modifies the new row by adding some other rows
to it and then it inserts it to the matrix not necessarily as the last row.
Let w be the vertex represented by the new row and let W be the vertices
represented by rows added to it (if f. is not linearly independent then W is
the set of vertices representing the corresponding linear combination). The
modifications of the matrix by the algorithm are the same as in the first phase
of reexpress(w, W U{w}) and we emulate them by the call of reexpress(w, WU
{w}); clearly the second phase of reexpress(w, W U {w}) affect only rows still
not added to the matrix (due to the order constraint in @(A)OBDDs and the
order in which the rows are added to the matrix). The call of reexpress(w, WU
{w}) is legal, i.e. w has the same rank as other vertices in W in case of
@OBDDs and w has the m—smallest rank among the vertices in W in case of
@®AOBDDs because the rows are added to the matrix in 7-decreasing order
of the rank of the vertices corresponding to them. If the added row is not
the last row we appropriately permute the matrix rows and columns which
can be easily done in time linear in the matrix size. Thus the addition of one
row needs time O(S?) in case of @OBDDs and O(nS?) in case of PAOBDDs.
The whole Linear reduction algorithm requires time O(S?) for ®OBDDs and
0(nS?) for  AOBDDs.

6.5 Unification

The idea of Unification is simple — run the PDFS algorithm and change the
structure of the @(A)OBDD if the uniqueness conditions are violated. We
call Removal of zero arcs and Linear reduction first, then we start the PDFS
algorithm and continue running it until we encounter the first violation of the
uniqueness conditions, that means we want to continue the PDFS algorithm
from a vertex and there are:

e two or more unvisited vertices of the same rank and there are no unvisited
vertices of m—greater rank, in case of @OBDDs.

e two or more arcs labelled with the same variable (or unlabelled in case
that we are in the source) leading to unvisited vertices different from the
sink and there are no arcs labelled with a m—greater variable leading to
unvisited vertices, in case of @AOBDDs.
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Let v be the vertex where the uniqueness conditions are violated, i.e. the
vertex from which the algorithm PDFS cannot uniquely continue. In case of
@®OBDDs, let W be the set of (both unvisited and visited) vertices of the same
rank violating the uniqueness conditions to which an arc leads from v and let
w be any unvisited vertex of W. In case of PAOBDDs, let W be the set of
unvisited vertices to which an arc leads from v and let w be any member of
W with the m—smallest rank among vertices in W. Call reexpress(w, W). The
operation reexpress clearly affects neither linear reduction of @®(A)OBDDs
nor the already created PDFS—tree — arcs are modified only at the vertices
from which an arc led or leads to or from w; w was an unvisited vertex and
the new run of the PDFS algorithm would not include w to the PDFS—tree
till it comes to the arc from v to w, thus the arcs from w do not affect the
PDFS—tree; since no vertex in W is more attractive for the PDFS algorithm
than w (in case of parity OBDDs it is due to the rank constraint) and w
was an unvisited vertex, each w € W would be included to the PDFS—tree at
the same point as previously and thus the structure of the PDFS—tree is not
changed. The call of reexpress ensures there is no more any violation of the
uniqueness conditions at the vertex v and the PDFS algorithm can continue
through the arc to the vertex w. Unification ends when we have created the
PDFS-tree of the whole &(A)OBDD. Now remove all vertices not accessible
from the source, i.e. not included to the PDFS—tree.

Since after each call of reexpress there is one vertex added to the PDFS—
tree, there are at most O(S) calls of reexpress and thus the whole running time
of Unification (including preprocessing by Removal of zero arcs and Linear
reduction) is O(S®) in case of OBDDs and O(nS?) in case of ®AOBDDs.
The just presented algorithm gives the postponed proof of Theorem 4.1 and
reproves Theorem 5.1.
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