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1 Basic Definitions and Motivation

1.1 Function Generators, Distinguishing Algorithms and
Pseudorandomness

Let us fix an input length n and a key length k. A function generator is an
efficient algorithm, which, for each key s € {0, l}k, provides a Boolean function
fs : {0,1}* — {0,1}. Clearly, each output bit of a secret key encryption algorithm

E:{0,1}" x {0,1}* — {0,1}™,

where n denotes the plaintext block length, k the key length and m the ciphertext
block length, can be considered a function generator.

More formally, we define a function generator to be a sequence F' = (F,)necN,
where, for each n, F,, = {fs,s € {0, l}k(")} denotes a set of keyed m-ary Boolean
functions, and k(n) denotes the key length associated with input length n. Moreover,
F is defined by a polynomial time algorithm, which, for all z € {0,1}" and
s € {0, l}k(n) returns fy(x). (This implies that the key length fulfils k(n) € n®1).)

We call a function generator F' pseudorandom if it is impossible to distinguish
efficiently between a truly random function f € B, and a function f; which is
randomly chosen from F,.

For giving the formal definition of pseudorandomness we introduce the notion
of an H-oracle, where H C B,,. (B,, denotes the set of all 22" Boolean function in
n variables.) An H-oracle chooses randomly, via the uniform distribution on H, a
secret function h € H and communicates with an enemy cryptanalyst D, which tries
to get information about h, via membership queries. (Membership queries means
that D submits some input z € {0,1}" of his choice and the oracle immediately
answers by h(z).) We consider an H-oracle to be a truly random source if H = B,,,
and to be a pseudorandom source, if H is a subset of B,, of size 2"0(1)). Observe
that the truly random source can be considered to work as follows: It answers new
membership queries by a fair coinflip, but stores given questions and answers for
answering repeated questions consistently.

A distinguishing algorithm for a function generator F' = F,, is a randomized
oracle Turing machine D which gets an input parameter n and which communicates
via membership queries with an H-oracle, where either H = B,, (the truly random
source) or H = F,, (the pseudorandom source). The aim of D is to find out via
membership queries whether H = B,, (in this case, D outputs 0) or H = F,, (in this
case, D outputs 1). At the beginning of the computation it is completely unknown
to D wether H = B,, or H = F},.

The relevant cost parameters of a distinguishing algorithms are the worst case
running time tp = tp(n) and the advantage ep = ep(n), which is defined as

ep(n) = Pr[D outputs 1|H = F,] — Pr[D outputs 1|H = B,].

The probabilities are taken w.r.t. the internal randomization of D and the
randomization of the oracle, i.e. the uniform distribution on H. The ratio rp =
rp(n) of a distinguishing algorithm D is defined to be rp(n) = tp(n) - e5'(n). For
all f € F, let

ep(f) = Pr[D outputs 1|H = F,, A f] — Pr[D outputs 1|H = B,,]

denote the advantage achieved by D in the pseudorandom case under the condition
that the F,-oracle has chosen the secret function f. Observe that

ep(n) = Esfep(f)]-



The worst case advantage of D on F), is defined to be the value mingcr, ep(f).
The product of the inverse of the worst case advantage and the worst case running
time is called the worst case ratio of D on F,.

We will call F to be a pseudorandom function generator (for short: PRFQG)
if for all distinguishing algorithms D for F' it holds that rp € 2n”® " This
definition of pseudorandomness is consistent with the definition given by Goldreich,
Goldwasser, Micali in [9].

Observe that there is a trivial distinguishing algorithm against any function
generator F' of ratio O(|F,,|log(|F,|)). (For given n, fix 71 to be the minimal number
such that 2" > |F,| and fix an arbitrary set of inputs X C {0,1}" of size fi. Accept
if the oracle function f coincides with some f; € F}, on X. Clearly, the running time
of this algorithm is O(|F,, | log(|F]|)), as 7t € O(log(|Fy|))- In the pseudorandom case
the probability of acceptance is obviously 1. In the truly random case (H = B,)
the probability of acceptance is at most 1/2, as there are at least 2|F,| possible
assignments to X. Consequently, the worst case advantage is at least 1/2.) This
implies that each function generator F' can be distinguished with ratio 2n?®,

Let us present another more involved example of a distinguishing algorithm.
Suppose we are given a function generator F' for which it holds that for all n and
for all functions f; € F,, there is a variable ordering 7 such that the uniquely
determined minimal ordered binary decision diagram (OBDD) which computes fs
w.r.t. the variable ordering 7 has size at most m(n) € n®"). (For instance, consider
F, to be the following function generator IP,, = {ipr; m € S, }, n even, which was
discussed in [18]. The function ip, is defined as

iPr (21,5 Tn) = Ta(1)Tr(2) © Tr(3)Tr(a) © - -+ © Tr(n_2)Tr(n_1)-

Here, m(n) = 2n as ip, can be computed by a 7-OBDD of size 2n.)

Consider the following distinguishing algorithm D for F. D fixes 7 to be the
minimal number for which 2" > 2m(n), and randomly chooses disjoint subsets X
and Y of {z1,...,7,} fulfilling |X| = |[Y| = 7. D accepts if the following 27 x 27
matrix M has at most m(n) distinct rows. For all assignments ¢ to the variables
from X, and all assignments d to the variables from Y, the coefficient M, 4 is defined
to be the value of the oracle function f on the input obtained by assigning c to the
X-variables, d to the Y-variables, and 0 to the remaining variables.

The running time of D is in O(22") C n®(M). In the pseudorandom case we know
that the 7-OBDD size of f is at most m(n) for some variable ordering 7. We say that
X and Y are separated by 7 if (i) < w(j) for all ; € X and z; € Y. It is not hard
to verify that the probability that the random X and Y are separated by n can be
bounded from below by n~® for some constant a. A standard lower bound argument
for the size of OBDDs implies that in this case the probability that D accepts is 1.
Concerning the truly random case, the probability that a random 27 x 27 matrix
has at most m(n) distinct rows is exponentially small in n, as 2® > 2m(n). We
obtain that £,' (n) € n®®Y and, thus, the ratio of D is polynomially bounded in n.
We obtain

Theorem 1. Fach function generator consisting of functions with polynomially
bounded OBDD-size cannot be pseudorandom.

1.2 Cryptographic Weakness of Nonuniform Computational Models

For any nonuniform computational model M we denote by xaq the corresponding
complexity measure for Boolean functions and by P(M) the set of sequences of
Boolean functions G' = (gn)nen for which ya¢(gn) € n°M. A function generator
F = (F.)new is said to be in P(M) if there is some polynomial bound m = m(n) €
n°M such that for all n and f, € F), it holds that ya¢(fs) < m(n).



We call a computational model M cryptographically strong if P(M) contains
a pseudorandom function generator, and cryptographically weak otherwise. One
aim of this paper is to classify the central nonuniform computational models induced
by depth bounded branching programs and constant depth circuits with respect to
cryptographic strongness and weakness.

We show cryptographic weakness of particular models M by constructing
universal distinguishing algorithms for M of the following type.

A distinguishing algorithm D = D(n,m), depending on the two input
parameters n (input length) and m (complexity parameter) is called a
distinguishing algorithm of polynomially (resp. quasipolynomially)
bounded ratio for M if for all bounds m = m(n) € n®® and function generators
F with xa-complexity at most m it holds the following. On all inputs n,m(n),
D distinguishes Fj, with polynomially, resp. quasipolynomially, bounded ratio.
Obviously, any distinguishing algorithm of quasipolynomially bounded ratio proves
the model M to be cryptographically weak.

Observe that in the above example there is described a distinguishing algorithm
of polynomially bounded ratio for OBDDs, i.e., OBDDs are a cryptographically
weak computational model. Let us present a list of the nonuniform computational
models which will be considered in this paper.

— Depth k circuits of unbounded fan-in over AND, OR, and NOT-gates. AC}Y
denotes the corresponding complexity class of problems computable within
polynomial size, AC°® = J, ACY.

— Depth k circuits of unbounded fan-in over AND, OR, NOT and MOD,,, gates.
MOD,, is defined by MOD,,(z1,...,z,)=1 if and only if zy + ... + z, #
0 mod m.) The corresponding complexity class of problems computable within
polynomial size is usually denoted by AC?[m].

— Depth k unbounded fan-in circuits with unweighted and weighted threshold
gates. Unweighted treshold gates T'Z,., resp. T2, are defined by the relations

TZ(21,...,2n) =1 <= T1+...+zp >7

and T2, (z1,...,2,) =1 <= z1+...+ 2z, <r. A weighted treshold gate T'¢,,
where a € ZZ", is defined by the relation -

Tgr(wl,...,wn)zl << a1 T1+...+apT, > T

LT}, denotes the complexity class corresponding to depth k& polynomial size
weighted threshold circuits, and T'C} denotes the class corresponding to depth
k polynomial size unweighted threshold circuits.

— Boolean Circuits, this is the unrestricted case of fanin-2 circuits over {V, A, =}.
The corresponding complexity class is denoted by P/poly.

— Several types of branching programs, alternatively called binary decision
diagrams (BDDs). A branching program is a directed acyclic graph G = (V, E)
with one source. Each sink is labeled by a Boolean constant and each inner node
by a Boolean variable. Inner nodes have two outgoing edges one labeled by 0 and
the other by 1. A BDD represents a Boolean function f € B, in the following
way. The input a activates, for z;-nodes, the outgoing a;-edge. Then f(a) is
equal to the label of the sink reached by the unique activated path starting at
the source. The relevant cost measure of BDDs, the size, is the number of nodes.
The corresponding complexity class Paq is denoted by L/poly.

— Read-once BDDs (sometimes called Free BDDs (FBDDs)). Here, at each path
in the program each variable must not occur more than once.

— Ordered binary decision diagrams (OBDDs), where each computational path
has to respect the same variable ordering. An OBDD which respects a fixed
variable ordering 7 is called a 7-OBDD.



— Syntactic Read-k-BDDs, for which at each path each variable is forbidden to
occur more than k times.

1.3 Motivation and Structure of the Paper

There is a good deal of applications of pseudorandom function generators, e.g. as
building blocks for block ciphers [20, 21], for remotely keyed encryption schemes [22,
4], for message authentication [3], and others. One intention of this paper is to shed
more light on the tradeoff phenomenon between hardware complexity and security
for cryptographic primitives. The question is which hardware complexity a secret key
encryption algorithm must have for being suited to serve as a encryption/decryption
mechanism for a secure cryptosystem.

There are two conflicting requirements to modern cryptosystems. The first
requirement, clearly, is security. Modern security standards for practically relevant
cryptosystems require that no output bit of the underlying secret key encryption
algorithm can be efficiently distinguished from a truly random source. This means,
each output bit should behave like a pseudorandom function generator. This
is because each statistical test which distinguishes an output bit from a truly
random source and which is significantly more efficient than exhaustive search
could give a promising approach for breaking the cipher. Suppose, for instance, that
some cryptanalyst could present an algorithm which, with significant probability,
distinguishes an output bit of a proposed cipher of key length, say 64, on the basis
of at most 2° plaintext/ciphertext pairs. Then this would immediately rule out this
cipher for serious practical applications.

The second requirement is that it should be possible to perform
encryption/decryption very quickly. This suggests the choice of a secret key
encryption mechanisms which have small complexity with respect to computational
models of low expressive power, like depth restricted branching programs or bounded
depth circuits.

The remaining part of the paper is organized as follows. In section 2 we prove
cryptographic weakness for a number of fundamental computational models like
read-k BDDs, and several types of constant depth circuits over AND-, OR-,
MOD,,-, and threshold gates. (Theorems 2, 3, 4, 5) We do this by constructing
corresponding distinguishing algorithms. The message of these results, adressed to
practicians, is the following: Let M denote a nonuniform computational model for
which there is an efficient distinguishing algorithm D = D(n,m). Further suppose
that the xaq-complexity of a secret key encryption algorithm E is significantly
smaller than the average xaq-complexity of a random Boolean operation. Then E
cannot be considered to be secure as D provides an efficient distinguishing attack
against E.

In section 3 we relate the concept of distinguishing pseudorandom functions of
low complexity from truly random functions to the concept of learning unknown
function from a given set of low complexity functions. In terms of cryptanalysis,
we compare the task of distinguishing output bits of a given secret key cipher
from a truly random source and the task of gaining real information about the
secret key. We prove the not very surprising fact that any learning algorithm can
be converted into a distinguishing algorithm (Theorem 6). Further, and this is
one of our main results, we prove that if membership queries are forbidden then
efficient distinguishing algorithms can be simulated by efficient learning algorithms
(Theorem 7).

In section 4 we relate the concept of distinguishability to the concept of Natural
Proofs (Theorem 8) developed in [28] and strengthen an observation of Razborov



and Rudich on the connection of the cryptographical strongness of a model M and
provability of lower bounds on x (. Moreover, we adress some open problems.

The proof of Theorems 3, being quite long and technical, has been separated from
the paper. It can be found in the Appendix. Furthermore, the Appendix contains
some usefull probability estimations which will be used at several places in the
remaining sections

2 Cryptographic Strongness and Weakness for Particular
Models

Before proving the nonexistence of PRFGs within several complexity classes let us
ask for upper bounds for pseudorandom function generators. Goldreich, Goldwasser,
and Micali [9] provide a construction of pseudorandom function generators based on
(generic) pseudorandom bit generators. Using this method, Naor and Reingold [23],
[24] construct the following function generator F' = (Fy,)ne, where F), consists of
functions of type f(p,g,g,a)- P is an n-bit prime, @ is a prime divisor of P —1, g an
element of order ¢ in Z}%, and a = (ag, a1,-..,a,) a sequence of n + 1 elements of
Zg- The function f(p g g,a) is defined by

f(P.g.g,0)(2) := (gao)nlﬁ"ﬁ" “% mod P.

This function generator behaves pseudorandomly under the condition that the so
called Decisional Diffie Hellman Conjecture is true [23]. They showed further
that this function generator belongs to TCY?. In [15] we showed that Naor and
Reingolds PRFG has even depth 3 unweighted threshold circuits of quasipolynomial
size. Moreover, if a well believed number theoretic assumption is true, these circuits
can be proved to have polynomial size, i.e., depth 3 unweighted threshold circuits
seem to be cryptographically strong. In contrast to this, depth 2 unweighted
threshold circuits can be proved cryptographically weak [15].
In this section, we show the following results.

Theorem 2. There is a distinguishing algorithm of polynomially bounded
ratio for weighted threshold-MODy circuits, i.e., threshold-MODy circuits are
cryptographically weak.

Proof. We use the following result of Bruck [7]. For all f € B, the minimal
number of MODs-nodes in a weighted threshold-MOD»-circuits computing f can
be bounded from below by ||f ||I;;x Hereby, || f||,,. denotes the maximal absolute

value of a spectral coefficient of f, i.e.

1l = max{|(f,la)]; @ € {0,1}"},

where f : {0,1}" — {1,—1} is defined by f(z) = (=1)/®), I, is defined as
la(21,--.,2n) = D o,=1 i, and, for functions f,g:{0,1}" — {1, -1}, the scalar
product (£, g) is defined as (f,9) = |X|~' X,y f(2)9(2).

Observe the relation (f,g) = Pr[f = g] — Pr[f # g], and that the set
{lo; a € {0,1}"} form an orthonormal basis w.r.t. (-,-).

Fix an arbitrary polynomially bounded function m = m(n) € n®®. Given the
input parameters n and m(n), the distinguishing algorithm D works as follows. Let
f denote the function chosen by the oracle.

1.) Set m' = m + 1 and compute the minimal number 7 such that for N =27 it
holds that N > 6m/?In(m’).



2.) Output 1 iff ||g|,,.x = 1/m', where g denotes the subfunction of the oracle
function f obtained by assigning 0 to each varaiable z74y1,..., Ty

Observe that 7 € O(log(n)), that the running time of step 2 is O(N?) € n©M),
and that D needs N queries to the oracle.

In the pseudorandom case, by the above mentioned result of [7], the probability
that D accepts is one.

Consider now the truly random case and observe that

N
Pr{||gll e > 1/m] < 2NPr ZXi >N/m'|,

i=1

where X; denote mutually independent random variables taking values 1 and -1
with Pr[X; = 1] = Pr[X; = —1] = 1/2. By relation (12) (Hoeffdings Inequality, see
Appendix, subsection 5.1), it holds that

Pr{||g]lpax > 1/m'] < 2Ne (N*/Cm”R) < 19m In(m')e 3™(™) < 121In(m")/m/.

Observe that the last term is smaller than 1/4 for m' > 5. We obtain a polynomial
distinguishing ratio for D. O

Theorem 3. For all primes p and all constant depth bounds d there is a

distinguishing algorithm of quasipolynomially bounded ratio for depth d circuits over
{AND,OR,MOD,}.

The proof is quite lengthy and can be found in the Appendix, subsection 5.2.
As MOD,,» belongs to AC9[p] [30], the proof for prime powers follows immediately.

Theorem 4. For all k > 1 it holds that there is o distinguishing algorithm

of quasipolynomially bounded ratio for nondeterministic syntactic read—k times
branching programs.

Proof. The first exponential lower bounds on read k branching programs were
independently proved in [6] and [27]. See also [13] for further nice applications
of the method. We use these methods for designing the desired distinguishing
algorithm D. Let us fix an arbitrary natural constant £ > 1, a polynomial bound
m = m(n) € n°1D an input length n and a Boolean function f € B, computable
by a nondeterministic syntactic read—k times branching program of size m(n). Let
us denote X, = {z1,...,2Zn}-

In [13] Jukna shows the existence of a number W € m®1) = n®") and a constant
~ € (0,1) such that f can be written as

w
[ = Vfi; (1)

where for all i, 1 <4 < W, it holds that there is a partition X, = U; U V; U W; of
pairwise disjoint subsets U;, V;, W; of X,, such that

[i(Xn) = 9:(Us, Vi) A by (Vi, W3),

where |U;| > yn and |W;| > yn.

The distinguishing algorithm D gets n and m as input parameters and computes
at first internal parameters s, ¢, ), and r which will be specified later. Then D
proceeds as follows.



Step 1: Test whether Pr[f(z) = 1] > % by asking f(2?) for n randomly chosen
1

1

3

inputs z',...,z" and stop with output 1 if
n

; an

J o

D) <45

j=1

Step 2: Choose randomly disjoint subsets U, W from X,, with |U| = |W| = g,
and a {0, 1}-assignment b of V =X \ (UUW). Let Q = 27.
Step 3: Choose random assignments a',...,a" of U. Stop with output 1 if

Q-1
Q
PIRACIEN2
c=0
where for all {0,1}-assignments ¢ of W the value F(c) € {0,1} is defined as
F(c)=1 iff f(a',b,c)=...= f(a",b,c) =1.

Output 0 otherwise.

We show that for ¢ = [log,(W2n)| and r = |log,(12W)] it holds that
ep(f) > e(n,m), where e(n,m)~" € m©Ues(m)) = nlog”® n

In the truly random case, by inequality (13) from subsection 5.1, it follows that
the probability that D stops accepting in step 1 is not greater than

e—2(1/144)n _ —(1/72)n_ 2)

Now look at inequality (15) and let p = 277 < 1/12W. Observe that Q > W?n.
It follows that the probability that D stops with output 1 in step 3 is not greater

than
6—2(1/6W—p)2Q < 6—2(1/144W2)Q < e—(1/72)n (3)

Consider now the pseudorandom case and suppose that the oracle has chosen
the secret function f.

Case 1: It holds Pr[f(z) = 1] < ;. Then the probability that D stops accepting
in Step 1 is at least 1 —e~"/72, This follows as above from inequality (15) by setting
p=73.

éase2: It holds Pr[f(z) = 1] > 5. We estimate the probability that D stops
accepting in Step 3.

Observe at first that by (1) there is a number j, 1 < j < W, such that

_ 1
Pr(fj(z)=1] > EA (4)

As g is polylogarithmically bounded in n we have that ¢ < (y/2)n for n large
enough. Then it follows from relation (16) in subsection 5.1 that the probability for
the event (E1) that U C U; and W C W; is at least P; := (/2)??. Observe further
that the probability for event (E2) that we choose in Step 2 an assignment b of V
fulfilling

Prq.c [f;?(a,c) =1] > 1/6W

is at least P := 1/6W. (Otherwise we would have that
Pry [fi(z) =1] < 1/6W + (1 - 1/6W)1/6W = (1/6W)(2—1/6W) < 1/3W

which contradicts (4).) Observe that under condition (E;) for all assignments a of
U and c of W it holds that

fila,b,c) = g;?(a) A h?(c) and fj(a,b,c) =1 = f(a,b,c) =1.



By (4) we obtain that
Pra[gg(a) =1]>1/6W and Prc[hg(c) =1]>1/6W. (5)

Consequently, under the condition (E1) and (E2), the probability for the event
(E3) that for all ¢, 1 < <, it holds that g’(a’) = 1, is at least P5 := (1/12W)".
(This follows from (16).)

From (5) we obtain that under condition (E1), (E2), and (E3) it holds that

Pr.[f(a',b,c) = ... = f(a",b,c) = 1] > Pr.[fr(a",b,c) = ... = fr(a",b,c) = 1]

> Pr.hb(c) =1] > 1/6W.
It follows that the probability that D stops accepting in Step 3 is at least

PiP,Py = (v/2)%(1/6W)(1/12W)".
It is easy to check (looking at (2) and (3)) that the advantage of D is at least
e(n,m) = P, P,P; — 2¢ /72
and that e(n,m)~! € m©os(m)), 0

Theorem 5. For all k > 1 it holds that there is a distinguishing algorithm of
quasipolynomially bounded ratio for depth k + 1 circuits consisting of k levels of
AND and OR gates connected with one weighted threshold gate as output gate.

Proof. Let us call an unbounded fanin depth k circuit X;-circuit, resp. ITp-circuit,
if the circuit consists of k inner levels, which contain either only AND-gates, or only
OR-gates, and if the top gate is an OR-gate, resp. an AND-gate.

We use the fact that for each Boolean function f with polynomial size weighted
threshold-17},, or with polynomial size weighted threshold-X}, circuits the following
holds. With high probability, a random subfunction of f can be written as the sign
of a real polynomial with polylogarithmically bounded degree. We consider the set
{0,1,%}™ of partial assignments to the set of variables {z1,...,z,} with respect to
the probability distribution R(p) which is defined by

Prip] = II.L, Pripi],

where Prlp; = %] = p, and Pr[p; = 0] = Pr[p; =1] = (1 —p)/2.

We exhibit the Switching Lemma [11] saying that for all f € B, p € (0,1) and
s,t < n it holds the following. If f has a Y- (resp. IIy-circuit) of bottom fan-in < ¢
than the probability that f? has a Il>-circuit (resp. Xs-circuit) of bottom fan-in
< s is at least 1 — a®, where the partial assignment p is distributed according to
R(p) and the value a can be estimated by a < 5pt (see [31] pp. 325-331 for a nice
presentation of the proof).

Moreover, it is shown in [19] that if f has a Zy-circuit of bottom fan-in < ¢
and a Ilx-circuit of bottom fan-in < s then f has a decision tree of depth st, and,
consequently, can be computed exactly by a real polynomial of degree st.

Let us fix a polynomial bound m = m(n) € n°") and suppose that f € B, can
be computed by a threshold-X}, circuit S, where each level of the circuit consists of
at most m(n) nodes. The case of threshold-II}, circuits can be treated in a similar
way. Fix s € O(log(n)) to be the smallest number for which 2° > m(n). The gates
at level 1 of S can be seen as Xy- (resp. IT»-) circuits of bottom fanin 1< s. Fix
an appropriate probability p, which will be specified later, and consider partial
assignments p of {z1,...,2,} to be distributed according to R(p). Observe that a
standard probability estimation shows that the probability that f# depends on at



least pn variables is at least 1/3. Consequently, the probability that each bottom
gate of S can be replaced by an equivalent II5- (resp. X5-) circuits of bottom fanin
s is at least

1-2/3-2%" <1/3— (10ps)°.

We fix a number r in such a way that for p = 27" holds (10ps)® < 1/6. Observe
that p~1 € O(log(n)).

It follows that the probability that f# depends on at least pn variables and has
threshold-X}, of width m(n) and bottom fanin s is at least 1/6. This argument can
be iteratively applied to f”. It turns out that for p distributed according to R(p*),
the probability that f? depends on at least p*n variables and has voting polynomial
degree s is at least (1/6)*. Observe that this implies that f? has threshold-MOD,

circuits of size )
L
n 2
¢(n,3) = Z (Z> € nO(log n)’

i=0

i.e., we can apply the distinguishing algorithm for threshold-MOD, circuits. Let
m' = ¢(n,s) + 1 and 7 and N be defined as above in the proof of Theorem 2. We
suppose that n, s are large enough such that 121In(m/)/m’ < (1/6)%*! and pfn > 7.

The distinguishing algorithm for weighted threshold-YX}- and weighted
threshold-ITy- circuits of width m(n) works as follows. Choose randomly a partial
assignment p of {zi,...,z,}, where p is distributed according to R(p*) and
test whether f# has weighted threshold-MOD; circuits of size ¢(n,s) with the
algorithm of Theorem 2. The choice of the internal parameters p, s,m' and 7 yields
that the advantage is at least (1/6)* — (1/6)**! and that the running time is
quasipolynomially bounded in n. d

Observe that in all these cases, the ideas for the distinguishing algorithms
for the particular models M can be derived from known lower methods for the
corresponding complexity measures xaq- In a certain sense, the distinguishing
algorithms can be considered as the algorithmical versions of the corresponding
lower bound methods. See section 4 for a discussion about the existence of
distinguishing algorithms versus lower bound proofs.

3 Distinguishing versus Learning

In this section, we describe the relation between distinguishability of function
generators and the learnability of Boolean concept classes. (A Boolean concept
class is simply a set of Boolean functions of the same input length. Observe that
each function generator F' can be identified with a sequence of Boolean concept
classes in a straightforward way.)

In our setting, the definition of a learning algorithm L for a sequence of concept
classes C = (Cp)new, Cn C By, refers to the following scenario. It consists of a
randomized oracle Turing machine L which knows C, gets the input parameter n
and communicates with a C,,-oracle via membership queries. L outputs the standard
encoding of a Boolean circuit computing a Boolean function h € B, called the
hypothesis.

For given numbers €(n),d(n) € (0,1), L is called an (e(n),d(n))-learner for
C if for all n € IN the probability (w.r.t. the internal randomization of L)
that L outputs an (1/2 + €(n))-approximator of f (i.e., a function A fulfilling
Pry[f(z) = g(x)] > 1/2+ €(n)) is at least d(n). The product of the worst case
running time of L and (e(n)d(n)) ! is called the learning ratio ry, of L.

Observe that equivalence queries can also be simulated probably almost correct
in this model. (An equivalence query is defined by submitting the encoding of a
hypothesis h to an oracle which knows the function to be learnt. The oracle answers



70.k.” if h = f, or returns a counterexample z with h(z) # f(x).) A simulates
equivalence queries as follows. It randomly chooses inputs z!,...,zt € {0,1}" for
some appropriate ¢ and tests for all i,1 < i < t, whether h(z?) = f(2?). Either
one gets a counterexample, or, with high probability, h is a good approximation
for f. Consequently, the usual learning models for Boolean concept classes like
PAC learning with respect to the uniform distribution and exact learning with
membership and equivalence queries are captured by our model. Observe the
following connection between learnability and distinguishability.

Theorem 6. Fach (e(n),d(n))-learner L for a sequence of concept classes C =
(Cn)new can be transformed into a distinguishing algorithm D for C with a

distinguishing ratio rp € 7‘?(1).

Proof. D communicates with an H-oracle, where H € {B,,C,}, which has
been chosen a secret function f. D chooses an appropriate number s € O(6!(n))
and does s mutually independent trials of L. One gets s encodings of hypotheses
hl,..., h*.If there is an output which is not a standard encoding of a fully specified
circuit over n input variables, then D decides that H = B,, and outputs 0. The
next step of D is to fix an appropriate number ¢ € O(e~!(n)) and to randomly
choose ¢t mutually independent inputs z!,...,z¢ € {0,1}". D accepts if there is
some i,1 < i < s, such that for at least (1 + €)/2 of the inputs 27,1 < j < ¢, it
holds that hé(z?) = f(27). Using standard probability estimations like Hoeffding’s
inequality (see Appendix, subsection 5.1) it is quite straightforward to verify that
D has the required properties. ]

Observe that it is easy to construct concept classes which can be efficiently
distinguished but not learned. Take for instance the set of all P/poly-functions with
the additional property that the image of the constant-0 vector is one. We can
distinguish this set with advantage 1/2 by asking for the value of the constant-0
vector. However, the (quasi)polynomial learnability of this set would imply that
unrestricted Boolean circuits are efficiently learnable, which is a contradiction to
fundamental cryptographic hardness assumptions (see [14], [28]).

Given a computational model M we say that P(M)-functions are polynomially,
resp. quasipolynomially, learnable iff there is an universal learning algorithm
learning every sequence of concept classes from P(M) with polynomially, resp.
quasipolynomially bounded ratio. By Theorem 6 it follows that if P(M)-functions
are quasipolynomially learnable then we have a distinguishing algorithm of
quasipolynomially bounded ratio for M, i.e., M is cryptographically weak. There
are known polynomially bounded learning algorithms for depth 2 circuits over
AND,OR,— [12], for OBDDs [2] and quasipolynomially bounded learning algorithms
for depth k circuits over AND,OR,— for all constants k& > 3 [19].

Observe that cryptographic limitations of learning were already detected by
Kearns and Valiant in [14]. It is shown there that efficient learnability of T'CY-
functions would imply a contradiction to widely believed cryptographic hardness
assumptions like the security of RSA or Rabin’s cryptosystem. This is because the
corresponding cryptographic primitives z¥ mod z and z2 mod z belong to T'CY, see
[29]. Note that for all models M for which we have shown cryptographical weakness
in the previous section it holds that it is unknown whether P(M)- functions are
efficiently learnable.

Let us now consider the case of passive learning and distinguishing. Here,
the randomized algorithm is not allowed to ask membership queries. The oracle,
on demand, provides pairs (z,f(x)), where z is randomly chosen w.r.t. the
uniform distribution on the input set for f. Observe that, in the terminology of
practical cryptanalysis, active distinguishing corresponds to a so called Chosen
Plaintext Attack and passive distinguishing to a so called Known Plaintext
Attack.
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It is one of the main results of this paper that in the passive case efficient
distinguishing algorithms can be simulated by efficient learning algorithms.

Theorem 7. Each passive distinguishing algorithm D of (worst case) ratio rp for a
sequence of concept classes C = (Cp)neN can be transformed into a passive learning
algorithm L for C with learning ratio rg(l).
Proof. Fix an input length n and a function f € C,,. Denote by ¢ and e the worst
case time, resp. worst case advantage of D on input length n.

For each Boolean function h : {0,1}"™ — {0, 1} denote by adv(h) the advantage
which h achieves w.r.t. f, i.e.,

adv(h) = Pr[h(z) = f(z)] — Pr[h(z) # f(z)],

where the probabilities are taken w.r.t. to the uniform distribution on {0,1}".
Observe that for all v € [-1,1], h is an (3 + v)-approximator of f iff adv(h) = 2.

For a subset X C {0,1}" we denote by adv(h, X) the advantage which h achieves
w.r.t. fon X, ie.

adv(h, X) = Pr[X](Pr[h(z) = f(z)|z € X] — Pr[h(z) # f(z)|z € X]).

Observe that for all partitions of {0,1}" into disjoint subsets X©,..., X¥ it holds

that
P

adv(h) = adv(h, X*). (6)
u=0

Suppose that, during each computation, C sends [ < t requests to the oracle.
We call, for 0 < k < I, a sample (z',y1),..., (2, 9) (f, k)-distributed if the 27
are uniformly and independently chosen from {0,1}", if for all j < k it holds that
y; = f(27), and if for all j > k it holds that the y; = f'(2?) for some random
function f' € B,. (The last condition means that all different inputs occuring
in {z7, k+1 < j < I} get their y-value via an unbiased coin flip, but for all
j#3j €{k+1...1} it must hold that if 2/ = 27’ then y; = y;:.)

We denote by Pr(f, k) the probability that D outputs 1 on a (f, k)-distributed
sample.

Observe that by definition Pr(f,1) — Pr(f,0) > e. Consequently, there is some
k, 1 <k <1, such that

Pr(f,k) = Pr(f,k—=1)> - >rp(n)". (7)

€
l
Let us denote by P the minimal natural number for which e(n)/I(n) < 1/P.

For all k, 1 < k < [, inputs z and b € {0,1}, a a random sample
(Y, 91),...,(z!,y) is said to be (f, k,z,b)-distributed if for all 4,1 < j <1, j # k,
the 27 are uniformly and independently chosen from {0,1}", if for all j < k it holds
that y; = f(z7), if for all j > k it holds that the y; = f'(27) for some random
function f' € B, and if zF = z and y; = b.

For b € {0,1} denote by p*(z,b) the probability that D accepts an (f, k,z, b)-
distributed sample and let d*(z) = p*(z, f(x)) — p*(x, = f(x)). Observe that

Pr(f,k) = Pr(f,k—1)

= Bl (2, /(0) — (0 (@, £ () + 94,21 (@))] = 5Bl (@)
We call a number k, 1 <k <I(n), to be "good” if

Bd() > = ®)

11



Observe that relation (7) ensures the existence of ”good” numbers k.
For all k, 1 <k <, define the Boolean function A* : {0,1}" — {0,1} as

hE(@) =1 iff pF(z,1) > p*(z,0).

Observe that, in general, even under the condition that k is ”good” the function h*
is not a good approximator of f which can be illustrated with the following example.
Suppose that d* is distributed as follows: It holds d¥ (z) = 4/ P with probability 1/2
and d*(z) = —(2/P) with probability 1/2. It is easy to see that adv(h*) = 0.

The idea for constructing the hypothesis is to find an appropriate subset X*
of {0,1}" such that, if k is good, adv(h¥, X*) is sufficiently large, and to define
the hypothesis H to coincide with A* on X*, and to be constant b, for a random
constant b € {0,1}, outside of X*. As on each subset of {0,1}" either the constant
0 or the constant 1 achieves nonnegative advantage we obtain that the advantage
of H is not smaller than adv(h*, X*) with probability at least 1/2.

It remains to construct an appropriate set X*. For all X C {0,1}" let

q(X) = Pr[z € X],

¢E(X) = Pr[p*(z, f(z)) > p* (2, f(2))|z € X],
4% (X) = Pr[p*(z, f(z)) < p*(z,~f(2))|z € X],

where the probability is always taken w.r.t. the uniform distribution on {0,1}".
Observe that if p*(z, f(z)) # p*(z,—f(x)) for all z € X then

adv(h*, X) = ¢(X)(¢"(X) — ¢4 (X)).

For k € {1,...,l(n)}, a partition IT = (Xo, X1,...,Xp) of the set {0,1}" into
P + 1 disjoint subsets is called a k-partition if for all w = 0... P it holds that for
all z € X,

U 1
& (z)| — —‘ < =
A standard example for a k-partition is given by

u+1

u k
= no_ < .
Xy = {o e {0,1}", 5 <|d*(@)| < “2)
Observe that for each k-partition it holds
P
E,[d*(2)] = ) q(Xu)E.[d"(z)|z € X,].
u=0

Further remember that for all u =0...P

k u 1
—E,[— < —.
|E;[d*(2)|z € X4] EZ[P|:1:€XU]| <5

It holds E;[§|z € X,] = $(¢5(Xu) — ¢&(X4)). Consequently,

P
1 [B.[d* (@)] = D a(Xu) 5 (€ (Xa) — (X))

u=1

=

P
= Bl (2)] - 5 3w ado(¥, X

u=1
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It follows that if k is ”good” then

1< 2 1 1
F;u-adv(hk,X“N > P PP
Consequently, there is some u, 0 < u < P, with adv(h*, X*) > 2. Let us call such
a number u to be ”good” with respect to II.

Clearly, the computation of h¥(z) and the test whether z € X, is based
on computing good estimations for d*(x). This will be done by computing the
following values. For a parameter U € IN, which will be specified later, let a
random string R consist of U mutually independently chosen (f, k, z, 0)-distributed
samples S?,...,SY and of U mutually independently chosen (f, k, z, 1)-distributed
samples S7,...,S%. Let the random values p*(z,0, R), p*(z,1, R), 6*(z,R) and
h¥(x, R) € {0,1} be defined as

:UOR

C.' |

F(z,1,R) =

Qi |

6k(x’R) = |p (l‘,O,R) —D (.’L',].,R)'
h¥(z,R) =1 iff p*(z,1,R) > p*(z,0,R).

Observe that by inequalities (15) it follows that for all inputs z, all b € {0,1} and all
natural W the probability that p*(z,b, R) differs by more than 1/W from p*(x,b)
is at most 2¢~2U/(W*)_ On the other hand, if both values differ by at most 1/2W
then 6% (z, R) and |d,(z)| differ by at most 1/W. Consequently, for all natural U, W
it holds that

1 _ _ 2
[d"(@)] = 6 (2, R)| > 5| < 2(2e7MEWDY) = 4emUICWD (g)

If we decide about z € X, via the random value 6*(x, R) then the following
problem could arise. If all d*(z)-values of the elements in X, are concentrated
exponentially (in P) close to u/P or to (u+1)/P then for all polynomially bounded
U the test gives the wrong answer with probability nearly 1/2. In order to prevent
this situation it has to be guaranteed that most of the d*(x)-values of the z € X,

belong to
U 1 u+1 1
PrwE W
for some appropriate polynomially bounded W, and then to test whether

K v, 1w+l 1
C@R) elptom —p ~ o)

The only way we found to guarantee this is to choose the k-partition IT randomly
from an appropriate polynomially bounded family of k-partitions.

We fix an appropriate positive natural number S which will be specified later.
For all s € {1,...,S} we define the partition IT* = {X{,..., X3} as

={z € {0,1}", a;, < |d"(z)| <aji,},

where a§ =0, a%,, = 1 and af, = ¥5* 4+ &5 for u = 1,..., P. Observe that for all
s II® is a k-partition.

13



Further let the error set E° contain all those elements x for which

1
———<|d*
a;, 5pg = |d"(z)| < al + ===

1
2PS
for some u € {0,...,P+1}. Forallu =0... P, let Y be defined as Y} = X\ E*.
We say that s is "good” with respect to k if g(E®) < 1/S. The fact that we
can cover {0,1}" by at most S disjoint E® sets guarantees the existence of ”good”
numbers s.
Let S = 1/(4P?). It can be straightforwardly shown that if k is good, if s is
good with respect to k, and if u is good with respect to k and I7° then

1 1 3
k —
adv(h ,Y,j) Z ﬁ—m—m (10)
The learning algorithm is defined as follows. (The parameter U will be specified
below, x denotes an input.)

1 choose a random % € {0,...,1}

2 choose a random s € {0,...,S5}

3 choose a random u € {0,..., P}

4 choose a random b € {0, 1}

5 choose a random assignment R as defined above

6 output a Boolean circuit for the n-nary Boolean function assigning to each

z € {0,1}" the value H*(s,u,b,z, R) € {0,1} which is defined by the following
rule:

7 ifal + pg <0F(z,R) <aly, — 13

8 then H*(s,u,b,z, R) = h*(z, R)

9 else H*(s,u,b,z,R) = b

Let us suppose that we haven chosen a good k, an s which is good w.r.t. k, and
an u which is good w.r.t. k and IT®. This happens with probability at least 2(P~%).
For estimating the advantage of the hypothesis we define a random error function
e:{0,1}" — {0,1} as follows. Let e(z) = 1 if z ¢ X3 but the test in line 7 yields
true, or if z € X but the test in line 7 yields false.

Observe that for z ¢ X2\ Y;? the probablhty, taken with respect to R, that

e(z) = 1is, by (9), bounded by 4e 7rs? = 4e” 535, Now choose U to be the
minimal natural number for which

de~smrs < 2= (nHD) (11)

and observe that U € O(nP%), i.e., H*(s,u,b,z,R) can be computed by a
deterministic algorithm of running time O(n(rp(n))%t(n)).

Observe that due to (11) the probability, taken over all R, that e(z) = 0 for all
z outside X2\ Y,? is at least 1/2. We will call such an R to be good with respect to
k, s and u.

It follows that with probability 1/4, taken over R and b, h = H*(s,u,b,-, R)
achieves a nonnegative advantage outside X and advantage % on Y?. As the
advantage of h on X\ Y,® can decrease this value by at most | X3\ Y| <1/S =
1/(4P?) we obtain that h achieves an advantage of at least 1/(2P?). Consequently,
the learning ratio of the above algorithm is bounded by O(nr},2(n)). |
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4 Final Discussion: Distinguishing Algorithms, Lower
Bound Methods, Open Problems

Let us relate the notion of pseudorandomness underlying our concept of
distinguishability to a stronger definition of pseudorandomness occuring in the
literature, e.g. in [26] and [28]. Let I" be a complexity class and T = (T,,) € I
be a sequence of Boolean functions for which the input length of T;, is N=2". T is
called an efficient I'-test against a function generator F' = (F),)nem if for all n

|Prf[Tn(f) = 1] - Prs[Tn(fn,s) = 1]' 2 p_l(N)

for a polynomially bounded function p : IN — IN. Hereby, functions f € B,, are
considered strings of length N = 2". The probability on the left side is taken w.r.t.
the uniform distribution on B,, (the truly random case), the probability on the right
side is taken w.r.t. the uniform distribution on F,, (the pseudorandom case).

A function generator F' is called pseudorandom w.r.t. ['-tests if there
is no efficient I'-test against F. A computational model M is said to be
cryptographically strong w.r.t. I'-tests if there is a function generator in P(M)
which is pseudorandom w.r.t. I'-tests, and cryptographically weak w.r.t. I'-
tests otherwise. Nisan constructed in [26] a function generator in AC°[2] which
is pseudorandom w.r.t. AC®-tests, i.e., AC°[2] is cryptographically strong w.r.t.
A(C-tests (but, due to Theorem 3, cryptographically weak w.r.t. distinguishing
algorithms).

Observe that, in contrast to our concept of pseudorandomness which refers to
distinguishing algorithms, the existence of an efficient I'-test for a given PRFG does
not give any feasible attack against the corresponding cipher because the whole
function table has to be processed.

In [28], at hand of a set of representative examples, Razborov and Rudich give
convincing empirical evidence that for all nonuniform computational models M
it holds the following. If there is known an effective lower bound method for M
(i-e., a method which allows to prove superpolynomial lower bounds on the xaq-
complexity of some explicitly defined sequences of Boolean functions) then M is
cryptographically weak w.r.t. I'-tests for some I" C P/poly.

In particular, on the one hand each effective lower bound method for M can be
transformed into a so-called I'-natural proof for P(M) for some I' C P/poly (the
somewhat technical definition of natural proofs is omitted here). On the other hand
(and this is the property of natural proofs which is important in our context) each
I-natural proof for P(M) yields an efficient I'-test against any function generator
in P(M). Consequently, a P/poly-natural proof against P/poly would imply the
nonexistence of function generators which are pseudorandom w.r.t. P/poly-tests.
But this implies the nonexistence of pseudorandom bit generators [28], contradicting
widely believed cryptographic hardness assumptions. We strengthen the observation
of [28] in the following sense.

Theorem 8. If there is a distinguishing algorithm D of ratio 29 for a function
generator F = (F,)ncv then there is an efficient P/poly—test against F'.

Proof. Let R(n) denote the set of random seeds used by D on input length n.
For all r € R(n) and f € B, denote by D(n,r)(f) € {0,1} the output of D
on oracle function f under the condition that the internal random bits of D take
values according to r. As D is 29(") time bounded, by a standard simulation result
of Turing machines by Boolean circuits it is straightforward to derive that for all

r € R(n) the Boolean function D(n,r) : B,, — {0,1} has Boolean circuits of size
920(n) — (Zn)O(l)
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Observe further that the advantage €(n) of D can be written as
E, [Pry[D(n,7)(fs) = 1] = Pr¢[D(n,r)(f) = 1]],

where the probability on the left side is taken w.r.t. the uniform distribution on F,,
and the probability on the right side is taken w.r.t. the uniform distribution on B,,.
Consequently, for all n there is a random seed 7*(n) such that

|Prs[D(n,7*(n))(fs) = 1] = Prs[D(n,r*(n))(f) = 1]| 2 €(n).

As e(n)~! € 20M) = (27)9() it, follows that D(n,r*(n)) define effective P/poly-
tests for F'. O

Consequently, each function generator which belongs to a cryptographically weak
complexity class has efficient P/poly-tests.

On the other hand, the efficient distinguishing algorithms for particular
complexity classes given in section 2 can be summarized by the following
observation.

For each nonuniform computational model M it seems to hold the following.
If there is an effective lower bound method for xas then M is not only
cryptographically weak w.r.t. I'-tests for some complexity class I' C P/poly (as
it was observed in [28]), but M is even cryptographically weak w.r.t. distinguishing
algorithms of quasipolynomially (sometimes even polynomially) bounded ratio.

At the moment, we know only one computational model M, namely threshold-
MOD,, circuits, p an odd prime power, for which we know an effective lower bound
method (see [16]) but no efficient distinguishing algorithm. We adress this as an
open problem.

A deeper investigation of the relations between distinguishability of function
generators, learnability of Boolean concept classes and provability of lower bounds
for nonuniform complexity measures is, by our oppinion, an interesting challenge
for further research.

Is it possible to construct efficient distinguishing algorithms for models like
constant depth circuits over AND-, OR-, MOD,,,-gates, m a composite number,
or for weighted depth 2 threshold circuits? Both models could neither be proved to
be cryptographically weak, nor strong. It is open to prove superpolynomial lower
bounds for these models. Is it easier to find distinguishing algorithms than to find
effective lower bound methods for these models?

Another question is wether it is possible to find efficient learning algorithms for
all cryptographically weak computational models? Theorem 4 gives some evidence
that this might be not the case. An efficient learning algorithm for OBDDs would
yield a good heuristic for the variable ordering problem for OBDDs. However, this
contradicts the main (negative) result of [18] on approximations by OBDDs.

We further hope that the simulation of passive distinguishing algorithms
by passive learning algorithms helps to clarify the existence of efficient passive
learning algorithms for other computational models like depth 2 AND,OR-circuits,
unweighted depth 2 threshold circuits, and others.
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5 Appendix

5.1 Usefull Probability Estimations

In the following, we use the following inequalities (see, e.g., [ASE92] Appendix A)
known as Hdffding Bounds. The first says that for all a > 0

n
Pr[ZXz- > a] < e_“2/2", (12)
i=1

where X;, 1 < i < n, are mutually independent random variables defined by

.PT’I:AXz = ].] = .PT’I:AXz = —1] = %

We obtain as a consequence that for Y;, 1 < ¢ < n, mutually independent
random variables defined by Pr[Y; = 1] = Pr[Y; = 0] = 1, and € € (0,1/2) it holds
that.

n 2
PT[ZY,- < en] < e V2/2=m, (13)

i=1
In order to see this let X; = 1 — 2Y;. Observe that X;, 1 <i < n, are mutually
independent as well as Pr[X; = 1] = Pr[X; = —1] = } and

Pr[zn:Yz- < en] = Pr[zn:l/Z(l—Xi) < en]

n
=Pr]d X; > (1/2—e)n] < e 1/20/2="n,
i=1

The second is that for all p € (0,1)

PT[ZX,‘ > a] < g2 /n, (14)
i=1

where X;, 1 < i < n, are mutually independent random variables defined by

PriX;=1-p|=pand Pr[X;=-p|=1-p.

We obtain as a consequence that for all p,q € (0,1), p < ¢, and all Z;, 1 <
i < n, mutually independent random variables defined by Pr[Z; = 1] = p, and
Pr[Z; = 0] =1—p it holds

n
Pr[z Z; > gn] < e~2(a=p)’n, (15)

i=1

In order to see this let X; = Z; — p. Observe that X;, 1 <i < n, are mutually
independent as well as Pr[X; =1 —p| = p and Pr[X; = —p] = 1 — p. and that

n n
Pr[ZZi > gn] = Pr[ZXi—i—p > gnj
i=1

i=1

n
= Pr[z X; > (g—p)n] < e 2an’n,
i=1
For the third relation let X be a finite set and U be a subset of X. Further let
U’ denote a random subset of X of cardinality |U’| < (|U|/2). Then

PriU' U] > (UJ/Ix])Y (16)
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Observe that
Ul —i

[ X| -’

and that for all positive real numbers a, b, ¢ with a > b > 2¢ it holds

U'|-1
priv' cu] = mY]

b—ec b

a—c 2a°

5.2 The Cryptographic Weakness of Constant Depth Circuits over
{AND,OR,MOD,}, p prime

We start with some preliminaries: Let K denote an arbitrary field and B = {a, b}
an arbitrary two-element subset of K. Observe that each function A : B — K
has a unique representation as an n—variate multilinear polynomial over K. Let us
denote by degy (h) the degree of this representation, i.e., the maximal length of a
monomial occuring with nonzero coefficient in this representation. Fix a Boolean
function f : {0,1}"™ — {0, 1}. The unique function f : B® — B, which is obtained
from f by replacing all occurences of 0 by a and of 1 by b is said to be the (a, b)-
variant of f. Now fix another two elements a’ # b of K and denote by g the
(a',b")-variant of f. Observe that for all (yi,...,y,) € {a’,b'}" the relation

a —b

. ab —ad'b
g(yla"'ayn): a_bf(mla"'amn)—'_i

a—>

holds, where z; = a‘t’g, yi + “;’31‘;,”1 € {a,b} for all « = 1,...,n. As this
transformation is linear it follows that for all two elements a # b € K it holds
that the K-degree of the (a,b)-variant of f is the same. We denote this value by
degg (f)-

For K = F,., r = p* prime power, we use the denotation deg,.(f). If the context
is clear and some field K is fixed we identify Boolean functions with their (0g, 1x)-
variants. We start now with the proof of Theorem 3.

(17)

Theorem 3 For all primes p and all constant depth bounds d there is a
distinguishing algorithm of quasipolynomially bounded ratio for depth d circuits over
AND,OR, MOD,-gates.

Let us fix a prime p and a depth bound d. The proof of the Theorem is based
on the following result of Smolensky [30]:

Lemma 1. Let f,91,...,9x € By be given such that f = \/f:1 gi- Then for all
r < n there is a Fp-polynomial ¢ = q(g1, ..., 9m) of degree at most (p—1)r such that

Pry[f(z) # q(g1(z),...,9m(x))] £27". The same statement holds if f = /\f:1 Ji-
It is quite straightforward to derive

Corollary 1. If f € By, can be computed by a depth d AND,OR,MOD,-circuit of
size m then for each r, p <1 < m, there is a function f : {0,1}" — F,, such that

deg,(f) < (p—1)r)* and Pry[f(z) # f(x)] < (m* = 1)/(m ~1))27" .

Proof. The approximating function f is obtained by replacing all AND- and OR-
gates by F,-polynomials which approximate the gate with parameter r as in Lemma
1. Taking into account that the Fj-degree of MOD,, is p-1 and that the indegree
of each AND- and OR-gate is bounded by m it is easy to see that the degree of f
is bounded by d4(m) and the error probability is bounded by E4(m), where d4(m)
and E4(m) are defined via the recursion é1(m) = (p — 1)r, E1(m) =277, §z(m) =
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(p—1)rdg—1(m) and E4(m) = mE4_;(m) + E1(m). Evaluating this recursion gives
the claim. O
Consequently, distinguishing ACY[p]-functions from truly random functions can
be reduced to testing that a given sample is induced by a function which can be well
approximated by a low degree polynomial over F,. If p # 2 the idea for such a test
can be derived from Razborov’s and Rudich’s Natural Proof against AC°[3] [28]: Let
us fix some odd number n. In the following, we do all arithmetic operations with
respect to the field F,. For all Boolean functions f : {0,1}" — {0,1} we denote
by f the (1,-1)-variant of f. As the characteristic of F, is odd we have 1 # —1.
Let us denote by V the F,-vector space of all functions h : {1,-1}" — F,. It
holds dim, (V') = N := 2". We denote further by L the subspace of all h € V with
deg,(h) < n/2. As n is odd we have dim,(L) = N/2. The complexity parameter

D,(f) which is essential for us is defined as
Dy(f) = dimp(L + fL)a

where fL denotes the subspace of functions which can be written as f -h, he L,
where - denotes argumentwise multiplication. (Observe that the set of functions
f:{1,-1}" — {1,—1} is closed under argumentwise multiplication.)

Observe the following properties of the parameter D:

(i) If f coincides with a function g : {0,1}" — F,, of degree P < v/n, v € (0,1),
outside a fixed input set E C {0,1}" then D,(f) < (1/2+~)N + |E|.
In order to see this observe at first that there is a function g : {1,-1}" — F,
with degree P which coincides with f outside a fixed input set B’ C {1, —1}",
where |E| = |E'|.
Consequently, outside of E’ all functions in L + fL coincide with a function of
degree smaller than n/2 + P. Hence,

n/24+P

INGEDS (")+|E| < N(1/2+ P/y) + |E].

k=0 k

(The last calculation is a consequence of Stirling’s Formula which gives that
(ii) For the parity function 7 = 21 & ... ® x, it holds that Dp(w) = N. This follows
from the well-known fact that @ = y1y2 . .. y,. Consequently, (over {1,—1}") for
each monomial m of degree larger than n/2 there is a monomial m' of degree
smaller than n/2 such that m = #m/'.
(iii) For all Boolean functions f it holds that D,(f) + Dp(w @ f) > 3/2N. In order
to see this observe that

Dy(r® f) — N/2 = dim,(L+#fL/L) =
dimy(fL +#L/fL) < dim,(fL+#L+L/(fL+ L)) =

dimp(V/(L—}—fL)) = N — Dp(f)-

The statement follows directly. As a consequence of (3) we obtain:

(iv) The amount of Boolean functions f : {0,1}" — {0,1} with D,(f) > 3/4N is
at least 50%.

(v) In order to evaluate D,(f), one has to compute the F,-rank of an NV x N-matrix,
i.e., it can be done in time N,
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We describe now the distinguishing algorithm D for {AND,OR, MOD,}-
circuits, where p # 2. Fix a polynomial m = m(n) € n°1). Given input parameters
n and m = m(n), D at first computes the minimal number r and the minimal odd
number 7 such that

64mt < 2" and (p—1)%? < (1/8)VA.

Observe that r € O(log(n)), n € O(log?(n)) and let N = 27

Then D chooses randomly an 0,l-assignment ¢ to the set of variables
{741, --,T,} and accepts if D,(f¢) < (3/4)N.

Observe that by (v), this computation can be done using N := 27 oracle queries
in time NOW) = exp(log®™ n).

In the truly random case, by (iv), the probability that A outputs 1 is at most
1/2.

Now consider the pseudorandom case and denote by f the secret function chosen
by the oracle. By Corollary 1, there is a function f : {0,1}" — F, such that
deg,(f) < ((p—1)r)? such that the probability that f differs from f is bounded by
((m? =1)/(m = 1))27".

Observe that for at least 75% of the 0,1-assignments ¢ to the variables
{Z#41,---,%n} it holds that the probability that f¢ differs from fe is bounded
by

4(m?—-1)/(m—-1))27" < 8m? 127" (18)

This implies that f¢ differs from f° on aset E of less than 8m? 1277 < (1/8)2%
inputs, i.e., by (i) and as deg,(f) < (1/8)v/A we obtain

D,(f) < (1/2+1/8)N +(1/8)N = (3/4)N.

Consequently, the probability that D accepts is at least 3/4. It follows
directly that D distinguishes ACY[p]-functions from truly random functions with
quasipolynomially bounded ratio.

Now let us consider the case p = 2. Clearly, if a given Boolean function f
coincides outside a set E with a function g with deg,(g) = d, then for all fields K
of characteristic 2 and all a # b € K it holds that the (a,b)-variant of f coincides
with a function § of K-degree d outside a set £ with |E| = |E.

The problem is that 1 = —1 holds for fields of characteristic 2.

We choose the field K = F4 = {0,1,2,2 + 1}. Observe the relation z? = z + 1
and the fact that k> = 1 for all k € {1, z, 2+ 1}. For a Boolean function f we denote
by f the (1,z)-variant of f. As above, we fix an odd n, denote N = 2", denote by
V the N-dimensional K-vector space of all functions from {1, z}" into K, and by
L the N/2-dimensional subspace of all functions of K-degree smaller than n/2.

Further let for all functions & : {1,2}" — {1,2,2 + 1}

Dy(h) = dimg (L + fL).

For Boolean functions f : {0,1}" — {0,1} let Da(f) := D2(f). Observe that
property (i) of D, holds in the same way for Ds. Consider further the function
p:{1,2}" — {1, 2,z + 1} defined by

P(yh---,yn) =Y1Y2---Yn-

Observe now the following properties of Ds:
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(I) It holds that dimg(L + p>L) = N. In order to prove this it is sufficient to
show that each monomial m of length larger than n/2 belongs to p>?L. We can
obviously find a monomial m’ of length smaller n/2 such that m? = p?>m'. On
the other hand, using the fact that on {1, 2}

yi = (z+1)yi + 2

it can be seen that m? = (z + 1)!m + h, where ¢ denotes the length of m and
h a function of degree smaller than ¢. Induction on the length of m yields the
proof.

(IT) The amount of functions h : {1,z}™ — {1, 2,z + 1} for which Ds(h) > (3/4)N
is at least 50%. For proving this observe that for all h: {1,2}" — {1, 2,2+ 1}

Dy(p*h) — N/2 = dimg (L + p*hL/L) = dimg (h*L + p*L/h*L)

> dimg (WL + p°L+ L/(h*L+ L)) = N — Dy(h?),

i.e., Da(p*h) + Da(h?) > (3/2)N. As squaring and multiplication with p? are
bijective mappings over the set of functions h : {1,z}" — {1,2z,2z + 1} the
claim follows.

In other words, if we take a truly random function h : {1,2}" — {1,2,2 + 1}
then Dy (h) > (3/4)N with significant probability. Unfortunately, we can not show
this for the (1,z)-variants of random Boolean functions which would be necessary for
our distinguishing algorithm. This is because we do not see any way for applying the
above distinguishing algorithm straightforwardly in the case p = 2. The only way-
out we see in the moment is to use the following (allmost complexity preserving)
transformation of functions f € B,, into functions which map into {1, z,z + 1}. We
describe the transformation in a more general form which could also be usefull in
other similar situations.

Generating random functions into {1,...,k}, k> 2

We describe here an operator Ty, i, m, where n, k,m are positiv natural numbers
fulfilling m < n and k < 2", which assigns to each Boolean function f : {0,1}" —
{0,1} a k-nary function T, k,m (f) : {0,1}" — {0, 1} such that the following holds:

— If f has low complexity w.r.t. to a large number of relevant nonuniform
complexity measures then T}, x . (f) has, too.

— If f is a random Boolean function then, for s large enough, T}, i, looks
”sufficiently random”. The construction is based on the following technical

Lemma 2. For each n and k < 2", and each partition ™ = (s1,...,sk) of 2", i.e.,
the s; are positive natural numbers fulfilling s1 + ... + s = 2™, there is a function
hy : {0,1}" — {0, 1} with the following properties:

(a) For all i, 1 <i <k, it holds |h;1(i)| = s;.

(b) h has a Boolean decision tree with at most (k — 1)n + 1 leafs.

Proof. A decision tree for a function h : {0,1}" — {1,...,k} is a usual
Boolean decision tree for which the leafs are labelled by 1,...,%. The computation
mode is straightforward. We identify partitions 2" = s; + ... + s by multisets
m = ($1,...,8k). For each n and k < 2", and each partition 7 = (s1,...,5;) we
define the corresponding function h, by giving a decision tree D] for h, of the
appropriate size (=number of leafs). We do this by induction.

Clearly, for k¥ = 1 this tree consists of a single leaf labelled by ”1”. The size is 1
and matches the statement of the lemma.
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Ifn =1 and k = 2 (partition 2=1+1) this tree consists of one inner node labelled
by z1 and two leafs labelled ”1” and ”2”.

Ifk=2andn >1and 7 = (s,s'), s +s = 2", then the tree D? can be
(inductively) constructed as follows: Let + = max{s, s'} and observe that ¢ > 271,
D? consists of a source labelled by z,, one successor is a leaf, the other successor
is D?ilzn_l’2n_ 8" It follows easily by induction that the size of D?s’s,) is at most
n + 1.

Now let us fix arbitrary n > 1, k > 2, and a partition # = (s1,...,8) of 2",
Let us fix the uniquely defined I, 1 <[ < k, for which s; +... + s_; < 277! and
s14...+s >27L

Let s) = 2" — (sy + ...+ 8-1), 871 = sy — s}, ™ = (81,...,8-1,5]), and
7 = (8"},8141---,5k). Observe that both 7' and 7” are partitions of 27~1.

D? can be defined as a source labelled by x,, the 0-successor of the source
is D7~ ! the l-successor is a copy of D;‘,T1 for which the leafs are labelled by
L,I+1,...,kinstead of 1,2, ..., (k — ) + 1. By induction hypothesis the size of D?
is at most

l-1n-1)+1+k-Dn-1)+1=(k-1)n+3—-k<(k—1)n+1.

O
We identify each function h, : {0,1}" — {1,...,k} with & Boolean functions
hl,...,hk defined by ‘
h(z)=1 <= hg(x) =]

We call hl,..., h* the characteristic Boolean functions of h. Observe

Corollary 2. For all positive natural numbers n and k with k < 2™, all partitions
w of 2" of length k, and all j, 1 < j <k, it holds that the Boolean functions hl, 1 <
J < k, can be written as the sum of S; monomials with S;+...+ S, < (k—1)n+1.

Proof. Take the monomials for hJ corresponding to the paths in D7 leading to
leafs with label ”j”. O

Now, for all positive natural numbers n and k with k& < 2" fix the balanced
partition 7 of 2" consisting of r times [2"/k] and k — r times [2"/k|, where
r = 2™ mod k. Denote by h;’k,...,h’ﬁb’k the characteristic Boolean functions
corresponding to 7.

Fix a further positive natural number m < n, and let S = 2" ™. We now
define the operator T, i m- For all Boolean functions f : {0,1}" — {0,1} let
Tk, (f) : {0,1}™ — {0,1} be defined

k
Tn,k,m(f)(wla v ;xm) = Zjh],g,k(yla v ayS)a
i=1

with y; = f(z1,...,2m,b0)), where b1 ... b9 denote the S possible 0,1-
assignments of ,_m+1,-. .,y in the canonical order.

Now denote by B, the set of all functions h : {0,1}" — {1,...,k}. In the
following lemma we estimate how much the distribution induced by T k,m (f) on
By, 1, deviates from the uniform distribution on By, .

Lemma 3. Fiz an arbitrary subset E of By, 1 and denote by p the probability of
the event E w.r.t. the uniform distribution over By, and with p the probability
of the event E w.r.t. the distribution which is induced via T km(f) by uniformly
distributed random Boolean functions f : {0,1}"™ — {0,1}. Then

lp—5] < pk2mS(1+k275)2".
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Corollary 3. If n,m are choosen in such a way that for S = 2"~™ it holds that
2% > ak2™ for some a > 1, then

p—5l < (p/a)e'’

Proof. Let us denote M = 2™. Observe that for all z € {0,1}" and all j, 1 < j < k,
the probability that h(z) = j, where h denotes a random function distributed
according to Ty ,m(f), is in (1/k —275,1/k + 2~5). Consequently,

lp — B SpkM(l/k—i—Z_S)M —p=p(1 +k2_S)M -1 :pMkQ_S(l —|—z)M_1

for some z € (1,1 + k279). Hence, |p — p| < pMk2=5(1 + k2-%)M.
The Corollary follows by applying the well known inequality (1+ (z/N))N < e®
for all z > 0, which yields (p/a)(1 + (1/aM)M < (p/a)e'/e. 0

The distinguishing algorithm for p = 2

For all d > 2, a distinguishing algorithm D for depth d circuits over

{AND,OR,MOD;} can be designed as follows. Given input parameters n and
m(n) € n°1), D fixes parameters r and 7 as the minimal natural numbers fulfilling

192m2@+) < 2" and  r? < (1/8)V7.

Observe that 192 = 24 -8, 7 € O(log(n)), and 7 € O(log?**? n), and let N = 27,
At next, D computes a parameter s € O(loglog(n)) such that for S = 2° it holds
that
29 >12N and S(m+2)+1<m?

This is always possible for n, m large enough.

Then D chooses randomly a 0,1-assignment c to the variables z741,...,Zn—s.

D accepts iff Dy(h¢) < (3/4)N, where h denotes the (1,z,z+1)-variant of
Ty,3,n—s(f). Observe that the evaluation of one value of h needs S oracle queries and
evaluations of hy 5, h% 5 and h 4, i.e. the running time of the algorithm is bounded
by (NS)°(M which is quasipolynomially bounded in n.

In the truly random case, h¢ is a random function from {1, z}" into {1, z, 2 + 1}
which is distributed according to that distribution on By 3 which is induced by the
uniform distribution on Bjys2 via Thys.3,7-

Remember that by (IT) the probability that Dy (h) > (3/4)N is at least 1/2 w.r.t.
the uniform distribution on By 3. Consequently, by Corollary 3, and as 25 > 4-3-N
we obtain that the probability that A accepts is at most

1/2 4+ (1/4)e'/* < 11/16.

Now consider the pseudorandom case and denote by f the secret function fixed
by the oracle. Observe that for all u = 1,2, 3 the functions h* : {0,1}" — {0,1}
defined by

h*(x) = kg 3(y1,-- -, ys)

with y; = f(z,b7), where b) ... b(5) denote the S possible assignments of
Tn—s+1,-- -, &y in the canonical order, can be computed by AND,OR,MOD;-circuits
of depth d + 2 and size Sm +2S +1 = S(m +2) + 1 < m?. (see Corollary 2.)

Consequently, for the given r, there is a degree r%*+2 polynomial g for which the
probability that A differs from g is at most

3(m2(d+2) _ 1)/(m2 _ 1)2—r < 6,,712(LH-1)2—7‘7
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for m large enough.

Hence, for an amount of at least 75% of all 0,1-assignments ¢ to the variables
Ti41,---,Ln—s it holds that the error probability of h¢ w.r.t. ¢g¢ is at least
24m2(@+192-7 je. h¢ and g¢¢ differ with respect to at most

24m2( Y 9R-T < (1/8)27
inputs. Suppose that we have choosen such a c¢. Then, as the degree of g¢ is smaller

than (1/8)/n, we get by (i) that Dy(h¢) < (3/4)N, i.e., D accepts with probability
3/4 > 11/16. We obtain quasipolynomial distinguishing ratio.
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